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Abstract. We establish the concept of an intuitionistic fuzzy quasi-normed space and provide an illustra-
tive example. Through our exploration, we ascertain that an intuitionistic fuzzy quasi-norm can indeed
transition into an intuitionistic fuzzy norm. However, it is worth noting that not every topology that
supports intuitionistic fuzzy quasi-norms can be classified as metrizable. We establish the definitions of
open balls and sequence convergence within intuitionistic fuzzy quasi-normed spaces. Additionally, we
introduce the concepts of left/rightN-Cauchy sequences, both in the context of topology τN and its inverse
τ
N-1 , further elucidating the notion of N-Cauchy sequences. We establish the proof of the open mapping

theorem for intuitionistic fuzzy quasi-normed spaces.

1. Introduction

In 1965, L. A. Zadeh introduced a pioneering theory on fuzzy sets, extending the principles of crisp set
theory [30]. The fuzzy norm concept for linear spaces was initially proposed by Katsaras [19], followed by
Felbin’s alternative definition in 1992, including a corresponding metric of the Kaleva and Seikkala type
[14, 18]. Cheng and Mordeson further elaborated on this in 1994, and recent discussions by Xiao et al.
[6] explored relationships between the axioms of KM fuzzy normed spaces and KM fuzzy metric spaces.
Subsequently, Bag and Samanta introduced a modified fuzzy norm in their works (references [10, 11]),
which may find application in specific scenarios. This concept has been utilized in the advancement of
fuzzy functional analysis, as discussed in references ranging from [5] to [27].

In a different light, Atanassov put forward the concept of intuitionistic fuzzy set, which introduced a
singular membership function delineating the degree of non-affiliation, as an extension of the fuzzy set
theory. This proposal, distinct from conventional fuzzy sets, was advanced in Atanassov’s work referenced
as [7]. Following suit, Park introduced the notion of intuitionistic fuzzy metric space in 2004, as expounded
upon in [24]. Further details on intuitionistic fuzzy metric space and associated findings can be found
in references [2],[13],[25]. Additionally, in 2006, Saadati and Park introduced the concept of intuitionistic
fuzzy normed space [26], with more comprehensive information available in references [31],[1] regarding
intuitionistic fuzzy normed space and related developments.

Alegre and Romaguera’s groundbreaking research [4] introduced the concept of a fuzzy quasi-norm,
departing from the traditional symmetrical properties of fuzzy norms [10]. Expanding the application scope,
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they utilized fuzzy quasi-norms to model paratopological vector spaces [3], offering a novel perspective on
the structure of such spaces. Subsequently, their work [6] explored fuzzy quasi-normed fields, uncovering
crucial results such as the uniform boundedness theorem, which has significant implications in functional
analysis and beyond.

Further advancing the field, Gao et al. [15] recently contributed the decomposition theorem for fuzzy
quasi-norms, shedding light on the intricate inner workings of these mathematical structures. Meanwhile,
Hussein and Al-Basri’s investigation [17] into the completion of quasi-fuzzy normed algebras over fuzzy
fields deepened our understanding of algebraic structures in fuzzy settings.

Highlighting the practical significance of fuzzy quasi-normed spaces, Alegre and Romaguera [4] empha-
sized their role in analyzing the complexities of exponential time algorithms, providing valuable insights
into approximation theory and theoretical computer science.

In the domain of functional analysis, the open mapping theorem stands as a fundamental result, eluci-
dating the behavior of mappings between topological spaces. Recent research by Jianrong Wu and Ruini Li
[29] extended this theorem to fuzzy quasi-normed spaces, paving the way for new avenues of exploration
in functional mappings within fuzzy environments and broadening the applicability of the theorem to
diverse mathematical contexts. Through these combined efforts, the field of fuzzy mathematics continues
to evolve, offering novel insights and practical solutions to complex problems.

Inspired by the preceding insights, this paper endeavors to introduce the concept of intuitionistic fuzzy
quasi-normed spaces, thereby extending the framework initially proposed in [4] concerning fuzzy quasi-
norm spaces. Additionally, we aim to contribute to the field by establishing the open mapping theorem
within the context of intuitionistic fuzzy quasi-normed spaces, thus enriching the theoretical understanding
and practical applications of this mathematical framework. .

