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The property of presymmetry for w-distances on quasi-metric spaces
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Abstract. In this paper we extend the recently introduced notion of presymmetric w-distance on metric
spaces to the context of quasi-metric spaces. We establish some of its properties and present various
examples. We also show that this notion provides an efficient setting to obtain a suitable and large quasi-
metric extension of a nice and elegant generalization of Banach’s contraction principle due to Suzuki.

1. Introduction

In [23], Suzuki proved an elegant and fruitful improvement of Banach’s contraction principle from
which deduced a characterization of metric completeness. For our purposes here it will be sufficient to
consider the following weak form of Suzuki’s theorem.

Theorem 1.1. ([23]) Let (X, d) be a complete metric space and T be a self map of X. Suppose that there is a constant
r ∈ (0, 1) such that the following contraction condition holds for every x, y ∈ X:

d(x,Tx) ≤ 2d(x, y) =⇒ d(Tx,Ty) ≤ rd(x, y). (1)

Then, T has a unique fixed point in X.

Our motivation in this paper comes from the difficulty in obtaining a full generalization of Suzuki’s
theorem in the context of quasi-metric spaces as well as in the one of w-distances on metric spaces (see
Section 3 for details). Thus, and in order to mitigate the difficulties highlighted by Example 4 of [19], it was
introduced the notion of a presymmetric w-distance in the setting of metric spaces and, then, a w-distance
generalization of Theorem 1.1 via presymmetry of the involved w-distance was obtained [19, Theorem 2].

Here, we extend the idea of presymmetry to the framework of quasi-metric spaces. We examine some
properties of presymmetric w-distances in this setting and give several examples. We also obtain a fixed
point theorem whose contraction condition can be seen as an hybrid that combines conditions of Suzuki
type and Samet et al. type [20], joint with presymmetry of the involved w-distance. In this way, our main
result extends in several directions some relevant fixed point theorems and provides a broad generalization
of Theorem 1.1, demonstrating the potential usefulness of this novel structure (although with a different
approach, another precedent for the study presented here may be found in [17]).

Let us recall that the notion of a w-distance was introduced and discussed by Kada et al. in [7]. They
proved prominent w-distance generalizations of important fixed point theorems as well as of Ekeland’s
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variational principle and Takahashi minimization principle. Since then, the study of w-distances, their
generalizations and applications have been the subject of intense research. The recent book from Rakočević
[16] joint with the references therein, provide an updated and complete study of w-distances, emphasizing
on its usefulness in fixed point theory. In particular, Section 6.7 of [16] constitutes a remarkable miscellany
about fixed point theorems obtained using w-distances, for several generalized metric spaces and other
related structures.

We stress that quasi-metric spaces constitute an important type of generalized metric spaces not only
from a general topology view, but also for their applications (especially the non-T1 quasi-metric spaces) to
several branches of asymmetric functional analysis, domain theory, theories of computation and informa-
tion, fractals theory, dynamical systems, machine learning, etc. (see, e.g., [2, 4, 6, 11, 18, 21, 22, 24]).

2. Preliminaries

In the sequel, byR,R+ andNwe will design, respectively, the set of real numbers, the set of non-negative
real numbers and the set of positive integer numbers.

By a quasi-metric on a set X we mean a function q : X × X → R+ that verifies the next two conditions
for every x, y, z ∈ X:

(qm1) q(x, y) = q(y, x) = 0 if and only if x = y;
(qm2) q(x, y) ≤ q(x, z) + q(z, y).
By a T1 quasi-metric on a set X we mean a quasi-metric q on X that verifies the next condition stronger

than (qm1):
q(x, y) = 0 if and only if x = y.

A (T1) quasi-metric space is a pair (X, q) where X is a (non-empty) set and q is a (T1) quasi-metric on X.
If q is a quasi-metric on a set X, the function q−1 : X×X→ R+ defined as q−1(x, y) = q(y, x) for all x, y ∈ X,

is also a quasi-metric on X called the conjugate quasi-metric of q, and the function qs : X ×X→ R+ defined
as qs(x, y) = max{q(x, y), q−1(x, y)} for all x, y ∈ X, is a metric on X.

Given a quasi-metric q on a set X, put Bq(x, ε) = {y ∈ X : q(x, y) < ε} for all x ∈ X and all ε > 0. Then, the
family {Bq(x, ε) : x ∈ X, ε > 0} is a base (of open sets) for a T0 topology Ωq on X.

