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Abstract. Let V be a unitary space. Suppose G is a subgroup of the full symmetric group Sm and X is an
irreducible unitary representation of G. In this paper, we introduce the generalized Cartesian symmetry
class over V associated with G and X. Then we investigate some important properties of this vector space.
Also, we study some basic properties of the induced linear operators on the generalized Cartesian symmetry
classes. Some open problems are also given.

1. Introduction and Preliminaries

In recent years, the study of symmetry classes has played a fundamental role in various branches of
mathematics (see [1, 2, 4, 5, 7–10]). In this paper, we focus on the generalized Cartesian symmetry class
associated with an irreducible unitary representation of a subgroup of the full symmetric group. Our main
goal is to establish important properties of this vector space.

Let Sm denote the full symmetric group of degree m, and let G be a subgroup of Sm. Let U be a unitary
space, meaning a finite dimensional complex vector space equipped with an inner product. The set of all
linear operators on U is denoted by End (U). Assume that X is an irreducible unitary representation of G
over U. The generalized trace function TrX : Cm×m → End (U) is defined by

TrX(A) =
∑
σ∈G

X(σ)
m∑

i=1

aiσ(i)

for A = (ai j) ∈ Cm×m.
It is proved that TrX(A∗) = TrX(A)∗. In particular, if A is Hermitian, then TrX(A) is Hermitian (see [8]).

Let V be a unitary space of dimension n and denote by ×mV be the Cartesian product of m-copies of V.
Then U ⊗ ×mV is a unitary space with an induced inner product given by

⟨u ⊗ x×, v ⊗ y×⟩ = ⟨u, v⟩
m∑

i=1

⟨xi, yi⟩,
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where u, v ∈ U and x× = (x1, · · · , xm), y× = (y1, · · · , ym) ∈ ×mV.

The generalized Cartesian symmetrizer associated with G and X is defined by

CX =
1
|G|

∑
σ∈G

X(σ) ⊗Q(σ),

where
Q(σ)(v1, · · · , vm) = (vσ−1(1), · · · , vσ−1(m))

is Cartesian permutation operator with respect to σ ∈ G.

By using [8, Proposition 2.4], we immediately deduce that CX is an orthogonal projection on U ⊗ ×mV.

Definition 1.1. The range of CX,

VX(G) := CX(U ⊗ ×mV),

is called the generalized Cartesian symmetry class over V associated with G and X.

If dim U = 1, then VX(G) reduces to Vχ(G), which is the Cartesian symmetry class associated with G and
the irreducible character χ of G corresponding to the representation X (see [3, 7, 11]). The elements of VX(G)
that have the form CX(u ⊗ x×) are called the generalized Cartesian symmetrized vectors. The equality of
two generalized symmetrized vectors has been studied in [8]. We will need the following theorem (see [8,
Corollary 5.9]).

Theorem 1.2. Let X be a unitary representation of G over unitary space U and x×, y× ∈ ×mV. Let A = [ai j],B =
[bi j] ∈ Cm×n such that xi =

∑n
j=1 ai je j, yi =

∑n
j=1 bi je j, i = 1, · · · ,m. Then the following are equivalent:

(a) CX(u ⊗ x×) = CX(u ⊗ y×) for all u ∈ U.

(b) TrX(AA∗) = TrX(AB∗) = TrX(BB∗).

The following theorem states the inner product two generalized symmetrized vectors in terms of the
generalized trace function.

Theorem 1.3. [8, Proposition 5.1]
For all u, v ∈ U and x×, y× ∈ ×mV we have

〈
CX(u ⊗ x×),CX(v ⊗ y×)

〉
=

1
|G|
⟨TrX(A)u, v⟩,

where A = [ai j] ∈ Cm×m and ai j = ⟨xi, y j⟩.

In this paper, we will refer to the following lemma frequently.

Lemma 1.4. Let σ ∈ G, u ∈ U and x× ∈ ×mV. Then

CX(u ⊗ x×σ ) = CX(X(σ)u ⊗ x×).