2. Preliminaries

Definition 2.1. ([28]) A binary operation ⋆ : [0, 1] × [0, 1] → [0, 1] qualifies as a continuous t − norm if it
adheres to the following properties:

(a) s ⋆ t = t ⋆ s ∀ s, t ∈ [0, 1];
(b) s ⋆ (t ⋆ u) = (s ⋆ t) ⋆ u ∀ s, t,u ∈ [0, 1];
(c) s ⋆ t ≤ u ⋆ d whenever s ≤ u and t ≤ d ∀ s, t,u, d ∈ [0, 1];
(d) s ⋆ 1 = s ∀ s ∈ [0, 1];
(e) ⋆ is continuous.

Definition 2.2. ([28]) A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] qualifies as a continuous t − conorm if it
adheres to the following properties:

(a) s ◦ t = t ◦ s ∀ s, t ∈ [0, 1];
(b) s ◦ (t ◦ u) = (s ◦ t) ◦ u ∀ s, t,u ∈ [0, 1];
(c) s ◦ t ≤ u ◦ d whenever s ≤ u and t ≤ d ∀ s, t,u, d ∈ [0, 1];
(d) s ◦ 0 = s ∀ s ∈ [0, 1];
(e) ◦ is continuous.

Example 2.3. Let ⋆ be a binary operation from [0, 1]× [0, 1] to [0, 1] and defined as ⋆(s,u) = min{s,u} for all
s,u ∈ [0, 1]. Then ⋆ is a continuous t − norm. Usually this t − norm is denoted by ∧.

Example 2.4. Let ◦ be a binary operation from [0, 1] × [0, 1] to [0, 1] and defined as ◦(s,u) = max{s,u} for all
s,u ∈ [0, 1]. Then ◦ is a continuous t − conorm. Usually this t − conorm is denoted by ∨.

Proposition 2.5. ([16]) Suppose ⋆ and ◦ function as continuous t − norm and t − conorm, respectively. Then

(i) If 0 < d1 < d2 < 1, there exists d3, d4 ∈ (0, 1) such that d1 ⋆ d3 ≥ d2 and d1 ≥ d4 ◦ d2.
(ii) If 0 < d5 < 1, then there exists d6, d7 ∈ (0, 1) such that d6 ⋆ d6 ≥ d5 and d7 ◦ d7 ≤ d5.
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Definition 2.6. Let X be real vector space and Q : X→ [0,∞) is functional then Q qualifies to be quasi-norm
(also called asymmetric norm in [12]) if it satisfying the following properties:

(i) Q(v) = Q(−v) = 0 =⇒ v = 0
(ii) Q(αv) = αQ(v) ∀ α ≥ 0

(iii) Q(v + u) ≤ Q(v) +Q(u) ∀ v,u ∈ X

Definition 2.7. ([29]) Let ℓp be the collection of all p − summable sequences i.e.;

ℓp =
{
x = (xn) ∈ ω :

∞∑
n=1

|xn|
p < ∞

}
.

For 0 < p < 1, the space ℓp does not possess a norm; instead, it is equipped with a metric defined as:

d(ξ, η) =
∞∑

n=1

|ξn − ηn|
p. For 1 ≤ p < ∞, ℓp is a norm linear space with norm defined as follows

||ξ||p =
( ∞∑

n=1

|ξn|
p
)1/p

.

Definition 2.8. ([29]) A paratopological vector space is denoted by the 4-tuple (V,+, ., τ), wherein (V, τ)
constitutes a T0 topology on V and the addition operation + is continuous. For any neighborhood B of
rξ, where ξ ∈ V and r ≥ 0, there exists a neighborhood B′ of ξ and a positive r > 0 such that the interval
[r, r + r)B′ ⊆ B.

To know more about paratopological vector spaces see [3]. Simply paratopological vector space (V,+, ., τ)
is represented by (V, τ), if no confusion arises.

Definition 2.9. ([29]) Let M be a subset of real vector space V. Then

(a) M is semibalanced if for each x ∈M, rx ∈M whenever r ∈ [0, 1].
(b) M is absorbing if for each x ∈ V, there is r0 > 0 such that r0x ∈M.

Lemma 2.10. ([29]) Let (V, τ) be a paratopological vector space.

(a) If M is convex subset of V and int(M) , ϕ then (1 − α)intA + αM ⊆ int(M), where α ∈ (0, 1) and consequently
intM is convex.