Following usual terminology, a sequence (xn)n∈N in a quasi-metric space (X, q) isΩq-convergent to x ∈ X
provided that it converges to x in the topological space (X,Ωq). Hence, a sequence (xn)n∈N in a quasi-metric
space (X, q) isΩq-convergent to x ∈ X if and only if q(x, xn)→ 0 as n→∞. Similarly, a sequence (xn)n∈N in a
quasi-metric space (X, q) is Ωq−1 -convergent to x ∈ X if and only if q(xn, x) → 0 as n → ∞. In the rest of the
paper we will simply write q(x, xn)→ 0 (respectively, q(xn, x)→ 0) if no confusion arises.

The lack of symmetry furnishes the existence of various notions of quasi-metric completeness in the
literature (see, e.g., [5]), all of them coincide with the classical notion of completeness when dealing with a
metric space. For our goals here we will consider the following very general one:

A quasi-metric space (X, q) is said to be q−1-complete if every Cauchy sequence in the metric space (X, qs)
is Ωq−1 -convergent.

We will also consider bicomplete quasi-metric spaces. Remind that a quasi-metric space (X, q) is said to
be bicomplete if the metric space (X, qs) is complete.

There are many examples of q−1-complete quasi-metric spaces. Next, we recall some of them, which
will be considered later on.

Example 2.1. Let q be the quasi-metric on R given by q(x, y) = max{y − x, 0} for all x, y ∈ R. Note that qs is the
usual metric on R. Hence, (R, q) is a bicomplete quasi-metric space and, thus, q−1-complete.

Example 2.2. Let q be the quasi-metric onN given by q(n,n) = 0 for all n ∈N, and q(n,m) = 1/n for all n,m ∈N
with n , m. Note that every non-eventually Cauchy sequence in (N, qs) isΩq−1 -convergent to any n ∈N, so (N, q) is
q−1-complete. However, (X, q) is not bicomplete because (n)n∈N is a non-Ωqs -convergent Cauchy sequence in (X, qs).
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Example 2.3. Let X =N∪{∞} and let q be the quasi-metric on X given by q(x, x) = 0 for all x ∈ X, q(∞,n) = 1 and
q(n,∞) = 1/n for all n ∈N, and q(n,m) = 1/n + 1/m for all n,m ∈N with n , m. Note that (X, q) is q−1-complete
because every non-eventually constant Cauchy sequence (xn)n∈N in the metric space (X, qs) satisfies q(xn,∞) → 0.
As in Example 2.2, (n)n∈N is a non-Ωqs -convergent Cauchy sequence in (X, qs), so that (X, q) is not bicomplete.

In [14], Park generalized the notion of w-distance to the setting of quasi-metric spaces as follows:
A w-distance on a quasi-metric space (X, q) is a function p : X × X → R+ that verifies the next three

conditions:
(w1) p(x, y) ≤ p(x, z) + p(z, y), for all x, y, z ∈ X;
(w2) for each x ∈ X, the function p(x, ·) : X→ R+ is Ωq−1 -lower semicontinuous;
(w3) for each ε > 0 there exists δ > 0 such that p(x, y) ≤ δ and p(x, z) ≤ δ imply q(y, z) ≤ ε.
The w-distance p is called symmetric if p(x, y) = p(y, x) for all x, y, z ∈ X.

Remark 2.4. Note that condition (w3) can be restated in an appealing way as follows (compare [12, Lemma 2.2]):
For each ε > 0 there exists δ > 0 such that p(x, y) ≤ δ and p(x, z) ≤ δ imply qs(y, z) ≤ ε.

In [1], Al-Homidan et al. introduced and deeply analyzed the concept of a Q-function in the setting of
quasi-metric spaces. In [9, Proposition 2] it was observed that the notions of w-distance and Q-function are
coincident.

On the other hand, it is well known (see, e.g., [7, Example 1]) that every metric d on a set X is a w-distance
on the metric space (X, d). This property does not hold for quasi-metric spaces, in general. In fact, it follows
from [12, Proposition 2.3] that if a quasi-metric q on a set X is a w-distance on (X, q), then τq = τqs , so (X, τq)
is a metrizable topological space. This apparent handicap is compensated by the advantage that the use of
w-distances instead of the original quasi-metrics in obtaining fixed point theorems offers, especially when
the involved quasi-metric is not T1 (see, e.g., [3, 9, 10]).

