Filomat 38:25 (2024), 8961–8970 https://doi.org/10.2298/FIL2425961Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Arithmetics of β −expansions in $\mathbb{F}_q((x^{-1}))$

S. Zouari^a

^aD´epartement de Math´ematiques, Facult´e des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

Abstract. The aim of this study is to give some arithmetic properties on the set of β-polynomials in $\mathbb{F}_q((x^{-1}))$ i.e. the set of series whose β -expansion has not fractional part, where $|\beta| > 1$ is an algebraic formal power series over the finite field \mathbb{F}_q . We will give sufficient conditions over β to have the quantity L_{\odot} is finite, where *L*[⊙] designates the maximal finite shift after the comma for the product of two β-polynomials.

1. Introduction

The class of *β*-transformation {*T*_β, $β$ > 1} was introduced by A. Rényi in [10]. Let $β$ > 1 be a real number. The β -transformations is a piecewise linear transformation on [0, 1) defined by

$$
T_{\beta}: x \longrightarrow \beta x - [\beta x],
$$

If $\forall i \ge 1$, $x_i = [\beta T_{\beta}^{i-1}(x)],$ then $x = \sum_{i \ge 1} \frac{x_i}{\beta^i}.$

We define the *β*-expansion of *x* as the sequence $d_\beta(x) = 0 \bullet x_1x_2x_3...$ For any real number *x* > 1, there exists an *m* > 0 such that $\beta^{-m-1}x \in [0,1)$. Thus we can express each *x* in the form

$$
x = \underbrace{x_{-m}\beta^{m} + \cdots + x_{-1}\beta + x_0}_{[x]_{\beta}} + \underbrace{\frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \cdots}_{\{x\}_{\beta}}
$$

then $d_{\beta}(x) = (x_i)_{i \ge -m} = x_{-m} \dots x_{-1} x_0 \bullet x_1 x_2 x_3 \dots$

The part with non-negative powers of β is then called the β -integer part of *x*, denoted by [*x*]_{β}; the part with negative powers of *β* is then called the *β*-fractional part of *x*, denoted by $\{x\}_\beta = x - [x]_\beta$. This allows a natural generalization for the definition of integers in base β.

A β -expansion is finite if $(x_i)_{i\geq 1}$ is eventually 0. It is periodic if there exists $p \geq 1$ and $m \geq 1$ with $x_k = x_{k+p}$ holds for all $k \ge m$; if $x_k = x_{k+p}$ holds for all $k \ge 1$, then it is purely periodic. We denote by

$$
Fin(\beta) = \{x \in \mathbb{R}_+ : d_{\beta}(x) \text{ is finite}\}.
$$

²⁰²⁰ *Mathematics Subject Classification*. Primary 11R06; Secondary 37B50.

Keywords. Formal power series,β-expansion, algebraic integer series.

Received: 05 March 2024; Revised: 03 May 2024; Accepted: 25 May 2024

Communicated by Paola Bonacini

Email address: sourourzwari@yahoo.fr (S. Zouari)

It is proved in [1] that if $\mathbb{N} \subset \text{Fin}(\beta)$, then β is a Pisot number; that is, a real algebraic integer greater than 1 with all conjugates strictly inside the unit circle. Let $\mathbb{Z}[\beta]$ be the smallest ring containing Z and β. Denote by $\mathbb{Z}[\beta]_{\geq 0}$ the non negative elements of $\mathbb{Z}[\beta]$. We say that the number *x* satisfies the finiteness property if:

$$
\text{Fin}(\beta)=\mathbb{Z}[\beta^{-1}]_{\geq 0}.
$$

This property was introduced by Frougny and Solomyak [5]. They showed that if β satisfies the finiteness property then β is a Pisot number. Note that there are Pisot numbers without finiteness property, especially, all numbers $β$ such that $d_β(1)$ is infinite.

The set of *β*-integers, denoted by \mathbb{Z}_{β} , is the set of real numbers *x* for which there exists *n* $\in \mathbb{N}$, such that $x = \pm \sum^{n}$ $\sum_{i=0}^{n} a_i \beta^i$, where $a_n \dots a_0 \bullet 0$ is the β -expansion of |*x*|.

In general, the sets \mathbb{Z}_β and Fin(β) are not stable under addition and multiplication. In spite of that, it is sometimes useful in computer science to consider this operation in β -arithmetics. Therefore, it is important to study which fractional parts might appear as a result of addition and multiplication of $β$ -integers.

The following quantities *L*[⊕] and *L*⊙, are introduced in [2]. They represents the maximal possible finite length of the β-fractional parts which would appear when one adds or multiplies two β-integers.