(b) If M is absorbing, convex subset of V and intM , ϕ then Θ ∈ int(M).
(c) If B(Θ) is a base of Θ-neighborhoods, then cl(M) = {M − B : B ∈ B}

=

Definition 2.11. ([22]) Mapping H :V→ U is open map, if the set H(B) is open in U for every open set B in
V.

Theorem 2.12. ([29]) In the context of fuzzy quasi-normed space (V,N, ⋆) it follows that (V, τN, ⋆) constitutes a
quasi-metrizable paratopological vector space.

Theorem 2.13. ([29]) Consider fuzzy quasi-normed spaces (V,N, ⋆) and (U,N ′, ⋆′). Assume that (V,N, ⋆) is right
N-complete and (U,N ′, ⋆′) is of the half second category and Hausdorff. If L: V → U is a linear, surjective, and
continuous mapping, then L is open.

Remark 2.14. ([29]) If t − norm is chosen as ⋆(a, b) = min{a, b}, then BN(Θ) is convex.

Remark 2.15. ([29]) BN(x, r2, t) ⊆ BN(x, r1, t), if r1 > r2 > 0 and t1 > t2 > 0 then BN(x, r, t2) ⊆ BN(x, r, t1). Now
the set {BN(x, rn, tn) : rn ∈ (0, 1), tn > 0,n ∈ N} forms a fundamental set of neighborhoods of x in (V, τN),
where both sequences {xn} and {tn} converges to 0.
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Lemma 2.16. ([29]) Let (V,F, ⋆) be fuzzy quasi normed space and B(Θ) be the collection of open balls center at
origin. Then:

(a) BN(Θ, r, t) is absorbing for all t > 0 and r ∈ (0, 1).
(b) BN(Θ, r, t) is semibalanced for all t > 0 and r ∈ (0, 1).

(c) λBN(Θ, r, t) = BN

(
Θ, r, λt

)
for every λ > 0, t > 0 and r ∈ (0, 1)

(d) if B ∈ B(Θ), there is B′ ∈ B(Θ) such that B′ + B′ ⊆ B.
(e) if B,B′ ∈ B(Θ), there is B′′ ∈ B(Θ) such that B′′ ⊆ B ∩ B′.

Lemma 2.17. ([29]) Let M be a subset of fuzzy quasi normed space (V,F, ⋆), t > 0. Then:

(a) intN(tM) = t intN(M)
(b) clN(tM) = t clN(M)

Lemma 2.18. ([29]) If A is absorbent and convex subset of fuzzy quasi normed space (V,F, ⋆) then cl(A) is too.

Lemma 2.19. ([29]) Let (V, τ), (U, τ′) be two para topological spaces, T : V → U be linear mapping. Then T is open
if and only if ΘU ∈ intT(B) for all B ∈ B, where B is a base of ΘV- neighborhoods.

3. Main results

Definition 3.1. Let V be a real vector space, and ⋆, ◦ be continuous t−norm and t− conorm respectively. Let
F,G be fuzzy sets on V×[0,∞). Then (V,F,G, ⋆, ◦) is said to be intuitionistic fuzzy quasi normed space, if

(a) F(x, 0) = 0; ∀ x ∈ V
(b) F(x, t) = F(−x, t) = 1 ∀ t > 0 ⇐⇒ x = 0;

(c) F(αx, t) = F
(
x,

t
α

)
∀ α > 0;

(d) F(x, t) ⋆ F(y, s) ≤ F(x + y, t + s) ∀ x, y ∈ V and s, t > 0;
(e) F(x,−) : [0,∞)→ [0, 1] is left continuous;
(f) limt→∞ F(x, t) = 1;
(g) G(x, 0) = 1; ∀ x ∈ V
(h) G(x, t) = G(−x, t) = 0 ∀ t > 0 ⇐⇒ x = 0;

(i) G(αx, t) = G
(
x,

t
α

)
∀ α > 0;

(j) G(x, t) ◦G(y, s) ≥ G(x + y, t + s) ∀ x, y ∈ V and s, t > 0;
(k) G(x,−) : [0,∞)→ [0, 1] is right continuous;
(l) limt→∞G(x, t) = 0;

