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aUniversité Mohammed V de Rabat, E.N.S de Rabat, B.P. 5118, 10105, Rabat, Maroc
bSciences and Technologies Team (ESTE), Higher School of Education and Training of El Jadida,

Chouaib Doukkali University, El Jadida, Morocco
cDepartment of Mathematics, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Dak Lak, Vietnam

Abstract. In recent years, some interesting multi-term refinements of interpolated and extrapolated Jensen-
type inequalities for convex functions have been established. The main objective of this paper is to utilize
new techniques for generalizing these types of inequalities to (p, h)-convex functions. Some improvements
of inequalities arising from the new characterization of this class of functions are also discussed. The
significance of these results lies in the way they extend known results from the setting of convex functions
to other classes of functions.

1. Introduction and preliminaries

Convex functions and their inequalities play an important role in economics, applied mathematics,
mathematical analysis, mathematical physics, optimisation theory, potential theory, etc. Recall that a real
valued function f defined on a real interval J is said to be convex if it satisfies the following inequality:

f
(
(1 − µ)a + µb

)
≤ (1 − µ) f (a) + µ f (b), (1)

for all a, b ∈ J and µ ∈ (0, 1).When this inequality is reversed, we say that the function f is concave on J. We
also have the following supplementary inequality of convexity as:

(1 + µ) f (a) − µ f (b) ≤ f
(
(1 + µ)a − µb

)
, (2)

where f is a convex function on R with a, b ∈ R and µ ≥ 0 (see [14, 16]).
Several researchers have studied the possibility of refining the above inequality by adding a positive

term to the left-hand side, see for instance [1, 10–13], in which reversed versions of (1) have also been
discussed. Nowadays, work on convex functions has developed rapidly, thanks to the use of new concepts
and modern methods, such as the notions of p-convex functions, h-convex functions and (p, h)-convex
functions, which have been studied by many mathematicians, see for example [2, 3, 8, 15, 17] and the
references therein.

Before going any further, let us recall these new notions of convexity. Throughout this paper, the notation
I stands for a p-convex subset of R for some real number p , 0, this means that

[
(1 − µ)ap + µbp] 1

p ∈ I for all
a, b ∈ I and µ ∈ [0, 1].
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Definition 1.1 ([17]). A function f : I → [0,+∞) is said to be a p-convex function if it satisfies the following
inequality

f
([

(1 − µ)ap + µbp] 1
p

)
≤ (1 − µ) f (a) + µ f (b), (3)

for all a, b ∈ I and µ ∈ [0, 1].

In the following, h : J→ [0,+∞) is a function defined on a real interval J which contains the interval (0, 1).

Definition 1.2 ([15]). We say that f : I→ [0,+∞) is an h-convex function if it satisfies the following inequality

f ((1 − µ)a + µb) ≤ h(1 − µ) f (a) + h(µ) f (b), (4)

for all a, b ∈ I and µ ∈ [0, 1].

Definition 1.3 ([2]). We say that f : I→ [0,+∞) is a (p, h)-convex function if it satisfies the following inequality

f
([

(1 − µ)ap + µbp] 1
p

)
≤ h(1 − µ) f (a) + h(µ) f (b), (5)

for all a, b ∈ I and µ ∈ [0, 1].

When the inequality sign in (3), (4) and (5) is reversed, then f is called p-concave, h-concave and (p, h)-
concave, respectively.

The class of (p, h)-convex functions generalises many different notions of convexity that exist in the
literature. For example, if h = id (id stands for the identity function) in (5), then we get the definition of
p-convex functions [17]. Further, if we choose p = 1 (resp. p = −1), then we get the usual definition of the
convexity (resp. harmonic convexity [7]):

f
(
(1 − µ)a + µb

)
≤ (1 − µ) f (a) + µ f (b),

(
resp. f

( ab
(1 − µ)a + µb

)
≤ (1 − µ) f (a) + µ f (b)

)
.

By mathematical induction, we can extend the inequality (5) to convex combinations of a finite number
of points in I. This extension is known as the discrete Jensen inequality for (p, h)-convex functions.

Theorem 1.4 ([2]). Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I and f be a

(p, h)-convex function on I. If h is a super-multiplicative function, then

f

( n∑
i=1

µia
p
i

) 1
p

 ≤ n∑
i=1

h
(
µi

)
f (ai) . (6)

The inequality sign in (6) is reversed when h is sub-multiplicative and f is (p, h)-concave.
Research related to this inequality consists of deriving new inequalities and refining the existing ones.

For example, (6) was refined and reversed in [3] as follows.