Definition 1.1. *Let* $\beta > 1$ *. We denote*

- \bullet *L*⊕ := min{*n* ∈ **N** : ∀*x*, *y* ∈ \mathbb{Z}_{β} , *x* + *y* ∈ Fin(β) \Rightarrow β^{*n*}(*x* + *y*) ∈ \mathbb{Z}_{β} } *when this set is not empty,* +∞ *otherwise.*
- *L*_○ := min{*n* ∈ **N** : $\forall x, y \in \mathbb{Z}_{\beta}, x y \in \text{Fin}(\beta) \Longrightarrow \beta^{n}(xy) \in \mathbb{Z}_{\beta}$ } *when this set is not empty,* +∞ *otherwise.*

Many authors are interested in the case where L_{\oplus} and L_{\odot} are finite. Indeed if the sum or the product of two β-integers belongs to Fin(β), then the length of the β-fractional part of this sum or product is bounded by a constant which only depends on β. C. Frougny and B. Solomyak in [5] showed that *L*[⊕] is finite when β is a Pisot number. The case of quadratic Pisot numbers has been studied in [4] when β is a unit. The authors gave exact values for L_{\oplus} and $\hat{L_{\odot}}$, when $\beta > 1$ is a solution either of equation $x^2 = mx - 1$, $m \in \mathbb{N}$, $m \ge 3$ or of equation $x^2 = mx + 1$, $m \in \mathbb{N}$. In the first case $L_{\oplus} = L_{\odot} = 1$, in the second case $L_{\oplus} = L_{\odot} = 2$, and in [6] otherwise. However, when β is of higher degree, it is a difficult problem to compute the exact value of L_{\oplus} or *L*⊙, and even to compute upper and lower bounds for these two constants. Several examples are studied in [2], where a method is described in order to compute upper bounds for *L*[⊕] and *L*[⊙] for Pisot numbers satisfying additional algebraic properties.

In [3], J. Bernat determined the exact value of *L*[⊕] for several cases of cubic Pisot units numbers: He especially proved that if we denote by $L_{\oplus}(k_1, k_2)$ the value of L_{\oplus} associated to the positive root β of $P(x)$ = $x^3 - k_1x^2 - k_2x - 1$, where $k_1, k_2 \in \mathbb{N}^2$ satisfy max $\{1, k_2\} \le k_1 \le 3$. For example, $L_{\oplus}^2(1, 0) = 11$, $L_{\oplus}(2, 2) = 5$ and $L_{\oplus}(3,2) = 4$. In particular, in the Tribonacci case, that is, when β is the positive root, of the polynomial $x^3 - x^2 - x - 1$, he proved the following result.

Proposition 1.2. *If* β *is the Tribonacci number, then* $L_{\oplus} = 5$ *.*

Let's note that until now, we don't know the value of *L*[⊙] in the case of the Tribonacci number. It is only proven in [2] that $4 \le L_{\odot} \le 5$.

We can define analogous notions in the case of the field of formal power series over a finite field.

The main objective of this paper is to study a similar concepts over the field of formal power series over finite field. This paper is organized as follows: In section 2, we define the field of formal power series over a finite field $\mathbb{F}_q((x^{-1}))$. We will also define the β-expansion algorithm over this field. In section 3, we prove that, for any algebraic integer series β, the quantity *L*[⊙] is finite. In the sequel, we have shown that *L*[⊙] is also finite in algebraic unit basis.

2. β -expansions in $\mathbb{F}_q((x^{-1}))$

Let \mathbb{F}_q be a finite field with *q* elements, $\mathbb{F}_q[x]$ the ring of polynomials with coefficients in \mathbb{F}_q and $\mathbb{F}_q(x)$ the field of rational functions.

Let $\mathbb{F}_q((x^{-1}))$ be the field of formal power series of the form:

$$
f = \sum_{k=-\infty}^{l} f_k x^k, \quad f_k \in \mathbb{F}_q,
$$

where

$$
l = \deg f := \begin{cases} \max\{k : f_k \neq 0\} & \text{if } f \neq 0, \\ -\infty & \text{if } f = 0. \end{cases}
$$

Define the absolute value $|f| = q^{\deg f}$. Thus, $\mathbb{F}_q((x^{-1}))$, equipped with this absolute value, is a complete metric space, it is the completion of $\mathbb{F}_q(x)$. Since the above absolute value is not archimedean, it fulfills the strict triangle inequality:

$$
|f + g| \le \max(|f|, |g|) \quad \text{and} \quad |f + g| = \max(|f|, |g|) \quad \text{if} \quad |f| \ne |g|.
$$

Consider $f \in \mathbb{F}_q((x^{-1}))$ and define the polynomial part $[f] = \sum_{i=1}^l$ $\sum_{k=0} f_k x^k$ where the empty sum, as usual, is defined to be zero. Therefore $[f]$ ∈ $\mathbb{F}_q[x]$ and $f - [f]$ ∈ M_0 where $M_0 = \{f \in \mathbb{F}_q((x^{-1})) : |f| < 1\}$. Let $\beta \in \mathbb{F}_q((x^{-1}))$, we denote by:

• $\mathbb{F}_q(x,\beta) = \mathbb{F}_q(x)(\beta)$ the smallest field containing $\mathbb{F}_q(x)$ and β .

• $\mathbb{F}_q[x,\beta] = \mathbb{F}_q[x][\beta]$ the smallest ring containing $\mathbb{F}_q[x]$ and β .

Now, we are ready to define the β-expansions of *f* in the field of formal power series.