Proof. From definition CX, we have

CX(u ⊗ x×σ ) =
1
|G|

∑
τ∈G

(X(τ) ⊗Q(τ)) (u ⊗ x×σ )

=
1
|G|

∑
τ∈G

X(τ)u ⊗Q(τ)x×σ
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=
1
|G|

∑
τ∈G

X(τ)u ⊗Q(τ)Q(σ−1)x×

=
1
|G|

∑
τ∈G

X(τ)u ⊗Q(τσ−1)x× (τσ−1 = π)

=
1
|G|

∑
π∈G

X(πσ)u ⊗Q(π)x×

=
1
|G|

∑
π∈G

X(π)X(σ)u ⊗Q(π)x×

=

 1
|G|

∑
π∈G

X(π) ⊗Q(π)

 (X(σ)u ⊗ x×)

=CX(X(σ)u ⊗ x×).

Definition 1.5. Suppose Gp is the stabilizer subgroup of p where p = 1, 2, · · · ,m. The linear map Tp : U → U
defined by

Tp =
1
|Gp|

∑
σ∈Gp

X(σ)

is called the linear map corresponding to p.

Theorem 1.6. (a) The linear map Tp is an orthogonal projection on U.

(b) rank Tp =
1
|Gp |

∑
σ∈Gp
χ(σ), where χ is the irreducible character of G corresponding to the representation X.

Proof. (a) We first prove that Tp is Hermitian. We have

T∗p =

 1
|Gp|

∑
σ∈Gp

X(σ)


∗

=
1
|Gp|

∑
σ∈Gp

X(σ)∗ =
1
|Gp|

∑
σ∈Gp

X(σ−1) = Tp .

Now we show that Tp is idempotent. We have

T2
p =

 1
|Gp|

∑
σ∈Gp

X(σ)


 1
|Gp|

∑
π∈Gp

X(π)


=

1
|Gp|

2

∑
σ∈Gp

∑
π∈Gp

X(σ)X(π)

=
1
|Gp|

2

∑
σ∈Gp

∑
π∈Gp

X(σπ)

=
1
|Gp|

2

∑
σ∈Gp

∑
τ∈Gp

X(τ) (σπ = τ)

=
1
|Gp|

2

∑
σ∈Gp

|Gp|Tp

=Tp .
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(b)

rank Tp = tr (Tp) = tr

 1
|Gp|

∑
σ∈Gp

X(σ)

 = 1
|Gp|

∑
σ∈Gp

χ(σ).

In this paper, we study some important properties of the vector space VX(G).

2. The generalized Cartesian Symmetry Classes

Suppose F = {u1, · · · ,ur} and E = {e1, · · · , en} are orthonormal bases for unitary spaces U and V,
respectively. Assume [X(σ)]F = [mi j(σ)] for any σ ∈ G. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

ei j = (δ1 jei, δ2 jei, · · · , δmjei) ∈ ×mV.

Then the set
B = {uk ⊗ ei j | 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is an orthonormal basis of U ⊗ ×mV. Therefore,

VX(G) = ⟨CX(uk ⊗ ei j) | 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ m⟩.

The elements
CX(uk ⊗ ei j), 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ m

of VX(G) are called the generalized Cartesian standard symmetrized vectors.

Definition 2.1. For any 1 ⩽ j, s ⩽ m, we define the linear map Tsj : U→ U by

Tsj =
1
|Gsj|

∑
σ∈Gsj

X(σ),

where
Gsj = {σ ∈ G | σ( j) = s}.

If Gsj is empty, then we define Tsj = 0. If s = j, then G j j = G j, the stabilizer of j in G and so T j j = T j, the linear map
corresponding to j.

Theorem 2.2. For any 1 ⩽ j, s ⩽ m, 1 ⩽ i, r ⩽ n, 1 ⩽ k, l ⩽ r, we have

⟨CX(uk ⊗ ei j),CX(ul ⊗ ers)⟩ =


0 s / j

δir
|Gsj|

|G|
⟨Tsjuk,ul⟩ s ∼ j

In particular,

∥ CX(uk ⊗ ei j) ∥2=
1

[G : G j]
∥ T juk ∥

2 .

Proof. By using Theorem 1.3, we have

⟨CX(uk ⊗ ei j),CX(ul ⊗ ers)⟩ =⟨CX(uk ⊗ ei j),ul ⊗ ers⟩

=
1
|G|
⟨TrX(A)uk,ul⟩
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=
1
|G|
⟨

∑
σ∈G

X(σ)
m∑

p=1

apσ(p)uk,ul⟩,

where
apq = ⟨δpjei, δqser⟩ = δpjδqs⟨ei, er⟩ = δpjδqsδir.

