Filomat 38:25 (2024), 8961–8970 https://doi.org/10.2298/FIL2425961Z



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Arithmetics of $\beta$ -expansions in $\mathbb{F}_q((x^{-1}))$

# S. Zouari<sup>a</sup>

<sup>a</sup>Département de Mathématiques, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

**Abstract.** The aim of this study is to give some arithmetic properties on the set of  $\beta$ -polynomials in  $\mathbb{F}_q((x^{-1}))$  i.e. the set of series whose  $\beta$ -expansion has not fractional part, where  $|\beta| > 1$  is an algebraic formal power series over the finite field  $\mathbb{F}_q$ . We will give sufficient conditions over  $\beta$  to have the quantity  $L_{\circ}$  is finite, where  $L_{\circ}$  designates the maximal finite shift after the comma for the product of two  $\beta$ -polynomials.

#### 1. Introduction

The class of  $\beta$ -transformation { $T_{\beta}$ ,  $\beta > 1$ } was introduced by A. Rényi in [10]. Let  $\beta > 1$  be a real number. The  $\beta$ -transformations is a piecewise linear transformation on [0, 1) defined by

$$T_{\beta} : x \longrightarrow \beta x - [\beta x],$$
  
If  $\forall i \ge 1, x_i = [\beta T_{\beta}^{i-1}(x)], \text{ then } x = \sum_{i \ge 1} \frac{x_i}{\beta^i}.$ 

We define the  $\beta$ -expansion of x as the sequence  $d_{\beta}(x) = 0 \bullet x_1 x_2 x_3 \dots$ For any real number x > 1, there exists an m > 0 such that  $\beta^{-m-1} x \in [0, 1)$ . Thus we can express each x in the form

$$x = \underbrace{x_{-m}\beta^m + \dots + x_{-1}\beta + x_0}_{[x]_\beta} + \underbrace{\frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \dots}_{\{x\}_\beta},$$

then  $d_{\beta}(x) = (x_i)_{i \ge -m} = x_{-m} \dots x_{-1} x_0 \bullet x_1 x_2 x_3 \dots$ 

The part with non-negative powers of  $\beta$  is then called the  $\beta$ -integer part of x, denoted by  $[x]_{\beta}$ ; the part with negative powers of  $\beta$  is then called the  $\beta$ -fractional part of x, denoted by  $\{x\}_{\beta} = x - [x]_{\beta}$ . This allows a natural generalization for the definition of integers in base  $\beta$ .

A  $\beta$ -expansion is finite if  $(x_i)_{i\geq 1}$  is eventually 0. It is periodic if there exists  $p \geq 1$  and  $m \geq 1$  with  $x_k = x_{k+p}$  holds for all  $k \geq m$ ; if  $x_k = x_{k+p}$  holds for all  $k \geq 1$ , then it is purely periodic. We denote by

Fin(
$$\beta$$
) = { $x \in \mathbb{R}_+ : d_\beta(x)$  is finite}.

Communicated by Paola Bonacini

<sup>2020</sup> Mathematics Subject Classification. Primary 11R06; Secondary 37B50.

*Keywords*. Formal power series, *β*-expansion, algebraic integer series.

Received: 05 March 2024; Revised: 03 May 2024; Accepted: 25 May 2024

Email address: sourourzwari@yahoo.fr (S. Zouari)

It is proved in [1] that if  $\mathbb{N} \subset \operatorname{Fin}(\beta)$ , then  $\beta$  is a Pisot number; that is, a real algebraic integer greater than 1 with all conjugates strictly inside the unit circle. Let  $\mathbb{Z}[\beta]$  be the smallest ring containing  $\mathbb{Z}$  and  $\beta$ . Denote by  $\mathbb{Z}[\beta]_{\geq 0}$  the non negative elements of  $\mathbb{Z}[\beta]$ . We say that the number *x* satisfies the finiteness property if:

$$\operatorname{Fin}(\beta) = \mathbb{Z}[\beta^{-1}]_{\geq 0}.$$

This property was introduced by Frougny and Solomyak [5]. They showed that if  $\beta$  satisfies the finiteness property then  $\beta$  is a Pisot number. Note that there are Pisot numbers without finiteness property, especially, all numbers  $\beta$  such that  $d_{\beta}(1)$  is infinite.

The set of  $\beta$ -integers, denoted by  $\mathbb{Z}_{\beta}$ , is the set of real numbers *x* for which there exists  $n \in \mathbb{N}$ , such that  $x = \pm \sum_{i=0}^{n} a_i \beta^i$ , where  $a_n \dots a_0 \bullet 0$  is the  $\beta$ -expansion of |x|.

In general, the sets  $\mathbb{Z}_{\beta}$  and Fin( $\beta$ ) are not stable under addition and multiplication. In spite of that, it is sometimes useful in computer science to consider this operation in  $\beta$ -arithmetics. Therefore, it is important to study which fractional parts might appear as a result of addition and multiplication of  $\beta$ -integers.

The following quantities  $L_{\oplus}$  and  $L_{\odot}$ , are introduced in [2]. They represents the maximal possible finite length of the  $\beta$ -fractional parts which would appear when one adds or multiplies two  $\beta$ -integers.