Several examples of w-distances on quasi-metric spaces may be found, for instance, in [1, 9, 10, 12, 14]
(see also Section 3 below).

Remark 2.5. Taking into account Remark 2.4, we get that every w-distance on a quasi-metric space (X, q) is a
w-distance on the metric space (X, qs). However, the converse does not hold, in general. Indeed, let (R, q) be the
quasi-metric space of Example 2.1. We have that qs is a w-distance on the metric space (R, qs), but q(1, 0) = 0 and
qs(2, 0) = 2 > 1 = qs(2, 1), so qs does not verify condition (w2) for (R, q).

3. Presymmetric w-distances on quasi-metric spaces

In the light of Theorem 1.1 the following question arises in a natural way:
Let p be a w-distance on a complete metric space (X, d), and let T be a self map of X. Suppose that there

is a constant r ∈ (0, 1) such that the following contraction condition holds for every x, y ∈ X:

p(x,Tx) ≤ 2p(x, y) =⇒ p(Tx,Ty) ≤ rp(x, y). (2)

Under the above assumptions, has T a fixed point in X?
In [19] it was presented an easy example showing that this question has a negative answer in general.

Then, it was introduced and discussed the notion of a presymmetric w-distance, and showed that such a
question has an affirmative answer when the involved w-distance is presymmetric [19, Theorem 2].

Remark 3.1. At this point it seems appropriate to point out that the above question has a negative answer even for
Banach spaces. Indeed, let (X, ∥.∥) be a (non-trivial) Banach space. Pick z0 ∈ X\{0} and r ∈ (0, 1). Define a self map T
of X as follows: T0 = z0 and Tx = rx for all x ∈ X\{0}. Although T has no fixed points we are going to check that the
contraction condition (2) is fulfilled for the w-distance p on (X, ∥.∥) given by p(x, y) =

∥∥∥y∥∥∥ for all x, y ∈ X. To reach
it, let x, y ∈ X. Then,
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• If y = 0, we get p(x,Tx) = ∥Tx∥ > 0 =
∥∥∥y∥∥∥ = 2p(x, y).

• If y , 0, we get p(Tx,Ty) =
∥∥∥ry
∥∥∥ = rp(x, y).

Now, we generalize the concept of presymmetry introduced in [19], as follows.

Definition 3.2. A w-distance p on a quasi-metric space (X, q) is said to be presymmetric if it verifies the next property:
Whenever (xn)n∈N is a sequence in X such that q(xn, x) → 0 and p(xn, x) → 0 for some x ∈ X, then there is a

subsequence (xk(n))n∈N of (xn)n∈N fulfilling p(x, xk(n)+1) ≤ p(xk(n), x) for all n ∈N.

Of course, if (X, q) is a metric space, the preceding notion coincides with the notion of a presymmetric
w-distance as defined in [19, Definition 2]. Furthermore, we have the following result whose proof is
omitted because it is identical to the one given in [19, Proposition 1]).

Proposition 3.3. Every symmetric w-distance on a quasi-metric space is presymmetric.

Remark 3.4. Note that every presymmetric w-distance on a quasi-metric space (X, q) is a presymmetric w-distance
on the metric space (X, qs). The converse does not hold in general, as the example presented in Remark 2.5 shows.

Although the quasi-metric of a quasi-metric space is not necessarily a w-distance on it, the next example
shows that we can easily construct symmetric w-distances on any quasi-metric space which allow us to
justify the existence of fixed point for the type of contractions that we shall introduce in Section 4.

Example 3.5. Let (X, q) be a quasi-metric space such that there is x0 ∈ X verifying q(x0, y) > 0 for all y , x0, and let
c > 0. Define p : X × X→ R+ as p(x0, x0) = 0 and p(x, y) = c otherwise. It is routine to check that p is a symmetric
w-distance on (X, q). Now, define a self map T of X as Tx = x0 for all x ∈ X. Then, we have p(Tx,Ty) = p(x0, x0) = 0
for all x ∈ X.

We conclude this section with a representative example of (pre)symmetrics w-distances on a concrete
quasi-metric space (compare [7, Examples 3 and 4], [16, Examples 2.1.4 and 2.1.5], [19, Example 6]).