An intuitionistic fuzzy quasi norm on V is intuitionistic fuzzy norm if F(αx, t) = F
(
x,

t
|α|

)
and G(αx, t) =

G
(
x,

t
|α|

)
for α , 0.We will denote intuitionistic fuzzy quasi norm byN = (F,G, ⋆, ◦). IfN is an intuitionistic

fuzzy quasi norm on V, than N−1 is also intuitionistic fuzzy quasi norm, where N−1 is (F−1,G−1, ⋆, ◦) and
F−1(x, t) = F(−x, t) and G−1(x, t) = G(−x, t). Moreover,N s defined as

N
s =

(
min{F(x, t),F(−x, t)},max{G(x, t),G(−x, t)}, ⋆, ◦

)
is intuitionistic fuzzy norm on V.
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Each intuitionistic fuzzy normN induces a T0 topology τN on V generated by the base of open balls

B(x) = {BN (x, r, t) : x ∈ V, t > 0 and r ∈ (0, 1)} (1)

where

BN (x, r, t) = {y ∈ V : F(x − y, t) > 1 − r, G(x − y, t) < r}. (2)

From equation 1, we can define base of open balls center at Θ(origin)

B(Θ) = {BN (Θ, r, t) : Θ ∈ V, t > 0 and r ∈ (0, 1)} (3)

where

BN (Θ, r, t) = {y ∈ V : F(y, t) > 1 − r, G(y, t) < r} (4)

Definition 3.2. A sequence {xn} in (V, τN ) converges to x if limn→∞ F(xn−x, t) = 1 and limn→∞G(xn−x, t) = 0
for all t > 0.

Definition 3.3. Let (V,F,G, ⋆, ◦) be intuitionistic fuzzy quasi normed space then a sequence xn in V is
left/right N − Cauchy/(N-1

− Cauchy) with respect to topology τN/(τ
N-1) if xm − xn → 0 as m,n → ∞ for

m > n respectively.

Definition 3.4. An intuitionistic fuzzy quasi normed space (V,F,G, ⋆, ◦) is said to be left/right complete if
every left/rightN − Cauchy/N-1

− Cauchy sequence is convergent in V.

Definition 3.5. Let S be a subspace of a intuitionistic fuzzy quasi normed space (V,F,G, ⋆, ◦), then S said

to be of half second category if S =
∞⋃

n=1
Mn, there exists positive integer m such that

intN ′ (cl
N
′−1 Mm) , ϕ.

We denote closure and interior of a set A in (V, τN ) by clNA and intNA respectively.

Example 3.6. Let (V,Q(x)) be a quasi normed space, and ⋆, ◦ be continuous t − norm and t − conorm
respectively. Let F,G be fuzzy sets on V×[0,∞) defined as follows;

F(x, t) =


t

t +Q(x)
, t > 0

0, t = 0

and

G(x, t) =


Q(x)

t +Q(x)
, t > 0

1, t = 0,

where Q(x) is the quasi norm on V. Then (V,F,G, ⋆, ◦) is intuitionistic fuzzy quasi norm on V.

Example 3.7. Let (ℓp, || · ||+p) be a quasi normed linear space, where 1 ≤ p < ∞ and

||x||+p =
( ∞∑

n=0

max{xn, 0}p
)1/p

In the scenario where x = (xn) ∈ ℓp. , and for 0 < p < 1, it constitutes a quasi-metrizable topological
vector space but lacks quasi-normability. Nevertheless, each (ℓp, ||.||+p) can be characterized as intuitionistic
fuzzy quasi-normable through an intuitionistic fuzzy quasi-norm (F,G) defined as follows:
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For 0 < p < 1,

Fp(x, t) =


tp

tp +

∞∑
n=0

(max{xn, 0})p

, t > 0

0, t = 0

(5)

and

Gp(x, t) =



∞∑
n=0

(max{xn, 0})p

tp +

∞∑
n=0

(max{xn, 0})p

, t > 0

0, t = 0

(6)

for 1 ≤ p < ∞,

Fp(x, t) =


t

t +
( ∞∑

n=0

(max{xn, 0})p
)1/p
, t > 0

0, t = 0

(7)

Gp(x, t) =



( ∞∑
n=0

(max{xn, 0})p
)1/p

t +
( ∞∑

n=0

(max{xn, 0})p
)1/p
, t > 0

1, e = 0.

(8)

where
( ∞∑

n=0

(max{xn, 0})p
)1/p
= ||xn||+p.

3.1. Open mapping theorem
In this segment, we aim to formulate the open mapping theorem within the context of intuitionistic

fuzzy quasi-normed spaces.