Let β , $f \in \mathbb{F}_q((x^{-1}))$ where $|\beta| > 1$ and $f \in M_0$. A representation in base β (or β -representation) of f is a sequence $(d_i)_{i \geq 1}$, $d_i \in \mathbb{F}_q[x]$, such that

$$
f = \sum_{i \ge 1} \frac{d_i}{\beta^i}.
$$

A particular β-representation of *f* is called the β-expansion of *f* and noted $d_β(f)$. It is obtained by using the $β$ -transformation $Tβ$ in M_0 which is given by the mapping:

$$
T_{\beta}: M_0 \longrightarrow M_0
$$

$$
f \longmapsto \beta f - [\beta f].
$$

Thus, $d_{\beta}(f) = 0 \bullet (d_i)_{i \ge 1}$ if and only if $d_i = [\beta T_{\beta}^{i-1}(f)]$. Note that $d_{\beta}(f)$ is finite if and only if there is a $k \ge 0$ such that $T^k_\beta(f) = 0$, $d_\beta(f)$ is ultimately periodic if and only if there is some smallest $p \ge 0$ (the pre-period length) and *s* \geq 1 (the period length) for which T_{β}^{p+s} $T_{\beta}^{p+s}(f) = T_{\beta}^p$ P^p (*f*). If *f* ∈ *M*⁰ and *d*_β(*f*) = 0 \bullet (*d*_{*i*})_{*i*≥1}, we often write $f = 0 \cdot d_1 d_2 d_3 \ldots$

Now let *f* ∈ **F**_{*q*}((*x*⁻¹)) be an element with |*f*| ≥ 1. Then there is a unique *k* ∈ **N** such that |β|^{*k*} ≤ |*f*| < |β|^{*k*+1}. Hence $\frac{f}{\beta^k}$ $\frac{f}{\beta^{k+1}}$ | < 1 and we can represent *f* by shifting $d_{\beta}(\frac{f}{\beta^{k}})$ $\frac{f}{\beta^{k+1}}$) by $k+1$ digits to the left. That is, if $d_{\beta}(\frac{f}{\beta^{k}})$ $\frac{f}{\beta^{k+1}}$) = 0 • $d_1 d_2 d_3 \ldots$, then $d_8(f) = d_1 d_2 d_3 \ldots d_{k+1}$ • $d_{k+2} \ldots$.

Remark 2.1. *In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if z,* $w \in \mathbb{F}_q((x^{-1}))$, we have $d_\beta(z+w) = d_\beta(z) + d_\beta(w)$ digitwise. We have also $d_\beta(cf) = cd_\beta(f)$ for every $c \in \mathbb{F}_q$.

Theorem 2.2. [8] A β -representation $(d_j)_{j\geq 1}$ of f in M_0 is its β -expansion if and only if $|d_j| < |\beta|$ for $j \geq 1$.

Let us first recall some number theoretical notions.

A formal power series β is called an algebraic series over $\mathbb{F}_q(x)$, if there exists $a_n, \ldots, a_0 \in \mathbb{F}_q[x]$ such that

$$
P(\beta) = a_n \beta^n + a_{n-1} \beta^{n-1} + \cdots + a_1 \beta + a_0 = 0.
$$

If the polynomial *P* is of minimal degree, then *P* is called the minimal polynomial of β of algebraic degree *n*. The other roots of the minimal polynomial which are not necessarily in $\mathbb{F}_q((x^{-1}))$ are called the algebraic conjugates of β . If $a_n \in \mathbb{F}_q^*$, then β is called an algebraic integer series and if $a_0 \in \mathbb{F}_q^*$, then β is called a unit series.

Proposition 2.3. [9] Let K be a complete field with respect to a non archimedean absolute value $|.\rangle$ and L/K ($K \subset L$) *be an algebraic extension of degree m. Then* |.| *has a unique extension to L defined by :* |*a*| = *m* p |*NL*/*K*(*a*)| *and L is complete with respect to this extension.*

We apply this proposition to algebraic elements of $\mathbb{F}_q((x^{-1}))$. Since $\mathbb{F}_q[x] \subset \mathbb{F}_q((x^{-1}))$, then every algebraic element in F*q*[*x*] can be valuated. However, since F*q*((*x* −1)) is not algebraically closed, such an element needn't be necessarily a formal power series.

Lemma 2.4. [8] Let $P(Y) = A_n Y^n - A_{n-1} Y^{n-1} - \cdots - A_0$ where $A_i \in \mathbb{F}_q[x]$, for $i = 1, \ldots, n$. Then P admits a unique *root in* $\mathbb{F}_q((x^{-1}))$ *with absolute value* > 1 *and all other roots are with absolute value* < 1 *if and only if* $|A_{n-1}|$ > $|A_i|$ *for* $i \neq n-1$.

If
$$
d_{\beta}(f) = d_1 d_{1-1} \dots d_0 \bullet d_{-1} d_{-2} \dots
$$
, let $[f]_{\beta} = d_1 \beta^l + d_{l-1} \beta^{l-1} + \dots + d_0$ and $\{f\}_{\beta} = f - [f]_{\beta}$.

If $d_{\beta}(f)$ is finite with $f = \sum_{i=1}^{m} d_i \beta^{-i}$ where $m, l \in \mathbb{Z}$, then we put $\text{ord}_{\beta}(f) = -m$ and $\text{ord}_{\beta}(f) = -\infty$ otherwise.