Example 3.6. Denote by q+ the restriction of the quasi-metric q of Example 2.1 on R+. Let s and t be constants such
that s ≥ 0 and t > 0, and let p : R+ ×R+ → R+ defined as p(x, y) = sx + ty for all x, y ∈ X.

We first show that p is a w-distance on (R+, q+). Condition (w1) is obviously fulfilled. For (w2), fix x, y ∈ R+ and
let (yn)n∈N be a sequence in R+ such that q+(yn, y)→ 0. Given ε > 0 there is nε ∈ N such that y − yn < ε/t for all
n ≥ n0. Therefore,

p(x, y) = sx + ty < sx + tyn + ε = p(x, yn) + ε,

for all n ≥ nε. For (w3), given ε > 0 choose δ = tε. Suppose that p(x, y) ≤ δ and p(x, z) ≤ δ. Then, ty ≤ δ and tz ≤ δ,
which implies that y ≤ ε and z ≤ ε, so (q+)s(y, z) =

∣∣∣y − z
∣∣∣ ≤ ε.

Finally, we shall discuss three cases:

Case 1. s = t. Then, p is a symmetric w-distance on (R+, q+).

Case 2. s > t. Then, p is a presymmetric w-distance on (R+, q+). Indeed, let x ∈ R+ and (xn)n∈N be a sequence
in R+ such that p(xn, x) → 0 and q+(xn, x) → 0. We get that x = 0 and xn → 0 with respect to the usual metric
(q+)s. Hence, there is a subsequence (xk(n))n∈N of (xn)n∈N such that xk(n)+1 ≤ xk(n) for all n ∈ N. Consequently,
p(x, xk(n)+1) = txk(n)+1 ≤ sxk(n) = p(xk(n), x).

Case 3. s < t. Then, p is a non-presymmetric w-distance on (R+, q+). This fact follows verbatim the corresponding
case in [19, Example 6].
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4. Fixed point results and examples

In [20], Samet et al. unified and extended several classical and well-known fixed point theorems on
metric spaces via the so-called α−ψ contractive type mappings. This new and appealing approach attracted
the attention of many authors, who have extended and generalized these theorems to numerous settings. In
this direction, Chapter 3 of the recent book by Karapinar and Argawal [8], joint with the references therein,
constitutes an updated a valuable source on this topic.

We shall denote by Ψ the set of all Bianchini-Grandolfi gauge functions (see [15]), i.e., the set of all
nondecreasing functions ψ : [0,∞) → [0,∞) such that

∑
∞

n=0 ψ
n(t) < ∞ for each t ≥ 0. Recall that if ψ ∈ Ψ,

then ψ(t) < t for all t > 0 and ψ(0) = 0.
Let X be a set and α : X × X → R+. According to [20], a self map T of X is called α-admissible if

α(Tx,Ty) ≥ 1 whenever α(x, y) ≥ 1, for all x, y ∈ X.
Let (X, q) be a quasi-metric space. Inspired on [20, Theorem 2], we say that a function α: X × X → R+

satisfies property (Pα) if for each sequence (xn)n∈N in X fulfilling α(xn, xn+1) ≥ 1 for all n ∈N and q(xn, x)→ 0
for some x ∈ X, we have that α(xn, x) ≥ 1 eventually (i.e., there is n0 ∈N such that α(xn, x) ≥ 1 for all n ≥ n0).

Definition 4.1. Let p be a w-distance on a quasi-metric space (X, q), α : X×X→ R+ be a function for which property
(Pα) is satisfied, T be an α-admissible self map of X for which there is x0 ∈ X such that α(x0,Tx0) ≥ 1, and let ψ ∈ Ψ.
Under the preceding conditions, we say that T is a basic (p, α, ψ)-contraction of Suzuki type on (X, q) if the following
contraction condition holds for every x, y ∈ X :

p(x,Tx) ≤ 2p(x, y) =⇒ α(x, y)p(Tx,Ty) ≤ ψ(p(x, y)). (3)

If in Definition 4.1, the functions α and ψ are, respectively, given by α(x, y) = 1 for all x, y ∈ X, and
ψ(t) = rt for all t ∈ R+, with r ∈ (0, 1) constant, we will simply say that T is a basic p-contraction of Suzuki
type (note that this case corresponds to the contraction condition (2)).