Theorem 3.8. Let (V,F,G, ⋆, ◦) and (W,F′,G′, ⋆′, ◦′) be intuitionistic fuzzy quasi normed space. Assume that
(V,F,G, ⋆, ◦) is ri1ht (F,G) − complete and (W,F′,G′, ⋆′, ◦′) is of half second category and Hausdorff. If L: V→W
is linear, surjective and continuous, then L is open.

Proof. Consider the family of open balls B(ΘV) centered at the origin ΘV. According to Remark 2.14
and Lemma 2.16, for any U = BN (ΘV, r̂, t̂) ∈ B(ΘV), U possesses absorbent, semibalanced, and convex

properties, leading to V =
∞⋃

n=1
nU. Given that L is both onto and linear, we have W = L(V) =

∞⋃
n=1

nL(U).

Since (W,F′,G′, ⋆′, ◦′) falls under the category of half-second category, there exists n ∈ N such that
intN ′ cl

N
′−1 nL(U) , ϕ.

From Lemma 2.17, we deduce intN ′ cl
N
′−1 L(U) , ϕ. Given the linearity and surjectivity of L, L(U) is

absorbing and convex. According to Lemma 2.18, cl
N
′−1 (L(U)) is also absorbing and convex. Referring
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to Lemma 2.10, ΘY ∈ intN ′ cl
N
′−1 L(U). Applying the definition of the interior of a set, we can assert the

existence of an open ball BN ′ (ΘY, , r′, t′) such that

ΘY ∈ BN ′ (ΘY, r′, t′) ⊆ cl
N
′−1 L(U) (9)

Let Un = BN

(
ΘV,

r̂
2n ,

t̂
2n+1

)
. Then Un is a local base at ΘV. For any Un, n ∈ N from equation 9, there exists

B(n)
N ′
= BN ′ (ΘY, r′n, t′n), such that

BN ′ (ΘY, r′n, t
′

n) ⊆ cl
N
′−1 L(Un). (10)

Where r′n ∈ (0, 1) and t′n > 0. And from remark 2.15, we have that limn→∞ r′n = 0 and limn→∞ t′n = 0.
By definition of open map, we have to show that L maps open sets in (V,F,G, ⋆, ◦) onto open sets in
(W,F′,G′, ⋆′, ◦′) i.e. we will show that

B(1)
N ′
= BN ′ (ΘY, r′1, t

′

1),⊆ L(U). (11)

Here, N = (F,G) and N ′ = (F′,G′) is intuitionistic fuzzy quasi norms on V and W respectively. From
equation 10, we have for n = 1

BN ′ (ΘY, r′1, t
′

1) ⊆ cl
N
′−1 L(U1).

Let y ∈ BN ′ (ΘY, r′1, t
′

1), there exists x1 ∈ U1 such that

F′−1(Lx1 − y, t′2) > 1 − r′2 and G′−1(Lx1 − y, t′2) < r′2

or

F′(y − Lx1, t′2) > 1 − r′2 and G′(y − Lx1, t′2) < r′2.

This implies that,

y − Lx1 ∈ BN ′ (ΘY, r′2, t
′

2) ⊆ cl
N
′−1 L(U2).

So, there exists x2 ∈ U2 such that

F′−1(Lx2 + Lx1 − y, t′3) > 1 − r′3 and G′−1(Lx2 + Lx1 − y, t′3) < r′3

or

F′−1(y − Lx2 − Lx1, t′3) > 1 − r′3 and G′−1(y − Lx2 − Lx1, t′3) < r′3

On continuing this process, we have

F′(y − Lxn − Lxn−1 − ...... − Lx2 − Lx1, t′n + 1) > 1 − r′n+1

G′(y − Lxn − Lxn−1 − ...... − Lx2 − Lx1, t′n + 1) < r′n+1.
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This implies that sequence Lxn − Lxn−1 − ...... − Lx2 − Lx1 → y as n → ∞, for r′n ∈ (0, 1) and t′n > 0. Since

xk ∈ Uk = BN

(
ΘV,

r̂
2k
,

t̂
2k+1

)
i.e., F

(
xk,

t̂
2k+1

)
> 1 −

r̂
2k

and G
(
xk,

t̂
2k+1

)
<

r̂
2k

. Let sn =

k=n∑
k=1

xk, for m > n;

F
(
sm − sn,

1
2n+1

(
1 −

1
2m−n

)
t̂
)
= F

( m∑
k=1

xk −

n∑
k=1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= F
( m∑

k=n+1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= F
( m∑

k=n+1

xk,
m∑

k=n+1

1
2k+1

t̂
)

≥ min
n+1≤k≤m

F
(
xk,

1
2k+1

t̂
)

≥ min
n+1≤k≤m

(
1 −

r̂
2k

)
.