Therefore

⟨CX(uk ⊗ ei j),CX(ul ⊗ ers)⟩ =
1
|G|
⟨

∑
σ∈G

X(σ)
m∑

p=1

δpjδσ(p)sδiruk,ul⟩

=δir
1
|G|
⟨

∑
σ∈G

X(σ)δσ( j)suk,ul⟩

=

 0 s / j

δir
1
|G|
⟨
∑
σ∈Gsj
X(σ)uk,ul⟩ s ∼ j

=


0 s / j

δir
|Gsj|

|G|
⟨Tsjuk,ul⟩ s ∼ j

In particular

∥ CX(uk ⊗ ei j) ∥2=⟨CX(uk ⊗ ei j),CX(uk ⊗ ei j)⟩

=
|G j|

|G|
⟨T juk,uk⟩

=
1

[G : G j]
⟨T juk,T juk⟩ (T2

j = T j = T∗j)

=
1

[G : G j]
∥ T juk ∥

2 .

From the above Theorem, we deduce that CX(uk ⊗ ei j) = 0 if and only if T juk = 0. For any 1 ≤ k ≤ r, let

Ωk = {1 ≤ j ≤ m | T juk , 0}.

PutΩ =
⋃r

k=1Ωk. ThenΩ = {1 ≤ j ≤ m | T j , 0}. By Theorem 1.6, T j , 0 if and only if
∑
σ∈G j
χ(σ) , 0. Hence

Ω = {1 ≤ j ≤ m |
∑
σ∈G j

χ(σ) , 0} = {1 ≤ j ≤ m | [χ, 1G j ] , 0},

where [ , ] is the inner product of characters (see [6]).
Let D be a set of representatives of orbits of the action of G on the set Im = {1, 2, · · · ,m}. We put

D̄ = D∩Ω. For each 1 ≤ j ≤ m and 1 ≤ i ≤ n, the subspace

VXi j(G) = ⟨CX(uk ⊗ ei j) | 1 ≤ k ≤ r⟩

is called the generalized cyclic subspace. If dim U = 1, then VXi j(G) reduces to Vχi j(G), the cyclic subspace
associated with G and the irreducible character χ of G (see [3, 11]).
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Since ⟨X(σ)u1 | σ ∈ G⟩ is a non-zero submodule of the irreducible C[G]-module U, so ⟨X(σ)u1 | σ ∈ G⟩ = U.
Therefore it is to see that for every 1 ≤ j ≤ m and 1 ≤ i ≤ n,

VXi j(G) = ⟨CX(u1 ⊗ eiσ( j)) | σ ∈ G⟩.

For each 1 ≤ i ≤ n, we define

VXi (G) = ⟨CX(uk ⊗ ei j) | 1 ≤ k ≤ r, 1 ≤ j ≤ m⟩.

By Theorem 2.2, if i , r then VXi (G) ⊥ VXr (G). Thus

VX(G) =
n⊕

i=1

VXi (G) (orthogonal).

For 1 ≤ j, s ≤ m, if j ∼ s then by Lemma 1.4, VXi j(G) = VXis(G), otherwise VXi j(G) ⊥ VXis(G), by Theorem 2.2.
Hence

VXi (G) =
⊕
j∈D̄

VXi j(G) (orthogonal).

Therefore

VX(G) =
n⊕

i=1

⊕
j∈D̄

VXi j(G) (orthogonal).

The following theorem provides a formula for computing the dimension of the generalized cyclic subspace.

Theorem 2.3. Let X be an irreducible unitary representation of G over a unitary space U. Suppose X affords the
irreducible character χ of G. If j ∈ D̄ then

dim VXi j(G) = [χ, 1G j ].

Proof. Let j ∈ D̄, [G : G j] = t and G =
⋃t

i=1 σiG j, be the left coset decomposition of G j in G. Then |OrbG ( j)| = t.
Suppose

OrbG ( j) = {σ1( j), · · · , σt( j)}.

Notice that
VXi j(G) = CX(Wi j),

where
Wi j =

〈
uk ⊗ eiσ( j) | 1 ≤ k ≤ r, σ ∈ G

〉
.

Then
Ei j = {uk ⊗ eiσs( j) | 1 ≤ k ≤ r, 1 ≤ s ≤ t}

is a basis of Wi j but the set CX(Ei j) may not be a basis for VXi j(G). Since Wi j is an invariant subspace of CX, so

the restriction CX |Wi j= Ci j
X

: Wi j →Wi j is a linear operator. We put

[Ci j
X

]Ei j = B = [b(k,l),(p,q)].