Theorem 4.2. Let T be basic (p, α, ψ)-contraction of Suzuki type on a q−1-complete quasi-metric space (X, q). If the
w-distance p is presymmetric, then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0,Tx0) ≥ 1. For each n ∈ N ∪ {0} put xn = Tnx0. Since T is α-admissible we
obtain α(xn, xn+1) ≥ 1 for all n ∈N ∪ {0}.

For each n ∈Nwe obviously have p(xn−1, xn) ≤ 2p(xn−1, xn), so, by (3),

p(xn, xn+1) ≤ α(xn−1, xn)p(xn, xn+1) ≤ ψ(p(xn−1, xn)),

for all n ∈N. Hence, recursively we get p(xn, xn+1) ≤ ψn(p(x0, x1)) for all n ∈N.

Given ε > 0, let δ be the positive real number associated to ε in (w3). Without loss of generality, we
assume that δ < ε.

Following verbatim the part of the proof of [20, Theorem 2.1] provided on the first lines of page 2156,
we deduce the existence of an nδ ∈ N such that p(xn, xm) < δ whenever m > n > nδ. Then, it follows from
(w3) that qs(xn, xm) ≤ ε whenever m > n > nδ.

Since ε is arbitrary, we conclude that (xn)n∈N is a Cauchy sequence in the metric space (X, qs). Let ξ ∈ X
be such that q(xn, ξ)→ 0.

We next show that p(xn, ξ) → 0. Indeed, given ε > 0 there exists nε > nδ such that q(xn, ξ) < ε for all
n ≥ nε. Let n ≥ nε. By (w2) we find m > n for which p(xn, ξ) < ε+p(xn, xm).As n > nδ we get p(xn, xm) < δ < ε,
so p(xn, ξ) < 2ε for all n ≥ nε. Therefore, p(xn, ξ)→ 0.

Since p is presymmetric, there is a subsequence (xk(n))n∈N of (xn)n∈N such that p(ξ, xk(n)+1) ≤ p(xk(n), ξ) for
all n ∈N. Then,

p(xk(n), xk(n)+1) ≤ p(xk(n), ξ) + p(ξ, xk(n)+1) ≤ 2p(xk(n), ξ),
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for all n ∈N. Consequently, we can apply (3) to obtain

α(xk(n), ξ)p(xk(n)+1,Tξ) ≤ ψ(p(xk(n), ξ), (4)

for all n ∈N.
Since, by assumption, α satisfies property (Pα),we deduce the existence of an n0 ∈N such thatα(xk(n), ξ) ≥

1 for all n ≥ n0. So, by (4),

p(xk(n)+1,Tξ) ≤ p(xk(n), ξ)

for all n ≥ n0.
The preceding inequality, joint with the fact that p(xn, ξ) → 0, implies that p(xk(n)+1,Tξ) → 0. As

p(xk(n)+1, ξ)→ 0, we deduce from (w3) that ξ = Tξ. This completes the proof.

Corollary 4.3. Let T be basic (p, α, ψ)-contraction of Suzuki type on a bicomplete quasi-metric space (X, q). If the
w-distance p is presymmetric, then T has a fixed point.

Corollary 4.4. Let T be basic p-contraction of Suzuki type on a q−1-complete quasi-metric space (X, q). If the
w-distance p is presymmetric, then T has a unique fixed point ξ ∈ X. Moreover, p(ξ, ξ) = 0.

Proof. By Theorem 4.2, T has a fixed point ξ ∈ X. Since p(ξ, ξ) = p(ξ,Tξ) ≤ 2p(ξ, ξ), we deduce from (3) that
p(ξ, ξ) ≤ rp(ξ, ξ), so p(ξ, ξ) = 0.Finally, let ζ ∈ X such that ζ = Tζ. Since p(ξ,Tξ) = 0,we get p(ξ,Tξ) ≤ 2p(ξ, ζ),
so, by (3), p(ξ, ζ) ≤ rp(ξ, ζ), which implies that p(ξ, ζ) = 0. From (w3) we obtain that ξ = ζ. This concludes
the proof.

The following easy exemplification of Theorem 4.2 possesses some interesting peculiarities. In particular,
it provides an instance where we can apply Theorem 4.2 but not Corollary 4.3. Moreover, we cannot apply
Corollary 4.4 for the selected w-distance.