Similarly,

G
(
sm − sn,

1
2n+1

(
1 −

1
2m−n

)
t̂
)
= G

( m∑
k=1

xk −

n∑
k=1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= G
( m∑

k=n+1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= G
( m∑

k=n+1

xk,
m∑

k=n+1

1
2k+1

t̂
)

≤ max
n+1≤k≤m

G
(
xk,

1
2k+1

t̂
)

≤ max
n+1≤k≤m

(
r̂
2k

)
.

We get that if m,n→∞ then F→ 1 and G→ 0. Thus, the sequence sn exhibits leftN-Cauchy characteristics.
By virtue of the right N-completeness inherent in (V,F,G, ⋆, ◦), it ensures the existence of x ∈ V such that

sn
N
−1

−−−→ x as n→∞. Given the continuity of L, we can consequently affirm that

n∑
k=1

Lxk
N
′−1

−−−→ Lx

Since (W, τN ′ ) is Hausdorff. So (U, τ
N ′
−1 ) will be Hausdorff. Hence, y = Lx.
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F(x, t̂) =F
(
x − sn + sn,

t̂
2
+

t̂
2

)
≥ min

{
F
(
x − sn,

t̂
2

)
,F

(
sn,

t̂
2

)}
≥ min

{
F−1

(
sn − x,

t̂
2

)
,F

(
sn,

t̂
2

)}
≥ min

{
F−1

(
sn − x,

t̂
2

)
,F

( n∑
k=1

xk,
t̂
2

)}

≥ min
{

F−1
(
sn − x,

t̂
2

)
,F

( n∑
k=1

xk,
t̂
2

)}

≥ min
{

F−1
(
sn − x,

t̂
2

)
,F

( n∑
k=1

xk,
n∑

k=1

t̂
2k+1

)}
≥ min

{
F−1

(
sn − x,

t̂
2

)
, min

1≤k≤n
F
(
xk,

t̂
2k+1

)}
≥ min

{
F−1

(
sn − x,

t̂
2

)
,

(
1 −

r̂
2k

)}

Since sn
N
−1

−−−→ x that means F−1
(
sn − x,

t̂
2

)
> 1 − r̂, for all t̂ > 0 and r̂ ∈ (0, 1). We have,

F(x, t̂) > 1 − r̂.

Similarly, for G(x, t̂)

G(x, t̂) =G
(
x − sn + sn,

t̂
2
+

t̂
2

)
≤ max

{
G
(
x − sn,

t̂
2

)
,G

(
sn,

t̂
2

)}
≤ max

{
G−1

(
sn − x,

t̂
2

)
,G

(
sn,

t̂
2

)}
≤ max

{
G−1

(
sn − x,

t̂
2

)
,G

( n∑
k=1

xk,
t̂
2

)}

≤ max
{

G−1
(
sn − x,

t̂
2

)
,G

( n∑
k=1

xk,
t̂
2

)}

≤ max
{

G−1
(
sn − x,

t̂
2

)
,G

( n∑
k=1

xk,
n∑

k=1

t̂
2k+1

)}
≤ max

{
G−1

(
sn − x,

t̂
2

)
,max

1≤k≤n
G
(
xk,

t̂
2k+1

)}
≤ max

{
G−1

(
sn − x,

t̂
2

)
,

(
r̂
2k

)}
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Since sn
N
−1

−−−→ x that means G−1
(
sn − x,

t̂
2

)
< r̂, for all t̂ > 0 and r̂ ∈ (0, 1). Hence x ∈ U = BN (Θ, r̂, t̂) and shows

that y = Lx ∈ L(U). So, equation 11 holds. This completes the proof.

4. Conclusion

:
This article introduces the concept of the intuitionistic fuzzy quasi norm and establishes the open

mapping theorem within the framework of intuitionistic fuzzy quasi normed spaces. The aforementioned
theorem and findings can be extended to a broader category of intuitionistic fuzzy sets.
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