Now we have

Ci j
X

(up ⊗ eiσq( j)) =CX(up ⊗ eiσq( j))

=CX(X(σ−1
q )up ⊗ ei j)

=
1
|G|

∑
σ∈G

X(σσ−1
q )up ⊗ eiσ( j)
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=
1
|G|

t∑
l=1

 ∑
σ∈σlG j

X(σσ−1
q )up ⊗ eiσ( j)


=

1
|G|

t∑
l=1

(
∑
τ∈G j

X(σlτσ
−1
q )up ⊗ eiσl( j))

=
1
|G|

t∑
l=1

∑
τ∈G j

r∑
k=1

mkp(σlτσ
−1
q )uk ⊗ eiσl( j)

=

t∑
l=1

r∑
k=1

 1
|G|

∑
τ∈G j

mkp(σlτσ
−1
q )

uk ⊗ eiσl( j).

So
b(k,l),(p,q) =

1
|G|

∑
τ∈G j

mkp(σlτσ
−1
q ).

We prove that B is an idempotent matrix. We have

(B2)(k,l),(k′,l′) =

r∑
p=1

t∑
q=1

b(k,l),(p,q)b(p,q),(k′,l′)

=

r∑
p=1

t∑
q=1

 1
|G|

∑
τ∈G j

mkp(σlτσ
−1
q )


 1
|G|

∑
µ∈G j

mpk′ (σqµσ
−1
l′ )


=

1
|G|2

r∑
p=1

t∑
q=1

∑
τ∈G j

∑
µ∈G j

mkp(σlτσ
−1
q )mpk′ (σqµσ

−1
l′ )

=
1
|G|2

∑
µ,τ∈G j

t∑
q=1

mkk′ (σlτµσ
−1
l′ )

=
t|G j|

|G|2
∑
1∈G j

mkk′ (σl1σ
−1
l′ ) (1 = τµ)

=
1
|G|

∑
1∈G j

mkk′ (σl1σ
−1
l′ )

=B(k,l),(k′,l′).

Thus
dim VXi j(G) = rank Ci j

X
= rank B = tr B

Now we calculate tr B. We have

tr B =
r∑

k=1

t∑
l=1

b(k,l),(k,l)

=

r∑
k=1

t∑
l=1

 1
|G|

∑
τ∈G j

mkk(σlτσ
−1
l )


=

1
|G|

∑
τ∈G j

t∑
l=1

r∑
k=1

mkk(σlτσ
−1
l )
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=
1
|G|

∑
τ∈G j

t∑
l=1

χ(σlτσ
−1
l )

=
1
|G|

∑
τ∈G j

t∑
l=1

χ(τ)

=
t
|G|

∑
τ∈G j

χ(τ) ([G : G j)] = t)

=
1
|G j|

∑
τ∈G j

χ(τ)

=[χ, 1G j ],

so the result holds.

Now we construct a basis for the generalized Cartesian symmetry class VX(G). Since VX(G) =
⊕n

i=1

⊕
j∈D̄ VXi j(G),

in order to find a basis for VX(G), it suffices to find a basis for the generalized cyclic subspace VXi j(G) for
every 1 ≤ i ≤ n and j ∈ D̄. Let j ∈ D̄ and dim VXi j(G) = s j. Since

VXi j(G) = ⟨CX(u1 ⊗ eiσ( j)) | σ ∈ G⟩,

so we can choose the ordered subset { j1, · · · , js j } from the orbit of j, such that the set

{CX(u1 ⊗ ei j1 ), · · · ,CX(u1 ⊗ ei jsj
)}

is a basis for the generalized cyclic subspace VXi j(G). Execute this procedure for each k ∈ D̄. If D̄ =
{ j, k, l, · · · } ( j < k < l < · · · ), take

D̂ = { j1, · · · , js j ; k1, · · · , ksk ; · · · }

to be ordered as indicated. Then
{CX(u1 ⊗ ei j) | 1 ≤ i ≤ n, j ∈ D̂}

is a basis of VX(G). Hence

dim VX(G) = (dim V)|D̂| = n
∑
j∈D̄

s j = n
∑
j∈D̄

[χ, 1G j ].

If X is a linear representation of G, then dim VXi j(G) = 1 and the set

{CX(u1 ⊗ ei j) | 1 ≤ i ≤ n, j ∈ D̄}

is an orthogonal basis of VX(G) (such representations of G are called o.b.-representations).