Using this last notion, we define the set of *β*-polynomials as follow:

$$
(\mathbb{F}_q[x])_\beta = \{f \in \mathbb{F}_q((x^{-1})) : \text{ord}_\beta(f) \ge 0\}.
$$

In the sequel, we will use the following notation:

$$
\text{Fin}(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is finite} \}.
$$
\n
$$
\text{Per}(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is periodic} \}.
$$
\n
$$
\text{Par}(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is purely periodic} \}.
$$
\n
$$
\text{Per}(\beta, s) = \{ f \in \mathbb{F}_q((x^{-1})) : d_\beta(f) \text{ is periodic with pre-period s} \}.
$$

We define the quantity L_{\odot} as follows:

$$
L_{\odot} = \begin{cases} \min E_{\beta} & \text{if } E_{\beta} \neq \emptyset, \\ \infty & \text{if } E_{\beta} = \emptyset, \end{cases}
$$

with $E_{\beta} = \{n \in \mathbb{N} : \forall p_1, p_2 \in (\mathbb{F}_q[x])_{\beta}, p_1, p_2 \in \text{Fin}(\beta) \Longrightarrow \beta^n(p_1, p_2) \in (\mathbb{F}_q[x])_{\beta}\}.$ More precisely, we can see $L_{\mathbb{C}}$ as follows:

$$
L_{\odot} = \max\{-\text{ord}_{\beta}(p_1.p_2) : p_1, p_2 \in (\mathbb{F}_q[x])_{\beta}, p_1.p_2 \in \text{Fin}(\beta)\}.
$$

Let us note that *L*[⊙] designates the maximal finite shift after the comma for the product of two βpolynomials.

Example 2.5. *Let* β *be the unique root of absolute value* > 1 *of the polynomial* $P(Y) = Y^d + x^2Y^{d-1} + A_{d-2}Y^{d-2} + \cdots + A_0$, with $A_i = 1$ for all $0 \le i \le d-2$. Then $L_{\odot} = (d-1)$. Indeed, the existence *of such* β *is due to Lemma 2.4 and his degree is* 2*. We have* β *^d* + *x* 2β *^d*−¹ + β *^d*−² + · · · + 1 = 0*. Hence the* β*-expansion of x*² *is given by*

$$
x^2 = -\beta - \frac{1}{\beta} - \frac{1}{\beta^2} - \ldots - \frac{1}{\beta^{d-1}}.
$$

It is clear that in this case $L_{\odot} = -\text{ord}_{\beta}(x^2) = d - 1$ *.*

3. Results

In order to prove the finiteness of *L*[⊙] in algebraic basis, we need to introduce some basic notions: Let β be an algebraic series of degree *d* and β (2), . . . , β(*d*) be their conjugates.

For *f* ∈ $\mathbb{F}_q(x, \beta)$, we have *f* = *k*₀ + *k*₁β + *k*₂β² + · · · + *k*_{*d*-1}β^{*d*-1} with *k*_{*i*} ∈ $\mathbb{F}_q(x)$, the *j*-th conjugate of *f* is defined by $f^{(j)} = k_0 + k_1 \beta^{(j)} + k_2 (\beta^{(j)})^2 + \cdots + k_{d-1} (\beta^{(j)})^{d-1}$.

We define f , the vector conjugate of f by $f =$ $\int f^{(2)}$ $\overline{\mathcal{C}}$. . . *f* (*d*) Í $\begin{array}{c} \hline \end{array}$ and $\|\overline{f}\| = \sup$ 2≤*j*≤*d* $|f^{(j)}|$.

We begin by this lemma which is essential for the development of Theorem 3.2.

Lemma 3.1. Let β be an algebraic series with $|β| > 1$ and $β^{(j)}$ a conjugate of β such that $|β^{(j)}| > 1$. If $f ∈ \mathbb{F}_q(x, β)$ with $f = \sum$ $\sum_{k\geq 1} a_k \beta^{-k}$ *and* $(a_k)_{k\geq 1}$ *is a periodic sequence, then* $f^{(j)} = \sum_{k\geq 1} a_k$ $\sum_{k\geq 1} a_k(\beta^{(j)})^{-k}$.

Proof. .

Let $f \in \mathbb{F}_q(x, \beta)$ where $f = \sum$ $\sum_{k \ge 1} a_k \beta^{-k}$ and $(a_k)_{k \ge 1}$ is a periodic sequence. So $(a_k)_{k\geq 1} = a_1...a_p \overline{a_{p+1}...a_{p+s}}$ with $a_p \neq a_{p+s}$. Hence we get

$$
f = \frac{a_1}{\beta} + \cdots + \frac{a_p}{\beta^p} + \frac{a_{p+1}}{\beta^{p+1}} + \cdots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{1}{\beta^s} \left(\frac{a_{p+1}}{\beta^{p+1}} + \cdots + \frac{a_{p+s}}{\beta^{p+s}} \right) + \frac{1}{\beta^{2s}} \left(\frac{a_{p+1}}{\beta^{p+1}} + \cdots + \frac{a_{p+s}}{\beta^{p+s}} \right) + \cdots
$$

Therefore

$$
f = \frac{a_1}{\beta} + \dots + \frac{a_p}{\beta^p} + (\frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}})(1 + \frac{1}{\beta^s} + \frac{1}{\beta^{2s}} + \frac{1}{\beta^{3s}} + \dots),
$$

this gives

$$
f = \frac{a_1}{\beta} + \dots + \frac{a_p}{\beta^p} + (\frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}})(\frac{1}{1 - \frac{1}{\beta^s}}).
$$