#### **Definition 1.1.** *Let* $\beta > 1$ *. We denote*

- L<sub>⊕</sub> := min{n ∈ N : ∀x, y ∈ Z<sub>β</sub>, x + y ∈ Fin(β) ⇒ β<sup>n</sup>(x + y) ∈ Z<sub>β</sub>} when this set is not empty, +∞ otherwise.
  L<sub>⊙</sub> := min{n ∈ N : ∀x, y ∈ Z<sub>β</sub>, xy ∈ Fin(β) ⇒ β<sup>n</sup>(xy) ∈ Z<sub>β</sub>} when this set is not empty, +∞ otherwise.

Many authors are interested in the case where  $L_{\oplus}$  and  $L_{\odot}$  are finite. Indeed if the sum or the product of two  $\beta$ -integers belongs to Fin( $\beta$ ), then the length of the  $\beta$ -fractional part of this sum or product is bounded by a constant which only depends on  $\beta$ . C. Frougny and B. Solomyak in [5] showed that  $L_{\oplus}$  is finite when  $\beta$ is a Pisot number. The case of quadratic Pisot numbers has been studied in [4] when  $\beta$  is a unit. The authors gave exact values for  $L_{\oplus}$  and  $L_{\odot}$ , when  $\beta > 1$  is a solution either of equation  $x^2 = mx - 1$ ,  $m \in \mathbb{N}$ ,  $m \ge 3$  or of equation  $x^2 = mx + 1$ ,  $m \in \mathbb{N}$ . In the first case  $L_{\oplus} = L_{\odot} = 1$ , in the second case  $L_{\oplus} = L_{\odot} = 2$ , and in [6] otherwise. However, when  $\beta$  is of higher degree, it is a difficult problem to compute the exact value of  $L_{\oplus}$ or  $L_{\odot}$ , and even to compute upper and lower bounds for these two constants. Several examples are studied in [2], where a method is described in order to compute upper bounds for  $L_{\oplus}$  and  $L_{\odot}$  for Pisot numbers satisfying additional algebraic properties.

In [3], J. Bernat determined the exact value of  $L_{\oplus}$  for several cases of cubic Pisot units numbers: He especially proved that if we denote by  $L_{\oplus}(k_1, k_2)$  the value of  $L_{\oplus}$  associated to the positive root  $\beta$  of P(x) = $x^3 - k_1 x^2 - k_2 x - 1$ , where  $k_1, k_2 \in \mathbb{N}^2$  satisfy max $\{1, k_2\} \le k_1 \le 3$ . For example,  $L_{\oplus}(1, 0) = 11$ ,  $L_{\oplus}(2, 2) = 5$ and  $L_{\oplus}(3,2) = 4$ . In particular, in the Tribonacci case, that is, when  $\beta$  is the positive root, of the polynomial  $x^3 - x^2 - x - 1$ , he proved the following result.

#### **Proposition 1.2.** If $\beta$ is the Tribonacci number, then $L_{\oplus} = 5$ .

Let's note that until now, we don't know the value of  $L_{\odot}$  in the case of the Tribonacci number. It is only proven in [2] that  $4 \le L_{\odot} \le 5$ .

We can define analogous notions in the case of the field of formal power series over a finite field.

The main objective of this paper is to study a similar concepts over the field of formal power series over finite field. This paper is organized as follows: In section 2, we define the field of formal power series over a finite field  $\mathbb{F}_{q}((x^{-1}))$ . We will also define the  $\beta$ -expansion algorithm over this field. In section 3, we prove that, for any algebraic integer series  $\beta$ , the quantity  $L_{\odot}$  is finite. In the sequel, we have shown that  $L_{\odot}$  is also finite in algebraic unit basis.

## 2. $\beta$ -expansions in $\mathbb{F}_q((x^{-1}))$

Let  $\mathbb{F}_q$  be a finite field with q elements,  $\mathbb{F}_q[x]$  the ring of polynomials with coefficients in  $\mathbb{F}_q$  and  $\mathbb{F}_q(x)$  the field of rational functions.

Let  $\mathbb{F}_q((x^{-1}))$  be the field of formal power series of the form:

$$f=\sum_{k=-\infty}^l f_k x^k, \quad f_k\in \mathbb{F}_q,$$

where

$$l = \deg f := \begin{cases} \max\{k : f_k \neq 0\} & \text{if } f \neq 0, \\ -\infty & \text{if } f = 0. \end{cases}$$

Define the absolute value  $|f| = q^{\text{deg}f}$ . Thus,  $\mathbb{F}_q((x^{-1}))$ , equipped with this absolute value, is a complete metric space, it is the completion of  $\mathbb{F}_q(x)$ . Since the above absolute value is not archimedean, it fulfills the strict triangle inequality:

$$|f + g| \le \max(|f|, |g|)$$
 and  $|f + g| = \max(|f|, |g|)$  if  $|f| \ne |g|$ .

Consider  $f \in \mathbb{F}_q((x^{-1}))$  and define the polynomial part  $[f] = \sum_{k=0}^{l} f_k x^k$  where the empty sum, as usual, is defined to be zero. Therefore  $[f] \in \mathbb{F}_q[x]$  and  $f - [f] \in M_0$  where  $M_0 = \{f \in \mathbb{F}_q((x^{-1})) : |f| < 1\}$ . Let  $\beta \in \mathbb{F}_q((x^{-1}))$ , we denote by:

•  $\mathbb{F}_q(x,\beta) = \mathbb{F}_q(x)(\beta)$  the smallest field containing  $\mathbb{F}_q(x)$  and  $\beta$ .