3. Induced Linear Operators on Generalized Cartesian Symmetry Classes

Let Sm be the full symmetric group of degree m, and let G be a subgroup of Sm. Let U be a unitary vector
space. Given a linear operator T : V → V, we can define the linear operator ×mT : ×mV → ×mV by

(×mT)v× = (Tv1, · · · ,Tvm),

where v× = (v1, · · · , vm) ∈ ×mV. It is easy to see that T → ×mT is an algebraic homomorphism. Moreover,
(×mT)Q(σ) = Q(σ)(×mT) for any σ ∈ G, which implies that

CX(I ⊗ ×mT) = (I ⊗ ×mT)CX,
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and hence, VX(G) is an invariant subspace of U ⊗ ×mV under the mapping CX. We denote the restriction
of I ⊗ ×mT to VX(G) by KX(T) and call it an induced operator. Note that T → KX(T) is also an algebraic
homomorphism.

Theorem 3.1. Suppose X is an irreducible unitary representation of G over unitary space U and let S,T ∈ End (V)
and VX(G) , 0. Then

(a) KX(T) = KX(S) ⇐⇒ T = S,

(b) KX(T) is invertible if and only if T is invertible.

Proof. (a) Let KX(T) = KX(S). Then for each 1 ≤ i ≤ n, 1 ≤ j ≤ m and u ∈ U, we have

KX(T)(CX(uk ⊗ ei j)) = KX(S)(CX(uk ⊗ ei j)).

So
CX(uk ⊗ (δ1 jTei, δ2 jTei, · · · , δmjTei)) = CX(uk ⊗ (δ1 jSei, δ2 jSei, · · · , δmjSei)).

We put

xℓ = δℓ jTei = δℓ j

n∑
p=1

apiep =

n∑
p=1

δℓ japiep,

yℓ = δℓ jSei = δℓ j

n∑
p=1

bpiep =

n∑
p=1

δℓ jbpiep.

Now we define two matrices C and D as follows:

C = (Cℓp) = (δℓ japi), D = (Dℓp) = (δℓ jbpi).

Using Theorem 1.2, we get

TrX(CC∗) = TrX(CD∗) = TrX(DD∗). (1)

We can easily see that

(CC∗)ℓp = δℓ jδpj

n∑
q=1

|aqi|
2 (2)

(DD∗)ℓp = δℓ jδpj

n∑
q=1

|bqi|
2 (3)

(CD∗)ℓp = δℓ jδpj

n∑
q=1

aqib̄qi (4)

TrX(CC∗) =

n∑
q=1

|aqi|
2
∑
σ∈G j

X(σ) (5)

TrX(DD∗) =

n∑
q=1

|bqi|
2
∑
σ∈G j

X(σ) (6)

TrX(CD∗) =

n∑
q=1

aqib̄qi

∑
σ∈G j

X(σ). (7)
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Applying the trace map on Equations (1), (5), (6), (7), we get
n∑

q=1

|aqi|
2
∑
σ∈G j

χ(σ) =
n∑

q=1

|bqi|
2
∑
σ∈G j

χ(σ) =
mn∑
q=1

aqib̄qi

∑
σ∈G j

χ(σ). (8)

If we choose j ∈ D̄, then
∑
σ∈G j
χ(σ) , 0. Hence from Equation (8), we obtain

n∑
q=1

|aqi|
2 =

n∑
q=1

|bqi|
2 =

n∑
q=1

aqib̄qi (1 ≤ i ≤ n). (9)

Thus
n∑

i=1

n∑
q=1

|aqi|
2 =

n∑
i=1

n∑
q=1

|bqi|
2 =

n∑
i=1

n∑
q=1

aqib̄qi, (10)

which is equivalent to
tr(A∗A) = tr(B∗B) = tr(B∗A),

or

||A||2 = ||B||2 =< A,B >, (11)

where ||.|| is the Frobenius norm Cn×n. From the equality condition in the Cauchy-Schwarz inequality, there
exists a real number λ such that A = λB. Now by substituting in Equation (11), we get λ = 1 and then
A = B. Therefore T = S. The converse is obvious.