Example 4.5. Let (X, q) be the q−1-complete quasi-metric space of Example 2.3, and let T be the self map of X defined
as T∞ = ∞, and Tn = n2 for all n ∈N.

Consider the functions p : X × X→ R+ and α : X × X→ R+ defined, respectively, as
p(∞,∞) = 0, p(1,∞) = 1/3 and p(x, y) = 1 otherwise,

and
α(∞,∞) = α(1,∞) = 1 and α(x, y) = 0 otherwise.

It is routine to check that p is a w-distance on (X, d). In fact, the proof of condition (w1) is almost trivial, and to
verify (w2) notice that each x ∈N is a τq−1 -isolated point and that p(x,∞) ≤ p(x, y) for all x, y ∈ X. Finally, for (w3)
choose, for instance, δ = 1/4 for any ε > 0. It is also clear that p is presymmetric because from p(xn, x)→ 0 it follows
that xn = x = ∞ eventually, so, p(x, xn) = p(∞,∞) = 0 eventually.

On the other hand, we obviously have α(∞,T∞) ≥ 1, and α(Tx,Ty) ≥ 1 whenever α(x, y) ≥ 1. So, T is
α-admissible. Moreover, property (Pα) is also satisfied because if (xn)n∈N is a sequence in X satisfying α(xn, xn+1) ≥ 1
for all n ∈N and q(xn, x)→ 0 for some x ∈ X, we deduce that xn = xn+1 = ∞ for all n ≥ 2, so α(xn, x) ≥ 1 eventually.

We shall show that T is a basic contraction of (p, α, ψ)-Suzuki type for any ψ ∈ Ψ.
Indeed, choose an arbitrary ψ ∈ Ψ. Let x, y ∈ X and note that by the definitions of T, α and p, we only need

to examine the case where x = 1 and y = ∞. Since p(1,T1) = 1 > 2p(1,∞) we directly conclude that T is a basic
contraction of (p, α, ψ)-Suzuki type.

Therefore, all conditions of Theorem 4.2 are satisfied. In fact, T has two fixed points.
It seems interesting to emphasize that we also have the following facts:

• T is not a basic contraction of p-Suzuki type because p(∞,T∞) < 2p(∞, 1) but p(T∞,T1) = p(∞, 1) = 1.

• T is not an α − ψ-contractive mapping on (X, q) because α(1,∞)q(T1,T∞) = q(T1,T∞) = 1 = q(1,∞).
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• The topology τq−1 is Hausdorff (actually, it is compact and metrizable) while τq is the discrete topology on X,
so τq = τqs .

• Although p is also a w-distance on the metric space (X, qs) and property (Pα) is satisfied when we consider the
metric qs, we cannot apply Corollary 4.3 because (X, q) is not bicomplete, as noted in Example 2.3.

In the examples that follow, the involved quasi-metrics have the structure of a weighted quasi-metric in
the sense of Matthews [13].

Let us recall that a quasi-metric q on a set X is weighted provided that there exists a function h : X→ R+

such that q(x, y)+ h(x) = q(y, x)+ h(y) for all x, y ∈ X. In [12, Proposition 2.10] it was proved that, in this case,
the function p : X × X → R+ given by p(x, y) = q(x, y) + h(x) for all x, y ∈ X, is a symmetric w-distance on
(X, q) (according to [13, Theorem 4.2], p is the partial metric on X induced by q).

Example 4.6. Let (R+, q+) be the quasi-metric space of Example 3.6. It is clear that (R+, (q+)s) is a complete metric
space, so that the quasi-metric space (R+, q+) is bicomplete.

Let T be the self map of R+ defined as Tx = x/(x + 2) if x ∈ [0, 1], and Tx = 1 if x ∈ (1,∞).
Note that for x = 1 and y = 5/3 we get q+(Tx,Ty) = q+(1/3, 1) = 2/3 = q+(x, y), which implies that T is not a

Banach contraction on (R+, q+).
However, we are going to show that T is a basic (p, α, ψ)-contraction of Suzuki type for p, α and ψ constructed as

follows.
Since q+(x, y) + x = q+(y, x) + y for all x, y ∈ R+, we deduce that q+ is weighted via the function h given by

h(x) = x for all x ∈ R+. Hence, the function p : R+ ×R+ → R+ given by p(x, y) = q+(x, y) + x = max{x, y} for all
x, y ∈ R+, is a symmetric w-distance on (R+, q+).