•  $\mathbb{F}_q[x,\beta] = \mathbb{F}_q[x][\beta]$  the smallest ring containing  $\mathbb{F}_q[x]$  and  $\beta$ .

Now, we are ready to define the  $\beta$ -expansions of *f* in the field of formal power series.

Let  $\beta$ ,  $f \in \mathbb{F}_q((x^{-1}))$  where  $|\beta| > 1$  and  $f \in M_0$ . A representation in base  $\beta$  (or  $\beta$ -representation) of f is a sequence  $(d_i)_{i \ge 1}, d_i \in \mathbb{F}_q[x]$ , such that

$$f = \sum_{i \ge 1} \frac{d_i}{\beta^i}$$

A particular  $\beta$ -representation of f is called the  $\beta$ -expansion of f and noted  $d_{\beta}(f)$ . It is obtained by using the  $\beta$ -transformation  $T_{\beta}$  in  $M_0$  which is given by the mapping:

$$\begin{array}{rccc} T_{\beta}: M_{0} & \longrightarrow & M_{0} \\ f & \longmapsto & \beta f - [\beta f] \end{array}$$

Thus,  $d_{\beta}(f) = 0 \bullet (d_i)_{i \ge 1}$  if and only if  $d_i = [\beta T_{\beta}^{i-1}(f)]$ . Note that  $d_{\beta}(f)$  is finite if and only if there is a  $k \ge 0$  such that  $T_{\beta}^k(f) = 0$ ,  $d_{\beta}(f)$  is ultimately periodic if and only if there is some smallest  $p \ge 0$  (the pre-period length) and  $s \ge 1$  (the period length) for which  $T_{\beta}^{p+s}(f) = T_{\beta}^p(f)$ . If  $f \in M_0$  and  $d_{\beta}(f) = 0 \bullet (d_i)_{i\ge 1}$ , we often write  $f = 0 \bullet d_1 d_2 d_3 \dots$ 

Now let  $f \in \mathbb{F}_q((x^{-1}))$  be an element with  $|f| \ge 1$ . Then there is a unique  $k \in \mathbb{N}$  such that  $|\beta|^k \le |f| < |\beta|^{k+1}$ . Hence  $|\frac{f}{\beta^{k+1}}| < 1$  and we can represent f by shifting  $d_\beta(\frac{f}{\beta^{k+1}})$  by k + 1 digits to the left. That is, if  $d_\beta(\frac{f}{\beta^{k+1}}) = 0 \bullet d_1 d_2 d_3 \dots$ , then  $d_\beta(f) = d_1 d_2 d_3 \dots d_{k+1} \bullet d_{k+2} \dots$ 

**Remark 2.1.** In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if z,  $w \in \mathbb{F}_q((x^{-1}))$ , we have  $d_\beta(z + w) = d_\beta(z) + d_\beta(w)$  digitwise. We have also  $d_\beta(cf) = cd_\beta(f)$  for every  $c \in \mathbb{F}_q$ .

**Theorem 2.2.** [8] A  $\beta$ -representation  $(d_j)_{j\geq 1}$  of f in  $M_0$  is its  $\beta$ -expansion if and only if  $|d_j| < |\beta|$  for  $j \ge 1$ .

8963

Let us first recall some number theoretical notions.

A formal power series  $\beta$  is called an algebraic series over  $\mathbb{F}_q(x)$ , if there exists  $a_n, \ldots, a_0 \in \mathbb{F}_q[x]$  such that

$$P(\beta) = a_n \beta^n + a_{n-1} \beta^{n-1} + \dots + a_1 \beta + a_0 = 0.$$

If the polynomial *P* is of minimal degree, then *P* is called the minimal polynomial of  $\beta$  of algebraic degree *n*. The other roots of the minimal polynomial which are not necessarily in  $\mathbb{F}_q((x^{-1}))$  are called the algebraic conjugates of  $\beta$ . If  $a_n \in \mathbb{F}_q^*$ , then  $\beta$  is called an algebraic integer series and if  $a_0 \in \mathbb{F}_q^*$ , then  $\beta$  is called a unit series.

**Proposition 2.3.** [9] Let K be a complete field with respect to a non archimedean absolute value |.| and L/K ( $K \subset L$ ) be an algebraic extension of degree m. Then |.| has a unique extension to L defined by :  $|a| = \sqrt[m]{|N_{L/K}(a)|}$  and L is complete with respect to this extension.

We apply this proposition to algebraic elements of  $\mathbb{F}_q((x^{-1}))$ . Since  $\mathbb{F}_q[x] \subset \mathbb{F}_q((x^{-1}))$ , then every algebraic element in  $\mathbb{F}_q[x]$  can be valuated. However, since  $\mathbb{F}_q((x^{-1}))$  is not algebraically closed, such an element needn't be necessarily a formal power series.

**Lemma 2.4.** [8] Let  $P(Y) = A_n Y^n - A_{n-1} Y^{n-1} - \cdots - A_0$  where  $A_i \in \mathbb{F}_q[x]$ , for i = 1, ..., n. Then P admits a unique root in  $\mathbb{F}_q((x^{-1}))$  with absolute value > 1 and all other roots are with absolute value < 1 if and only if  $|A_{n-1}| > |A_i|$  for  $i \neq n-1$ .