For every conjugate $β$ ^(*j*) of $β$, we get

$$
f^{(j)} = \frac{a_1}{\beta^{(j)}} + \cdots + \frac{a_p}{(\beta^{(j)})^p} + (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \cdots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}}) (\frac{1}{1 - \frac{1}{(\beta^{(j)})^s}}).
$$

Now, for every conjugate $β^(j)$ of $β$ such that $|β^(j)| > 1$, we have

$$
f^{(j)} = \frac{a_1}{\beta^{(j)}} + \cdots + \frac{a_p}{(\beta^{(j)})^p} + (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \cdots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}})(1 + \frac{1}{(\beta^{(j)})^s} + \frac{1}{(\beta^{(j)})^{2s}} + \frac{1}{(\beta^{(j)})^{3s}} + \cdots).
$$

Finally, we reach to our result by getting the following equality

$$
f^{(j)} = \frac{a_1}{\beta^{(j)}} + \dots + \frac{a_p}{(\beta^{(j)})^p} + \frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}} + \frac{1}{(\beta^{(j)})^s} (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}}) + \frac{1}{(\beta^{(j)})^{2s}} (\frac{a_{p+1}}{(\beta^{(j)})^{p+1}} + \dots + \frac{a_{p+s}}{(\beta^{(j)})^{p+s}}) + \dots \square
$$

As recently seen in the introduction, there are both quantities *L*[⊕] and *L*⊙, except in the case of formal series the quantity L_{\oplus} is not interesting, because we know that the sum of two β -polynomials is always a β-polynomial. We excluded the case when deg(β) = 1, since in this trivial case, the product of two β-polynomials is a β-polynomial. Then we have $L_{\odot} = 0$.

So far, we are interested in results for L_0 for general algebraic series $β$.

Theorem 3.2. *Let* β *be an algebraic integer series with* |β| > 1*. Then the set* ((F*q*[*x*])β.(F*q*[*x*])β) ∩ *Per*(β) *is finite.*

Proof. . Suppose without loss of generality $d_{\beta}(PQ) = c_n \dots c_1 c_0 \bullet \overline{c_{-1} \dots c_{-m}}$ is ultimately periodic where *P* and *Q* are two β-polynomials such that

$$
P = as\betas + as-1\betas-1 + \cdots + a_0 \text{ with } |a_i| < |\beta|
$$

and

$$
Q = b_k \beta^k + b_{k-1} \beta^{k-1} + \cdots + b_0
$$
 with $|b_i| < |\beta|$.

Hence

$$
PQ = c_n \beta^n + \dots + c_0 + \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m} + \frac{c_{-1}}{\beta^{m+1}} + \dots + \frac{c_{-m}}{\beta^{2m}} + \dots
$$

So

$$
\{PQ\}_{\beta} = PQ - c_n\beta^n - \dots - c_0 = \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m} + \frac{c_{-1}}{\beta^{m+1}} + \dots + \frac{c_{-m}}{\beta^{2m}} + \dots
$$

Let $(\beta^{(j)})_{2\leq j\leq d}$ be the conjugates of β . To show this theorem, we first distinguish these two cases:

Case 1: If $|\beta^{(j)}| > 1$.

In this case, we have ${PQ}_{\beta} \in \mathbb{F}_q(x, \beta)$ and so by Lemma 3.1, we obtain

$$
\{PQ\}_{\beta}^{(j)} = \frac{c_{-1}}{\beta^{(j)}} + \frac{c_{-2}}{(\beta^{(j)})^2} + \cdots + \frac{c_{-m}}{(\beta^{(j)})^m} + \frac{c_{-1}}{(\beta^{(j)})^{m+1}} + \cdots + \frac{c_{-m}}{(\beta^{(j)})^{2m}} + \cdots
$$

Since $|c_i|$ < |β| for all i ∈ {−1, ..., −*m*}, so |{PQ}^(*j*)_β $\frac{f^{(j)}}{\beta}| < |\beta|.$

Case 2: If $|\beta^{(j)}| \leq 1$.

In this case, we have

$$
\{PQ\}_{\beta}^{(j)} = (a_s(\beta^{(j)})^s + \dots + a_0)(b_k(\beta^{(j)})^k + \dots + b_0) - c_n(\beta^{(j)})^n - \dots - c_0
$$

\n
$$
= \sum_{l=0}^{s+k} (\sum_{p=0}^l b_p a_{l-p})(\beta^{(j)})^l - c_n(\beta^{(j)})^n - \dots - c_0
$$

\n
$$
\leq \max\{\big|\sum_{l=0}^{s+k} (\sum_{p=0}^l b_p a_{l-p})(\beta^{(j)})^l\big|; |c_n(\beta^{(j)})^n - \dots - c_0|\}.
$$

As $|\beta^{(j)}| \leq 1$, we get

$$
|\sum_{l=0}^{s+k}(\sum_{p=0}^{l}b_{p}a_{l-p})(\beta^{(j)})^{l}|\leq |\beta|^{2} \text{ and } |c_{n}(\beta^{(j)})^{n}-\cdots-c_{0}|\leq |\beta|
$$

Consequently,

$$
|\{PQ\}_{\beta}^{(j)}| \leq |\beta|^2.
$$

Therefore the module of\n
$$
\begin{pmatrix}\n\{PQ\}_\beta \\
\{PQ\}_\beta^{(2)} \\
\vdots \\
\{PQ\}_\beta^{(d)}\n\end{pmatrix}
$$
\nis less than $|\beta|^2$.