(b) If T is invertible then KX(T) is invertible because KX is an algebraic homomorphism.
Conversely, if KX(T) is invertible then we prove that T is invertible. To show this, suppose that T is a
singular operator. Then there exists a non-zero vector e1 ∈ V such that Te1 = 0. We can extend the set {e1}

to an orthonormal basis {e1, · · · , en} for V. Let {u1, · · · ,ur} be an orthonormal basis for the unitary space U.
Since VX(G) , 0, we have D̄ , ∅. Choose j ∈ D̄, then j belongs toΩ = ∪r

1Ωk. Therefore, there exists 1 ≤ k ≤ r
such that j ∈ Ωk. It follows that CX(uk ⊗ ei j) , 0. Now we have

KX(T)CX(uk ⊗ e1 j) =(I ⊗ ×mT)CX(uk ⊗ e1 j)
=CX(uk ⊗ ×

mT(δ1 je1, · · · , δmje1))
=CX(uk ⊗ (δ1 jTe1, · · · , δmjTe1))
=CX(u ⊗ (0, · · · , 0))
=0,

which is a contradiction. Therefore, T must be a non-singular operator. This completes the proof.

Theorem 3.2. Suppose X is an irreducible unitary representation of G over unitary space U and let S,T ∈ End (V).
Then KX(T)∗ = KX(T∗) and KX(T) is (a) normal, (b) unitary, (c) Hermitian, (d) skew-Hermitian, (e) p.s.d, or (f) p.d if
and only if T has the corresponding property.

Proof. We know that VX(G) is an invariant subspace under of the both I ⊗ ×mT and (I ⊗ ×mT)∗ = I ⊗ ×mT∗.
Thus

KX(T)∗ = ((I ⊗ ×mT) |VX(G))
∗ = (I ⊗ ×mT)∗ |VX(G) = KX(T∗).

If T is (a) normal, (b) unitary, (c) Hermitian, (d) skew-Hermitian, (e) p.s.d, or (f) p.d, then I ⊗ ×mT has the
corresponding property and so, KX(T) = (I ⊗ ×mT) |VX(G) has also the corresponding property.
Conversely, if KX(T) is normal, then

KX(T∗T) = KX(T∗)KX(T) = KX(T)∗KX(T) = KX(T)KX(T)∗ = KX(T)KX(T∗) = KX(TT∗).
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By Theorem 3.1, TT∗ = T∗T, i.e., T is normal. Similarly, if KX(T) is unitary or Hermitian, then so does
T. If KX(T) is skew-Hermitian, then KX(T)∗ = −KX(T), so KX(T∗) = KX(−T) because KX is an algebraic
homomorphism. Then, by Theorem 3.1, T∗ = −T, i.e; T is skew-Hermitian.
Now we consider KX(T) be a p.s.d operator. For every v ∈ V, define v∗j = (δ1 jv, · · · , δmjv). Then we have

⟨KX(T)CX(u1 ⊗ v∗j),CX(u1 ⊗ v∗j)⟩

=⟨CX(u1 ⊗ ×
mT(δ1 jv, · · · , δmjv)),CX(u1 ⊗ (δ1 jv, · · · , δmjv))⟩

=⟨CX(u1 ⊗ (δ1 jTv, · · · , δmjTv)),CX(u1 ⊗ (δ1 jv, · · · , δmjv))⟩

=
1
|G|
⟨TrX(A)u1,u1⟩

=
1
|G|
⟨

∑
σ∈G

X(σ)
n∑

p=1

apσ(p)u1,u1⟩

=
1
|G|
⟨

∑
σ∈G

X(σ)
n∑

p=1

δpjδσ(p) j⟨Tv, v⟩u1,u1⟩

=⟨Tv, v⟩
1
|G|
⟨

∑
σ∈G

X(σ)δσ( j) ju1,u1⟩

=⟨Tv, v⟩⟨
1
|G|

∑
σ∈G j

X(σ)u1,u1⟩

=⟨Tv, v⟩
|G j|

|G|
⟨T ju1,u1⟩

=⟨Tv, v⟩
|G j|

|G|
⟨T ju1,T ju1⟩

=⟨Tv, v⟩
|G j|

|G|
||T ju1||

2
≥ 0,

where apq = ⟨δpjTv, δqjv⟩ = δpjδqj⟨Tv, v⟩. Consequently, ⟨Tv, v⟩ ≥ 0. for all v ∈ V, i.e., T is p.s.d. If KX(T) is
p.d, then j ∈ D̄. So CX(u1 ⊗ v∗j) , 0. Hence

⟨KX(T)CX(u1 ⊗ v∗j),CX(u1 ⊗ v∗j)⟩ = ⟨Tv, v⟩
|G j|

|G|
||T ju1||

2 > 0.