If 
$$d_{\beta}(f) = d_l d_{l-1} \dots d_0 \bullet d_{-1} d_{-2} \dots$$
, let  $[f]_{\beta} = d_l \beta^l + d_{l-1} \beta^{l-1} + \dots + d_0$  and  $\{f\}_{\beta} = f - [f]_{\beta}$ .

If  $d_{\beta}(f)$  is finite with  $f = \sum_{l=1}^{m} d_{l}\beta^{-i}$  where  $m, l \in \mathbb{Z}$ , then we put  $\operatorname{ord}_{\beta}(f) = -m$  and  $\operatorname{ord}_{\beta}(f) = -\infty$  otherwise.

Using this last notion, we define the set of  $\beta$ -polynomials as follow:

$$(\mathbb{F}_q[x])_\beta = \{ f \in \mathbb{F}_q((x^{-1})) : \operatorname{ord}_\beta(f) \ge 0 \}$$

In the sequel, we will use the following notation:

$$Fin(\beta) = \{f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is finite}\}.$$

$$Per(\beta) = \{f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is periodic}\}.$$

$$Pur(\beta) = \{f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is purely periodic}\}.$$

$$Per(\beta, s) = \{f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is periodic with pre-period s}\}.$$

We define the quantity  $L_{\odot}$  as follows:

$$L_{\odot} = \begin{cases} \min E_{\beta} & \text{if } E_{\beta} \neq \emptyset, \\ \\ \infty & \text{if } E_{\beta} = \emptyset, \end{cases}$$

with  $E_{\beta} = \{n \in \mathbb{N} : \forall p_1, p_2 \in (\mathbb{F}_q[x])_{\beta}, p_1.p_2 \in Fin(\beta) \Longrightarrow \beta^n(p_1.p_2) \in (\mathbb{F}_q[x])_{\beta}\}$ . More precisely, we can see  $L_{\odot}$  as follows:

$$L_{\odot} = \max\{-\operatorname{ord}_{\beta}(p_1.p_2) : p_1, p_2 \in (\mathbb{F}_q[x])_{\beta}, \ p_1.p_2 \in \operatorname{Fin}(\beta)\}.$$

Let us note that  $L_{\odot}$  designates the maximal finite shift after the comma for the product of two  $\beta$ -polynomials.

**Example 2.5.** Let  $\beta$  be the unique root of absolute value > 1 of the polynomial  $P(Y) = Y^d + x^2Y^{d-1} + A_{d-2}Y^{d-2} + \dots + A_0$ , with  $A_i = 1$  for all  $0 \le i \le d-2$ . Then  $L_{\odot} = (d-1)$ . Indeed, the existence of such  $\beta$  is due to Lemma 2.4 and his degree is 2. We have  $\beta^d + x^2\beta^{d-1} + \beta^{d-2} + \dots + 1 = 0$ . Hence the  $\beta$ -expansion of  $x^2$  is given by

$$x^2 = -\beta - \frac{1}{\beta} - \frac{1}{\beta^2} - \dots - \frac{1}{\beta^{d-1}}$$

It is clear that in this case  $L_{\odot} = -\text{ord}_{\beta}(x^2) = d - 1$ .

8964

### 3. Results

In order to prove the finiteness of  $L_{\odot}$  in algebraic basis, we need to introduce some basic notions: Let  $\beta$ 

be an algebraic series of degree d and  $\beta^{(2)}, \ldots, \beta^{(d)}$  be their conjugates. For  $f \in \mathbb{F}_q(x, \beta)$ , we have  $f = k_0 + k_1\beta + k_2\beta^2 + \cdots + k_{d-1}\beta^{d-1}$  with  $k_i \in \mathbb{F}_q(x)$ , the j-th conjugate of f is defined by  $f^{(j)} = k_0 + k_1\beta^{(j)} + k_2(\beta^{(j)})^2 + \cdots + k_{d-1}(\beta^{(j)})^{d-1}$ .

We define  $\overline{f}$ , the vector conjugate of f by  $\overline{f} = \begin{pmatrix} f^{(2)} \\ \vdots \\ f^{(d)} \end{pmatrix}$  and  $\|\overline{f}\| = \sup_{2 \le j \le d} |f^{(j)}|$ .

We begin by this lemma which is essential for the development of Theorem 3.2.

**Lemma 3.1.** Let  $\beta$  be an algebraic series with  $|\beta| > 1$  and  $\beta^{(j)}$  a conjugate of  $\beta$  such that  $|\beta^{(j)}| > 1$ . If  $f \in \mathbb{F}_q(x, \beta)$  with  $f = \sum_{k\geq 1} a_k \beta^{-k}$  and  $(a_k)_{k\geq 1}$  is a periodic sequence, then  $f^{(j)} = \sum_{k\geq 1} a_k (\beta^{(j)})^{-k}$ .