Now, since $\{PQ\}_\beta = \sum_{k=1}^{s+k} P_k$ *s*+*k*
 $\sum_{l=0}^{l} (\sum_{p=0}^{l}$ $\sum_{p=0}^{n} b_{p} a_{l-p}$)β^{*l*} – *c_nβⁿ* – · · · – *c*₀ and β is an algebraic integer of degree *d*, we easily deduce that ${PQ}_{\beta} = A_0 + A_1\beta + \cdots + A_{d-1}\beta^{d-1}$ with $A_i \in \mathbb{F}_q[x]$. Hence for all $j \in \{2, ..., d\}$; ${PQ}_{\beta}^{(j)}$ β ^y = $A_0 + A_1(\beta^{(j)}) + \cdots + A_{d-1}(\beta^{(j)})^{d-1}$. Thus

$$
\begin{pmatrix}\n\{PQ\}_{\beta}^{(2)} \\
\{PQ\}_{\beta}^{(2)} \\
\vdots \\
\{PQ\}_{\beta}^{(d)}\n\end{pmatrix} = M \begin{pmatrix}\nA_0 \\
A_1 \\
\vdots \\
A_{d-1}\n\end{pmatrix}, \text{ where } M = \begin{pmatrix}\n1 & \beta & \dots & \dots & \beta^{d-1} \\
1 & \beta^{(2)} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \beta^{(d-1)}\}_{d-1}^{d-1}\n\end{pmatrix}
$$

We have det $M = \prod (\beta^{(i)} - \beta^{(j)}) \neq 0$ which implies that M is invertible therefore it transforms all bounded *i*<*j*

vector in an bounded vector. From the two cases and since $\left|\{PQ\}_{\beta}\right| < 1$, we have \int {*PQ*}_β ${ {PQ} }_{\scriptscriptstyle{R}}^{(2)}$ $\frac{1}{\beta}$ ${PQ}^{(d)}_R$ β λ is bounded, so

 *A*0 $\overline{}$ *A*1 . . . *Ad*−¹ Í $\begin{array}{c} \hline \end{array}$ is also bounded and moreover belongs to $\mathbb{F}_q[x]^d$. Therefore this last vector takes a finite number

of possibilities (since \mathbb{F}_q is finite). \Box

Corollary 3.3. *Let* $β$ *be an algebraic integer series with* $|β| > 1$ *. Then* $L_⊙$ *is finite.*

In order to prove Theorem 3.5, we need the following lemma.

Lemma 3.4. *Let* β *be an algebraic unit series and* ξ *be a positive number. Then*

$$
\lim_{p\to\infty}\min_{f\in X(p)}\|\overline{f}\|=\infty,
$$

where

$$
X(p) = \{ f \in \text{Fin}(\beta) : |f| \le \xi, \text{ord}_{\beta}(f) = -p \}.
$$

Proof. . Assume that there exists a constant *B* and an infinite sequence f_i (i=1,2,...) so that both

$$
|f_i^{(j)}| \leq B \text{ for } j = 2, 3, \dots, d \text{ and } \lim_{j \to \infty} ord_{\beta}(f_i) = -\infty
$$

holds. Since β is an algebraic series, Fin(β) ⊂ F*q*[*x*, β[−]¹]. Moreover β is unit, then Fin(β) ⊂ F*q*[*x*, β[−]¹] ⊂ F*q*[*x*, β]. We know that $\mathbb{F}_q[x,\beta]$ is discrete, then $\text{Fin}(\beta)$ is discrete. In addition, we have $|f_i| \leq \xi$, so these f_i 's are finite, a contradiction with the second condition, completing the proof. \square

Proof. . By assumption, we have $d_{\beta}(PQ)$ is finite i.e $d_{\beta}(PQ) = c_n \dots c_0 \bullet c_{-1} \dots c_{-m}$, where $P, Q \in (\mathbb{F}_q[x])_\beta$ such that

$$
P = as \betas + as-1 \betas-1 + \cdots + a_0 \text{ with } |a_i| < |\beta|
$$

and

$$
Q = b_k \beta^k + b_{k-1} \beta^{k-1} + \cdots + b_0 \text{ with } |b_i| < |\beta|.
$$

We have

$$
PQ = c_n \beta^n + \dots + c_0 + \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m}.
$$

So

$$
\{PQ\}_{\beta} = PQ - c_n\beta^n - \dots - c_0 = \frac{c_{-1}}{\beta} + \frac{c_{-2}}{\beta^2} + \dots + \frac{c_{-m}}{\beta^m}.
$$

Let $(\beta^{(j)})_{2\leq j\leq d}$ be the conjugates of β . Now, we begin by distinguish these two cases:

Case 1: If $|\beta^{(j)}| > 1$.