Now define α :R+ ×R+ → R+ as α(x, y) = 1 for all x, y ∈ R+, and ψ :R+ → R+ as ψ(t) = t/(t + 2) if t ∈ [0, 1],
and ψ(t) = 1 if t ∈ (1,∞).

Obviously, α satisfies property (Pα), T is α-admissible and α(x0Tx0) = 1 for all x0 ∈ R+.
On the other hand, ψ ∈ Ψ because ψn(t) ≤ t/(2n + t) for all t ∈ R+and n ≥ 2.
Finally, we show that T is a basic (p, α, ψ)-contraction of Suzuki type. Let x, y ∈ R+. By the symmetry of p it

suffices to check the next cases.
Case 1. x, y > 1. Then, we obtain α(x, y)p(Tx,Ty) = p(1, 1) = 1 = ψ(p(x, y)).
Case 2. x > 1, y ≤ 1. Then, we obtain α(x, y)p(Tx,Ty) = p(1, y/(2 + y)) = 1 = ψ(p(x, y)).
Case 3. x, y ≤ 1. Then, we obtain α(x, y)p(Tx,Ty) = p(x/(2 + x), y/(2 + y)) = ψ(p(x, y)).
Thus, we have proved that all conditions of Corollary 4.3 are fulfilled.

Example 4.7. Let X = {0, 1}. Denote by X f the set of all finite sequences (finite words) of elements of X and by X∞

the set of all infinite sequences (infinite words) of elements of X. Put Xω = X f
∪ X∞.

For each x ∈ X f we denote by l(x) its length. Thus, if x ∈ X f with x := x1...xk, k ∈ N, we have l(x) = k, and if
x ∈ X∞ we have l(x) = ∞ and write x := x1x2...

Given x, y ∈ Xω we say that x is a prefix of y, and write x ⊑ y, if it is fulfilled one of the following two conditions:
(i) x ∈ X f , l(x) ≤ l(y) and x j = y j whenever 1 ≤ j ≤ l(x).

(ii) x ∈ X∞ and x = y.
If x ⊑ y with x , y, we write x ⊏ y. Moreover, by x ⊓ y we denote the (longest) common prefix of x and y. Note

that x ⊓ y = x whenever x ⊑ y.
Now, let q be the quasi-metric on Xω given by

q(x, y) = 2−l(x⊓y)
− 2−l(x)

for all x, y ∈ Xω. It is well known that (Xω, q) is bicomplete. It is also well known, and easily checked, that q is
weighted via the function h given by h(x) = 2−l(x) for all x ∈ Xω.

Therefore, the function p : Xω
×Xω

→ R+ given by p(x, y) = 2−l(x⊓y) for all x, y ∈ Xω, is a symmetric w-distance
on (Xω, q).

Next, we define a self map T of Xω as follows:
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If x ∈ X f with l(x) odd, Tx is the unique z ∈ X f with l(z) = 1 and z1 = 0.

If x ∈ X f with l(x) even, Tx is the unique yx ∈ X f such that l(yx) = l(x) + 2, (yx)1 = (yx)2 = 0, and (yx) j = x j−2
for 3 ≤ j ≤ l(x) + 2.

If x ∈ X∞, Tx is the unique yx ∈ X∞ such that (yx)1 = (yx)2 = 0, and (yx) j = x j−2 for j ≥ 3.

We first note that we cannot apply Corollary 4.4 because for x, y ∈ X f with l(x) and l(y) odd, and x1 = y1, we get
l(x ⊓ y) ≥ 1, so

p(Tx,Ty) = 2−l(z) = 2−1
≥ 2−l(x⊓y) = p(x, y).

However, we shall show that T is a basic contraction of (p, α, ψ)-Suzuki type, for α and ψ defined below, and thus,
we will can apply Corollary 4.3.