# Proof. .

Let  $f \in \mathbb{F}_q(x,\beta)$  where  $f = \sum_{k \ge 1} a_k \beta^{-k}$  and  $(a_k)_{k \ge 1}$  is a periodic sequence. So  $(a_k)_{k\geq 1} = a_1...a_p \overline{a_{p+1}...a_{p+s}}$  with  $a_p \neq a_{p+s}$ . Hence we get

$$f = \frac{a_1}{\beta} + \dots + \frac{a_p}{\beta^p} + \frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{1}{\beta^s} (\frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}}) + \frac{1}{\beta^{2s}} (\frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}}) + \dots$$

Therefore

$$f = \frac{a_1}{\beta} + \dots + \frac{a_p}{\beta^p} + (\frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}})(1 + \frac{1}{\beta^s} + \frac{1}{\beta^{2s}} + \frac{1}{\beta^{3s}} + \dots),$$

this gives

$$f = \frac{a_1}{\beta} + \dots + \frac{a_p}{\beta^p} + (\frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}})(\frac{1}{1 - \frac{1}{\beta^s}})$$

For every conjugate  $\beta^{(j)}$  of  $\beta$ , we get

$$f^{(j)} = \frac{a_1}{\beta^{(j)}} + \dots + \frac{a_p}{(\beta^{(j)})^p} + (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}})(\frac{1}{1 - \frac{1}{(\beta^{(j)})^s}})$$

Now, for every conjugate  $\beta^{(j)}$  of  $\beta$  such that  $|\beta^{(j)}| > 1$ , we have

$$f^{(j)} = \frac{a_1}{\beta^{(j)}} + \dots + \frac{a_p}{(\beta^{(j)})^p} + (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}})(1 + \frac{1}{(\beta^{(j)})^s} + \frac{1}{(\beta^{(j)})^{2s}} + \frac{1}{(\beta^{(j)})^{3s}} + \dots).$$

Finally, we reach to our result by getting the following equality

$$f^{(j)} = \frac{a_1}{\beta^{(j)}} + \dots + \frac{a_p}{(\beta^{(j)})^p} + \frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}} + \frac{1}{(\beta^{(j)})^s} (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}}) + \frac{1}{(\beta^{(j)})^{2s}} (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}}) + \dots$$

As recently seen in the introduction, there are both quantities  $L_{\oplus}$  and  $L_{\odot}$ , except in the case of formal series the quantity  $L_{\oplus}$  is not interesting, because we know that the sum of two  $\beta$ -polynomials is always a  $\beta$ -polynomial. We excluded the case when deg( $\beta$ ) = 1, since in this trivial case, the product of two β-polynomials is a β-polynomial. Then we have  $L_{\odot} = 0$ .

So far, we are interested in results for  $L_{\odot}$  for general algebraic series  $\beta$ .

**Theorem 3.2.** Let  $\beta$  be an algebraic integer series with  $|\beta| > 1$ . Then the set  $((\mathbb{F}_q[x])_{\beta}.(\mathbb{F}_q[x])_{\beta}) \cap Per(\beta)$  is finite.

*Proof.* . Suppose without loss of generality  $d_{\beta}(PQ) = c_n \dots c_1 c_0 \bullet \overline{c_{-1} \dots c_{-m}}$  is ultimately periodic where *P* and *Q* are two  $\beta$ -polynomials such that

$$P = a_s \beta^s + a_{s-1} \beta^{s-1} + \dots + a_0$$
 with  $|a_i| < |\beta|$ 

and

$$Q = b_k \beta^k + b_{k-1} \beta^{k-1} + \dots + b_0$$
 with  $|b_i| < |\beta|$ .

Hence

$$PQ = c_n \beta^n + \dots + c_0 + \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m} + \frac{c_{-1}}{\beta^{m+1}} + \dots + \frac{c_{-m}}{\beta^{2m}} + \dots$$

So

$$\{PQ\}_{\beta} = PQ - c_n \beta^n - \dots - c_0 = \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m} + \frac{c_{-1}}{\beta^{m+1}} + \dots + \frac{c_{-m}}{\beta^{2m}} + \dots$$

Let  $(\beta^{(j)})_{2 \le j \le d}$  be the conjugates of  $\beta$ . To show this theorem, we first distinguish these two cases:

## **Case 1:** If $|\beta^{(j)}| > 1$ .

In this case, we have  $\{PQ\}_{\beta} \in \mathbb{F}_q(x, \beta)$  and so by Lemma 3.1, we obtain

$$\{PQ\}_{\beta}^{(j)} = \frac{c_{-1}}{\beta^{(j)}} + \frac{c_{-2}}{(\beta^{(j)})^2} + \dots + \frac{c_{-m}}{(\beta^{(j)})^m} + \frac{c_{-1}}{(\beta^{(j)})^{m+1}} + \dots + \frac{c_{-m}}{(\beta^{(j)})^{2m}} + \dots$$

Since  $|c_i| < |\beta|$  for all  $i \in \{-1, ..., -m\}$ , so  $|\{PQ\}_{\beta}^{(j)}| < |\beta|$ .