Consequently, ⟨Tv, v⟩ > 0 for all v ∈ V, i.e., T is p.d.

Corollary 3.3. Suppose X is an irreducible unitary representation of G over unitary space U and let S,T ∈ End (V)
such that T ≥ S. Then KX(T) ≥ KX(S).

Proof. Assume that T ≥ S. Then T − S ≥ 0. Hence ×m(T − S) ≥ 0. Therefore ×mT − ×mS ≥ 0. Consequently
×

mT ≥ ×mS. This implies that

KX(T) = (I ⊗ ×mT)|VX(G) ≥ (I ⊗ ×mS)|VX(G) = KX(S).

Theorem 3.4. Suppose X is an irreducible unitary representation of G over the unitary space U and let T ∈ End (V).
Then

rank (KX(T)) = rank (T) |D̂|.
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Proof. Suppose F = {u1, · · · ,ur} and E = {e1, · · · , en} are orthonormal bases for unitary spaces U and V,
respectively. We can assume that the set {e1, · · · , es} is a basis for Ker T. Then the set

{CX(u1 ⊗ ei j) | 1 ≤ i ≤ n, j ∈ D̂}

is a basis of VX(G). For every 1 ≤ i ≤ s, we have

KX(T)CX(u1 ⊗ ei j) = (I ⊗ ×mT)CX(u1 ⊗ ei j)
=CX(u1 ⊗ ×

mTei j)
=CX(u1 ⊗ (δ1 jTei, · · · , δmjTei)
=CX(u1 ⊗ (0, · · · , 0))
=0.

Let

Tei =

n∑
j=1

a jie j (1 ≤ i ≤ n).

Let s + 1 ≤ i ≤ n and j ∈ D̄. For every 1 ≤ k ≤ m, we define

xk = δkjTei = δkj

n∑
ℓ=1

aℓieℓ =
n∑
ℓ=1

δkjaℓieℓ.

Let B = [bkℓ] = [δkjaℓi]. Then

TrX(BB∗) =
∑
σ∈G

X(σ)
n∑

k=1

(BB∗)kσ(k)

=
∑
σ∈G

X(σ)
n∑

k=1

n∑
ℓ=1

bkℓb̄σ(k)ℓ

=
∑
σ∈G

X(σ)
n∑

k,ℓ=1

δkjaℓiδσ(k) jāℓi

=

n∑
ℓ=1

|aℓi|2
∑
σ∈G j

X(σ)

=

n∑
ℓ=1

|aℓi|2|G j|T j , 0.

Using Theorem 1.2, we deduce that KX(T)CX(u1 ⊗ ei j) = CX(u1 ⊗ x×) , 0. Also, for every 1 ≤ i ≤ n and j ∈ D̄,
we have

KX(T)CX(u1 ⊗ ei j) =CX
(
u1 ⊗

(
δ1 jTei, · · · , δmjTei

))
=CX

u1 ⊗

 n∑
ℓ=1

δ1 jaℓieℓ, · · · ,
n∑
ℓ=1

δmjaℓieℓ




=CX

u1 ⊗

n∑
ℓ=1

aℓi(δ1 jeℓ, · · · , δmjeℓ)


=CX

u1 ⊗

n∑
ℓ=1

aℓieℓ j
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=

n∑
ℓ=1

aℓiCX(u1 ⊗ eℓ j).

This shows that the representation of KX(T) under the basis

S =
⋃
j∈D̂

{
CX(u1 ⊗ e1 j), · · · ,CX(u1 ⊗ enj)

}
is the following block matrix 

[
T
]
· · · 0

...
. . .

...

0 · · ·

[
T
]

|D̂|×|D̂|

.

Therefore
rank KX(T) = rank (T) |D̂|.

Using the above block matrix representation of KX(T), we obtain the following corollary.

Corollary 3.5. Let X be an irreducible unitary representation of G over unitary space U and let T ∈ End (V). Then

det KX(T) = (det T)|D̂|.

4. Open problems

Problem 4.1. Characterize the subgroups of Sm whose irreducible representations are all o.b.-representations.

Problem 4.2. Let G be a subgroup of Sm andX be an irreducible unitary representation of G. Determine the conditions
on X such that VX(G) has an orthogonal basis consisting the generalized Cartesian standard symmetrized vectors.

Problem 4.3. Determine the conditions on G and X such that VX(G) , 0.
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