In this case, we have

$$
\{PQ\}_{\beta}^{(j)} = \frac{c_{-1}}{\beta^{(j)}} + \frac{c_{-2}}{(\beta^{(j)})^2} + \cdots + \frac{c_{-m}}{(\beta^{(j)})^m}.
$$

Since $|c_i| < |\beta|$ for $i \in \{-1, ..., -m\}$, we obtain $|\{PQ\}_{\beta}^{(j)}|$ $\frac{f^{(j)}}{\beta}$ | < |β|.

Case 2: If $|\beta^{(j)}| \leq 1$.

$$
\{PQ\}_{\beta}^{(j)} = (a_s(\beta^{(j)})^s + \dots + a_0)(b_k(\beta^{(j)})^k + \dots + b_0) - c_n(\beta^{(j)})^n - \dots - c_0
$$

$$
\leq \max\{\big|\sum_{l=0}^{s+k}(\sum_{p=0}^l b_p a_{l-p})(\beta^{(j)})^l\big|;|c_n(\beta^{(j)})^n - \dots - c_0|\}.
$$

As $|\beta^{(j)}| \leq 1$, we get

$$
|\sum_{l=0}^{s+k}(\sum_{p=0}^{l}b_{p}a_{l-p})(\beta^{(j)})^{l}|\leq |\beta|^{2} \text{ and } |c_{n}(\beta^{(j)})^{n}-\cdots-c_{0}|\leq |\beta|
$$

Consequently,

$$
|\{PQ\}_{\beta}^{(j)}| \leq |\beta|^2.
$$

As a consequence, we deduce that for all $j \in \{2, \ldots, d\}$, $\{PQ\}_{\beta}^{(j)}$ $\frac{p_B}{p}$ is bounded, wherefrom we have $\parallel \overline{\{PQ\}_\beta} \parallel \leq |\beta|^2$. Moreover, note that $|{PQ}{}_{\beta}| < 1$ and by Lemma 3.4, there exist $k \in \mathbb{Z}$, such that for all $PQ \in (\mathbb{F}_q[x])_\beta$ we obtain that *ord*^β(*PQ*) ≥ *k*. Therefore, *L*_⊙ is finite. $□$

Example 3.6. Let β be the unique root with absolute value > 1 of the polynomial $P(Y) = Y^d + x^m Y^{d-1} + A_{d-2} Y^{d-2} +$ $\cdots + A_1 Y + x^{m-1}$, with deg(A_i) < *m* for $i \in \{1, ..., d-2\}$. Then $L_{\odot} = (d-1)(m-1)$. *Indeed, the existence of such* β *is due to Lemma 2.4 and his degree is m. We have*

$$
x^m=-\beta-\frac{A_{d-2}}{\beta}-\cdots-\frac{x^{m-1}}{\beta^{d-1}}.
$$

Hence, $\text{ord}_{\beta}(x^m) = 1 - d$. Moreover

$$
x^{m+1} = -x\beta - \frac{xA_{d-2}}{\beta} - \dots - \frac{x^m}{\beta^{d-1}}.
$$

Therefore, ord_β(x^{m+1}) = 2(1 – *d*) and by induction for all positive integer s, we get ord_β(x^{m+s}) = ($s + 1$)(1 – *d*). So, *in this case,* $L_{\odot} = -\text{ord}_{\beta}(x^{2m-2}) = (d-1)(m-1)$.

Now, we prove that the set of periodic $β$ -fractional part with fixed pre-period is finite where the basis $β$ is an algebraic integer.

Theorem 3.7. *Let* β *be an algebraic integer series with* |β| > 1*. Then the set* $\mathbb{F}_q[x,\beta] \cap Per(\beta,s)$ *is finite.*

Proof. . Let $f \in \mathbb{F}_q[x,\beta] \cap M_0$ and β an algebraic integer series of degree *d*, then $f = \sum^{d-1}$ $\sum_{i=0} A_i \beta^i$, therefore $f^{(k)} = \sum_{i=1}^{d-1} A_i (\beta^{(k)})^i$ for all $k \in \{2, ..., d\}$. Thus

$$
\begin{pmatrix}\nf \\
f^{(2)} \\
\vdots \\
f^{(d)}\n\end{pmatrix}\n\begin{pmatrix}\n1 & \beta & \cdots & \beta^{d-1} \\
1 & \beta^{(2)} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
1 & \beta^{(d)} & \cdots & \beta^{(d-1)}\n\end{pmatrix}\n\begin{pmatrix}\nA_0 \\
A_1 \\
\vdots \\
A_{d-1}\n\end{pmatrix}\n=\mathbf{M}\n\begin{pmatrix}\nA_0 \\
A_1 \\
\vdots \\
A_{d-1}\n\end{pmatrix}
$$

Let now $d_{\beta}(f) = 0 \bullet a_1 \dots a_s \overline{a_{s+1} \dots a_{p+s}}$. To complete this proof, we must distinguish these two cases: **Case 1:** If $|\beta^{(k)}| \leq 1$. We have

$$
f = \frac{a_1}{\beta} + \dots + \frac{a_s}{\beta^s} + \frac{a_{s+1}}{\beta^{s+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{1}{\beta^p} (f - \frac{a_1}{\beta} - \dots - \frac{a_s}{\beta^s}).
$$