**Case 2:** If  $|\beta^{(j)}| \le 1$ .

In this case, we have

$$\begin{aligned} \{PQ\}_{\beta}^{(j)} &= (a_{s}(\beta^{(j)})^{s} + \dots + a_{0})(b_{k}(\beta^{(j)})^{k} + \dots + b_{0}) - c_{n}(\beta^{(j)})^{n} - \dots - c_{0} \\ &= \sum_{l=0}^{s+k} (\sum_{p=0}^{l} b_{p}a_{l-p})(\beta^{(j)})^{l} - c_{n}(\beta^{(j)})^{n} - \dots - c_{0} \\ &\leq \max\{|\sum_{l=0}^{s+k} (\sum_{p=0}^{l} b_{p}a_{l-p})(\beta^{(j)})^{l}|; |c_{n}(\beta^{(j)})^{n} - \dots - c_{0}|\}. \end{aligned}$$

As  $|\beta^{(j)}| \le 1$ , we get

$$|\sum_{l=0}^{s+k} (\sum_{p=0}^{l} b_p a_{l-p}) (\beta^{(j)})^l| \le |\beta|^2 \text{ and } |c_n(\beta^{(j)})^n - \dots - c_0| \le |\beta|$$

Consequently,

$$|\{PQ\}_{\beta}^{(j)}| \leq |\beta|^2$$

Therefore the module of  $\begin{pmatrix} \{PQ\}_{\beta} \\ \{PQ\}_{\beta}^{(2)} \\ \vdots \\ \{PQ\}_{\beta}^{(d)} \end{pmatrix}$  is less than  $|\beta|^2$ .

8966

Now, since  $\{PQ\}_{\beta} = \sum_{l=0}^{s+k} (\sum_{p=0}^{l} b_p a_{l-p}) \beta^l - c_n \beta^n - \dots - c_0$  and  $\beta$  is an algebraic integer of degree d, we easily deduce that  $\{PQ\}_{\beta} = A_0 + A_1\beta + \dots + A_{d-1}\beta^{d-1}$  with  $A_i \in \mathbb{F}_q[x]$ . Hence for all  $j \in \{2, \dots, d\}$ ;  $\{PQ\}_{\beta}^{(j)} = \sum_{p=0}^{s+k} (\beta^p a_{l-p}) \beta^{l-p} (\beta^p a_{l-p}) \beta^{l$  $A_0 + A_1(\beta^{(j)}) + \dots + A_{d-1}(\beta^{(j)})^{d-1}$ . Thus

$$\begin{pmatrix} \{PQ\}_{\beta} \\ \{PQ\}_{\beta}^{(2)} \\ \vdots \\ \vdots \\ \{PQ\}_{\beta}^{(d)} \end{pmatrix} = M \begin{pmatrix} A_{0} \\ A_{1} \\ \vdots \\ \vdots \\ A_{d-1} \end{pmatrix}, \text{ where } M = \begin{pmatrix} 1 & \beta & \cdots & \cdots & \beta^{d-1} \\ 1 & \beta^{(2)} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & (\beta^{(d-1)})^{d-1} \\ 1 & \beta^{(d)} & \cdots & \cdots & (\beta^{(d)})^{d-1} \end{pmatrix}$$

We have det  $M = \prod_{i < j} (\beta^{(i)} - \beta^{(j)}) \neq 0$  which implies that M is invertible therefore it transforms all bounded

vector in an bounded vector. From the two cases and since  $|\{PQ\}_{\beta}| < 1$ , we have  $\begin{pmatrix} \{PQ\}_{\beta} \\ \{PQ\}_{\beta}^{(2)} \\ \vdots \\ \{PO\}_{\alpha}^{(d)} \end{pmatrix}$  is bounded, so

is also bounded and moreover belongs to  $\mathbb{F}_q[x]^d$ . Therefore this last vector takes a finite number

of possibilities (since  $\mathbb{F}_q$  is finite).  $\Box$ 

**Corollary 3.3.** Let  $\beta$  be an algebraic integer series with  $|\beta| > 1$ . Then  $L_{\odot}$  is finite.

In order to prove Theorem 3.5, we need the following lemma.

**Lemma 3.4.** Let  $\beta$  be an algebraic unit series and  $\xi$  be a positive number. Then

$$\lim_{p\to\infty}\min_{f\in X(p)}\|f\|=\infty,$$

where

$$X(p) = \{ f \in \operatorname{Fin}(\beta) : |f| \le \xi, ord_{\beta}(f) = -p \}.$$

*Proof.* . Assume that there exists a constant *B* and an infinite sequence  $f_i$  (i=1,2,...) so that both

$$|f_i^{(j)}| \le B$$
 for  $j = 2, 3, ..., d$  and  $\lim_{i \to \infty} ord_\beta(f_i) = -\infty$ 

holds. Since  $\beta$  is an algebraic series, Fin( $\beta$ )  $\subset \mathbb{F}_q[x, \beta^{-1}]$ . Moreover  $\beta$  is unit, then Fin( $\beta$ )  $\subset \mathbb{F}_q[x, \beta^{-1}] \subset \mathbb{F}_q[x, \beta]$ . We know that  $\mathbb{F}_{a}[x,\beta]$  is discrete, then Fin( $\beta$ ) is discrete. In addition, we have  $|f_{i}| \leq \xi$ , so these  $f_{i}$ 's are finite, a contradiction with the second condition, completing the proof.  $\Box$ 

*Proof.* . By assumption, we have  $d_{\beta}(PQ)$  is finite i.e  $d_{\beta}(PQ) = c_n \dots c_0 \bullet c_{-1} \dots c_{-m}$ , where  $P, Q \in (\mathbb{F}_q[x])_{\beta}$  such that

$$P = a_s \beta^s + a_{s-1} \beta^{s-1} + \dots + a_0$$
 with  $|a_i| < |\beta|$ 

and

$$Q = b_k \beta^k + b_{k-1} \beta^{k-1} + \dots + b_0$$
 with  $|b_i| < |\beta|$ .