Define ψ : R+ → R+ as ψ(t) = t/4 for all t ∈ R+. Then, ψ ∈ Ψ.
Now, define α : Xω

× Xω
→ R+ as follows:

α(x, y) = 1 if x, y ∈ X f , with l(x) and l(y) even, and x ⊏ y;
α(x, y) = 1 if x ∈ X f , y ∈ X∞, with l(x) even and x ⊏ y;

and
α(x, y) = 0 otherwise.
Let x0 := 00. Then, Tx0 = 0000. Hence x0 ⊏ Tx0, and, thus, α(x0,Tx0) ≥ 1.
It is clear that T is α-admissible. Furthermore, property (Pα) is also satisfied: Indeed, let (un)n∈N be a sequence in

Xω and u ∈ Xω such that α(un,un+1) ≥ 1 for all n ∈ N, and q(un,u) → 0. Then, un ⊏ un+1 and l(un) even for all
n ∈ N. Consequently, u is the unique element of Xω verifying un ⊏ u for all n ∈ N, which implies that α(un,u) = 1
for all n ∈N.

Finally, we shall show that the contraction condition (3) holds. To this end, let x, y ∈ Xω. By the construction of
the function α we only need to discuss the following cases.

Case 1. x, y ∈ X f with l(x) and l(y) even, and x ⊏ y. We have Tx ⊏ Ty, so

α(x, y)p(Tx,Ty) = 2−l(Tx⊓Ty) = 2−l(Tx) = 2−(l(x)+2) =
1
4

2−l(x⊓y) =
1
4

p(x, y).

Case 2. x ∈ X f , y ∈ X∞, with l(x) even and x ⊏ y. Exactly as in Case 1, we have Tx ⊏ Ty, so

α(x, y)p(Tx,Ty) = 2−l(Tx⊓Ty) = 2−l(Tx) = 2−(l(x)+2) =
1
4

2−l(x⊓y) =
1
4

p(x, y).

We conclude the paper with an example showing that the q−1-completeness of the quasi-metric space
(X, q) in Theorem 4.2 cannot be replaced with the following alternative notion of completeness: A quasi-
metric space (X, q) is q-complete provided that every Cauchy sequence in the metric space (X, qs) is Ωq-
convergent.

Example 4.8. Consider the quasi-metric space (N, q) of Example 2.2. Denote by q′ the conjugate quasi-metric q−1 of
q. Then, (N, q′) is q′-complete because every non-eventually constant Cauchy sequence in (N, (q′)s) isΩq-convergent
to any n ∈N. Since q′(n,m)+ 1/n = q′(m,n)+ 1/m for all n,m ∈N, we deduce that q′ is weighted via the function
h given by h(n) = 1/n for all n ∈ N. Hence, the function p : N ×N → R+ given by p(n,m) = 1/n + 1/m for
all n,m ∈N, is a symmetric w-distance on (N, q′).

Now, define a self map T of X as Tn = 2n for all n ∈N. Although T has no fixed points, it is a basic p-contraction
of Suzuki type. Indeed, for each n,m ∈N we get

p(Tn,Tm) = p(2n, 2m) = 1/2n + 1/2m = p(n,m)/2.
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[6] H. Falciani, E.A. Sánchez-Pérez, Semi-Lipschitz functions and machine learning for discrete dynamical systems on graphs, Mach.

Learn. 111 (2022) 1765–1797.
[7] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math.

Japon. 44 (1996) 381–391.
[8] E. Karapinar, R.P. Agarwal, Fixed Point Theory in Generalized Metric Spaces, Synthesis Lectures on Mathematics & Statistics,

Springer, Cham, Switzerland, 2022.
[9] E. Karapinar, S. Romaguera, P. Tirado, Characterizations of quasi-metric and G-metric completeness involving w-distances and

fixed points, Demonstr. Math. 55 (2022) 939-–951.
[10] A. Latif, S.A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory Appl. 2011 (2011) Article ID 178306. (2011)
[11] J. Lu, B. Zhao, Local Yoneda completion of quasi-metric spaces, Math. Struct. Comput. Sci. 33 (2023) 33–45.
[12] J. Marı́n, S. Romaguera, P. Tirado, Q-functions on quasimetric spaces and fixed points for multivalued maps, Fixed Point Theory

Appl. 2011 (2011) Article ID 603861.
[13] S. G. Matthews, Partial metric topology, in Proceedings of the 14th Summer Conference on General Topology and Its Applications,

vol. 728 of Annals of the New York Academy of Sciences, pp. 183-–197, The New York Academy of Sciences, 1994.
[14] S. Park, On generalizations of the Ekeland-type variational principles, Nonlinear Anal. 39 (2000) 881–889.
[15] P.D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations,

Nolinear Anal. TMA, 16 (2006) 2361–2369.
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