Given that $a_1, \ldots, a_{p+s} \in \mathbb{F}_q[x]$, we find

$$
f^{(k)} = \frac{a_1}{\beta^{(k)}} + \cdots + \frac{a_s}{(\beta^{(k)})^s} + \frac{a_{s+1}}{(\beta^{(k)})^{s+1}} + \cdots + \frac{a_{p+s}}{(\beta^{(k)})^{p+s}} + \frac{1}{(\beta^{(k)})^p} (f^{(k)} - \frac{a_1}{\beta^{(k)}} - \cdots - \frac{a_s}{(\beta^{(k)})^s}).
$$

Then

$$
f^{(k)}(1-\frac{1}{(\beta^{(k)})^p})=\frac{a_1}{\beta^{(k)}}+\cdots+\frac{a_s}{(\beta^{(k)})^s}+\frac{a_{s+1}}{(\beta^{(k)})^{s+1}}+\cdots+\frac{a_{p+s}}{(\beta^{(k)})^{p+s}}+\frac{1}{(\beta^{(k)})^p}(-\frac{a_1}{\beta^{(k)}}-\cdots-\frac{a_s}{(\beta^{(k)})^s}).
$$

Hence

$$
f^{(k)}((\beta^{(k)})^{p+s}-(\beta^{(k)})^s)=a_1(\beta^{(k)})^{p+s-1}+\cdots+a_s(\beta^{(k)})^p+a_{s+1}(\beta^{(k)})^{p-1}+\cdots+(a_{p+s}-a_s).
$$

Since $|\beta^{(k)}| < 1$, we get $|f^{(k)}(\beta^{(k)})^s| < |\beta|$. As the pre-period *s* of *f* is fixed, we have $|f^{(k)}| < \frac{|\beta|}{\mu(\beta^{(k)})^s}$ $\frac{|P|}{|(\beta^{(k)})^s|}$.

Case 2: If $|\beta^{(k)}| > 1$.

In this case, we have

$$
f = \frac{a_1}{\beta} + \dots + \frac{a_s}{\beta^s} + \frac{a_{s+1}}{\beta^{s+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{a_{s+1}}{\beta^{p+s+1}} + \dots
$$

and so by Lemma 3.1, we obtain

$$
f^{(k)} = \frac{a_1}{\beta^{(k)}} + \cdots + \frac{a_s}{(\beta^{(k)})^s} + \frac{a_{s+1}}{(\beta^{(k)})^{s+1}} + \cdots + \frac{a_{p+s}}{(\beta^{(k)})^{p+s}} + \frac{a_{s+1}}{(\beta^{(k)})^{p+s+1}} + \cdots
$$

 $\text{So } |f^{(k)}| < |\beta|.$

As a consequence, we deduce from these two cases that $f^{(k)}$ is bounded for all $k \in \{2, ..., d\}$. Since $\det M = \prod$ $\Pi(\hat{\beta}^{(i)} - \beta^{(j)}) \neq 0$, *M* is invertible. Hence, it transforms all bounded vector in an bounded vector.

From these two cases and since $|f| < 1$, we have *f* $\overline{}$ *f* (2) . . . *f* (*d*) λ $\begin{array}{c} \hline \end{array}$ is bounded, so $\int A_0$ *A*1 . . . *Ad*−¹ λ $\begin{array}{c} \hline \end{array}$ is also bounded and

moreover belongs to $\mathbb{F}_q[x]^d$, therefore this vector take a finite number of possibilities (since \mathbb{F}_q is finite).

Corollary 3.8. *Let* β *be an algebraic integer series with* |β| > 1*. Then the set* F*q*[*x*, β] ∩ *Pur*(β) *is finite.*

References

- [1] S. Akiyama, *Cubic Pisot units with finite beta expansions*, Algebraic Number Theory and Diophantine Analysis. (2000), 11-26.
- [2] P. Ambrož, C. Frougny, Z. Masáková and E. Pelantová, Arithmetics on number systems with irrational bases, Bull. Belgian Math. Soc. Simon Stevin. **10** (2003), pp. 641-659.
- [3] J. Bernat, *Computation of L*⊕ *for several cubic Pisot numbers*, Discrete. Math. Theor. Comput. Sci. **9** (2007), 175-194.
- [4] C. Burd´ık, C. Frougny, J. P. Gazeau and R. Krejcar, *Beta-integers as natural counting systems for quasicrystals*, J. Phys. A. **31** (1998), 6449-6472.
- [5] C. Frougny and B. Solomyak, *Finite beta-expansions*. Ergod. Th. and Dynam. Sys. **12** (1992), 713-723.
- [6] L.S. Guimond, Z. Masáková and E. Pelantová, Arithmetics of beta-expansions. Acta Arith. 112 (2004), 23-40.
- [7] M. Hbaib, *Beta-expansions with Pisot bases over* F*q*((*x* −1)), Bull. Korean Math. Soc. **49** (2012), 127-133.
- [8] M. Hbaib and M. Mkaouar, *Sur le beta-d´eveloppement de* 1 *dans le corps des s´eries formelles*, Int. J. Number Theory. **2** (2006), pp. 365-378.
- [9] J. Neukirch, *Algebraic number theory*, (2nd edition), Springer-Verlag, Berlin, 1999.
- [10] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493.