We have

$$PQ = c_n\beta^n + \dots + c_0 + \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m}.$$

So

$$\{PQ\}_{\beta} = PQ - c_n\beta^n - \dots - c_0 = \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m}.$$

Let  $(\beta^{(j)})_{2 \le j \le d}$  be the conjugates of  $\beta$ . Now, we begin by distinguish these two cases:

**Case 1:** If  $|\beta^{(j)}| > 1$ .

In this case, we have

$$\{PQ\}_{\beta}^{(j)} = \frac{c_{-1}}{\beta^{(j)}} + \frac{c_{-2}}{(\beta^{(j)})^2} + \dots + \frac{c_{-m}}{(\beta^{(j)})^m}.$$

Since  $|c_i| < |\beta|$  for  $i \in \{-1, ..., -m\}$ , we obtain  $|\{PQ\}_{\beta}^{(j)}| < |\beta|$ .

**Case 2:** If  $|\beta^{(j)}| \le 1$ .

$$\{PQ\}_{\beta}^{(j)} = (a_{s}(\beta^{(j)})^{s} + \dots + a_{0})(b_{k}(\beta^{(j)})^{k} + \dots + b_{0}) - c_{n}(\beta^{(j)})^{n} - \dots - c_{0}$$
  
$$\leq \max\{|\sum_{l=0}^{s+k} (\sum_{p=0}^{l} b_{p}a_{l-p})(\beta^{(j)})^{l}|; |c_{n}(\beta^{(j)})^{n} - \dots - c_{0}|\}.$$

As  $|\beta^{(j)}| \le 1$ , we get

$$|\sum_{l=0}^{s+k} (\sum_{p=0}^{l} b_p a_{l-p}) (\beta^{(j)})^l| \le |\beta|^2 \text{ and } |c_n(\beta^{(j)})^n - \dots - c_0| \le |\beta|$$

Consequently,

$$|\{PQ\}_{\beta}^{(j)}| \leq |\beta|^2.$$

As a consequence, we deduce that for all  $j \in \{2, ..., d\}$ ,  $\{PQ\}_{\beta}^{(j)}$  is bounded, wherefrom we have  $\| \overline{\{PQ\}_{\beta}} \| \le |\beta|^2$ . Moreover, note that  $|\{PQ\}_{\beta}| < 1$  and by Lemma 3.4, there exist  $k \in \mathbb{Z}$ , such that for all  $PQ \in (\mathbb{F}_q[x])_{\beta}$  we obtain that  $ord_{\beta}(PQ) \ge k$ . Therefore,  $L_{\odot}$  is finite.  $\Box$ 

**Example 3.6.** Let  $\beta$  be the unique root with absolute value > 1 of the polynomial  $P(Y) = Y^d + x^m Y^{d-1} + A_{d-2}Y^{d-2} + \cdots + A_1Y + x^{m-1}$ , with deg $(A_i) < m$  for  $i \in \{1, \dots, d-2\}$ . Then  $L_{\odot} = (d-1)(m-1)$ . Indeed, the existence of such  $\beta$  is due to Lemma 2.4 and his degree is m. We have

$$x^m = -\beta - \frac{A_{d-2}}{\beta} - \dots - \frac{x^{m-1}}{\beta^{d-1}}.$$

*Hence*,  $\operatorname{ord}_{\beta}(x^m) = 1 - d$ . *Moreover* 

$$x^{m+1} = -x\beta - \frac{xA_{d-2}}{\beta} - \dots - \frac{x^m}{\beta^{d-1}}$$

Therefore,  $\operatorname{ord}_{\beta}(x^{m+1}) = 2(1-d)$  and by induction for all positive integer s, we get  $\operatorname{ord}_{\beta}(x^{m+s}) = (s+1)(1-d)$ . So, in this case,  $L_{\odot} = -\operatorname{ord}_{\beta}(x^{2m-2}) = (d-1)(m-1)$ .

Now, we prove that the set of periodic  $\beta$ -fractional part with fixed pre-period is finite where the basis  $\beta$  is an algebraic integer.

**Theorem 3.7.** Let  $\beta$  be an algebraic integer series with  $|\beta| > 1$ . Then the set  $\mathbb{F}_q[x,\beta] \cap Per(\beta,s)$  is finite.

*Proof.* Let  $f \in \mathbb{F}_q[x,\beta] \cap M_0$  and  $\beta$  an algebraic integer series of degree d, then  $f = \sum_{i=0}^{d-1} A_i \beta^i$ , therefore  $f^{(k)} = \sum_{i=0}^{d-1} A_i (\beta^{(k)})^i$  for all  $k \in \{2, ..., d\}$ . Thus

$$\begin{pmatrix} f \\ f^{(2)} \\ \vdots \\ f^{(d)} \end{pmatrix} = \begin{pmatrix} 1 & \beta & \dots & \beta^{d-1} \\ 1 & \beta^{(2)} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & (\beta^{(d-1)})^{d-1} \\ 1 & \beta^{(d)} & \dots & (\beta^{(d)})^{d-1} \end{pmatrix} \begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ \vdots \\ A_{d-1} \end{pmatrix} = \mathbf{M} \begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ \vdots \\ A_{d-1} \end{pmatrix}.$$

Let now  $d_{\beta}(f) = 0 \bullet a_1 \dots a_s \overline{a_{s+1} \dots a_{p+s}}$ . To complete this proof, we must distinguish these two cases: **Case 1:** If  $|\beta^{(k)}| \le 1$ . We have

$$f = \frac{a_1}{\beta} + \dots + \frac{a_s}{\beta^s} + \frac{a_{s+1}}{\beta^{s+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{1}{\beta^p} (f - \frac{a_1}{\beta} - \dots - \frac{a_s}{\beta^s}).$$

Given that  $a_1, \ldots, a_{p+s} \in \mathbb{F}_q[x]$ , we find

$$f^{(k)} = \frac{a_1}{\beta^{(k)}} + \dots + \frac{a_s}{(\beta^{(k)})^s} + \frac{a_{s+1}}{(\beta^{(k)})^{s+1}} + \dots + \frac{a_{p+s}}{(\beta^{(k)})^{p+s}} + \frac{1}{(\beta^{(k)})^p} (f^{(k)} - \frac{a_1}{\beta^{(k)}} - \dots - \frac{a_s}{(\beta^{(k)})^s}).$$

Then

$$f^{(k)}(1-\frac{1}{(\beta^{(k)})^p}) = \frac{a_1}{\beta^{(k)}} + \dots + \frac{a_s}{(\beta^{(k)})^s} + \frac{a_{s+1}}{(\beta^{(k)})^{s+1}} + \dots + \frac{a_{p+s}}{(\beta^{(k)})^{p+s}} + \frac{1}{(\beta^{(k)})^p}(-\frac{a_1}{\beta^{(k)}} - \dots - \frac{a_s}{(\beta^{(k)})^s}).$$

Hence

$$f^{(k)}((\beta^{(k)})^{p+s} - (\beta^{(k)})^s) = a_1(\beta^{(k)})^{p+s-1} + \dots + a_s(\beta^{(k)})^p + a_{s+1}(\beta^{(k)})^{p-1} + \dots + (a_{p+s} - a_s)^{p-1}$$

Since  $|\beta^{(k)}| < 1$ , we get  $|f^{(k)}(\beta^{(k)})^s| < |\beta|$ . As the pre-period *s* of *f* is fixed, we have  $|f^{(k)}| < \frac{|\beta|}{|(\beta^{(k)})^s|}$ .

**Case 2:** If  $|\beta^{(k)}| > 1$ .

In this case, we have

$$f = \frac{a_1}{\beta} + \dots + \frac{a_s}{\beta^s} + \frac{a_{s+1}}{\beta^{s+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{a_{s+1}}{\beta^{p+s+1}} + \dots$$

and so by Lemma 3.1, we obtain

$$f^{(k)} = \frac{a_1}{\beta^{(k)}} + \dots + \frac{a_s}{(\beta^{(k)})^s} + \frac{a_{s+1}}{(\beta^{(k)})^{s+1}} + \dots + \frac{a_{p+s}}{(\beta^{(k)})^{p+s}} + \frac{a_{s+1}}{(\beta^{(k)})^{p+s+1}} + \dots$$

So  $|f^{(k)}| < |\beta|$ .

As a consequence, we deduce from these two cases that  $f^{(k)}$  is bounded for all  $k \in \{2, ..., d\}$ . Since det  $M = \prod_{i < j} (\beta^{(i)} - \beta^{(j)}) \neq 0$ , M is invertible. Hence, it transforms all bounded vector in an bounded vector.

From these two cases and since |f| < 1, we have  $\begin{pmatrix} f \\ f^{(2)} \\ \vdots \\ f^{(d)} \end{pmatrix}$  is bounded, so  $\begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ A_{d-1} \end{pmatrix}$  is also bounded and

moreover belongs to  $\mathbb{F}_q[x]^d$ , therefore this vector take a finite number of possibilities (since  $\mathbb{F}_q$  is finite).  $\Box$ 

**Corollary 3.8.** Let  $\beta$  be an algebraic integer series with  $|\beta| > 1$ . Then the set  $\mathbb{F}_{a}[x,\beta] \cap Pur(\beta)$  is finite.

#### References

- [1] S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic Number Theory and Diophantine Analysis. (2000), 11-26.
- [2] P. Ambrož, C. Frougny, Z. Masáková and E. Pelantová, Arithmetics on number systems with irrational bases, Bull. Belgian Math. Soc. Simon Stevin. 10 (2003), pp. 641-659.
- [3] J. Bernat, Computation of L<sub>⊕</sub> for several cubic Pisot numbers, Discrete. Math. Theor. Comput. Sci. 9 (2007), 175-194.
- [4] C. Burdík, C. Frougny, J. P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A. 31 (1998), 6449-6472.
- [5] C. Frougny and B. Solomyak, Finite beta-expansions. Ergod. Th. and Dynam. Sys. 12 (1992), 713-723.
- [6] L.S. Guimond, Z. Masáková and E. Pelantová, Arithmetics of beta-expansions. Acta Arith. 112 (2004), 23-40.
- [7] M. Hbaib, *Beta-expansions with Pisot bases over*  $\mathbb{F}_q((x^{-1}))$ , Bull. Korean Math. Soc. **49** (2012), 127-133.
- [8] M. Hbaib and M. Mkaouar, Sur le beta-développement de 1 dans le corps des séries formelles, Int. J. Number Theory. 2 (2006), pp. 365-378.
- [9] J. Neukirch, *Algebraic number theory*, (2nd edition), Springer-Verlag, Berlin, 1999.
- [10] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493.