Theorem 1.5 ([3]). Under the same conditions of Theorem 1.4. If we further assume that h is super-additive, then
for every λ ≥ 1, we have

(
h(nµmin)

)λ 
h

(1
n

) n∑
i=1

f (ai)


λ

− f λ
(1

n

n∑
i=1

ap
i

) 1
p
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≤

 n∑
i=1

h
(
µi

)
f (ai)


λ

− f λ
( n∑

i=1

µia
p
i

) 1
p


≤

(
h(nµmax)

)λ 
h

(1
n

) n∑
i=1

f (ai)


λ

− f λ
(1

n

n∑
i=1

ap
i

) 1
p


 , (7)

where µmin = min{µk : k = 1, 2, . . . ,n} and µmax = max{µk : k = 1, 2, . . . ,n}.

We refer the reader to [3–6] for further discussions and refinements related to (p, h)-convex functions.
In [14], Sababheh provided the following improvement of the extrapolated version of Jensen’s inequality

for convex functions with many positive terms as we wish, which is in particular a refined generalisation
of (2) as

(
1 + ν(1)

)
f (a) −

n∑
i=1

µ(1)
i f

(
b(1)

i

)
+

N∑
k=1

(
(n + 1)µ(k)

min

)  1
n + 1

(
f (a) +

n∑
i=1

f (b(k)
i )

)
− f

a +
∑n

i=1(b(k)
i

n + 1




≤ f

(1 + ν(1))a −
n∑

i=1

µi(b
(1)
i )

 , (8)

where f : R → R is a convex function, a ∈ R,
(
b(k)

i , µ
(k)
i

)
∈ R × R+ for all 1 ≤ i ≤ n and 1 ≤ k ≤ N and

ν(1) =

n∑
i=1

µ(k)
i .

The aim of this paper is to give an extrapolated version of Jensen’s inequality for (p, h)-convex functions
and its refinement for many terms as we wish. More precisely, we prove the following inequality, which
extends (8) to the case of (p, h)-convex functions,

h
(
1 + ν(1)

)
f (a) −

n∑
i=1

h(µ(1)
i ) f

(
b(1)

i

)

+

N∑
k=1

h
(
(n + 1)µ(k)

min

) h ( 1
n + 1

) (
f (a) +

n∑
i=1

f (b(k)
i )

)
− f


ap +

∑n
i=1(b(k)

i )p

n + 1


1
p



≤ f


(1 + ν(1))ap

−

n∑
i=1

µi(b
(1)
i )p


1
p
 ,

where a ∈ I, f : I→ [0,+∞) is a (p, h)-convex function, h is super-multiplicative and super-additive function,
µmin = min{µi : i = 1, . . . ,n},

(
b(k)

i , µ
(k)
i

)
∈ I ×R+ for all 1 ≤ i ≤ n and 1 ≤ k ≤ N.

Additionally, we provide an improvement of (7), as follows

ψ

 n∑
i=1

h(µi) f (ai)

 − ψ ◦ f


 n∑

i=1

µia
p
i


1
p


≥ ψ

h
(
µmin

) n∑
i=1

f (ai)

 − ψ
nh

(
µmin

)
f


 n∑

i=1

1
n

ap
i


1
p
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≥ ψ

h
(
µmin

)
h
(1

n

) n∑
i=1

f (ai)

 − ψ
h

(
nµmin

)
f


 n∑

i=1

1
n

ap
i


1
p

 ,

where ai ∈ I, µi ≥ 0 such that
n∑

i=1

µi = 1, f : I → R+ is a (p, h)-convex function on I, h is super-multiplicative

and super-additive function, and ψ is a strictly increasing convex function defined on [0,+∞).
The paper is organized as follows. In the second section we present the refinement of the extrapolated

version of Jensen’s inequality for (p, h)-convex functions. In the third section, we provide an improvement
of Jensen’s inequality for (p, h)-convex functions.

2. Improvement of the extrapolated version of Jensen’s inequality for (p, h)-convex functions

Before stating our first result in this section, we need to recall a few definitions and notations that will
be used in what follows.

Definition 2.1 ([8]). We say that h is a super-multiplicative function, if the following inequality holds

h(x)h(y) ≤ h(xy) for all x, y ∈ J. (9)

When (9) is reversed, then h is said to be a sub-multiplicative function. If (9) is equality, then h is said to be a
multiplicative function.

Definition 2.2 ([8]). We say that h is a super-additive function, if the following inequality holds

h(x) + h(y) ≤ h(x + y) for all x, y ∈ J. (10)

Similarly, when the inequality (10) is reversed, h is called a sub-additive function. When (10) is equality, h is called
an additive function.

We now give a few examples of super-additive (resp. sub-additive) and super-multiplicative (resp. sub-
multiplicative) functions, which can be easily checked by the reader.

Example 2.3. 1. For a real number s, we define the function h from [0,+∞) into itself by

h(x) =


xs if x > 0,

0 if x = 0.

A simple calculation shows that h is
(a) additive when s = 1,
(b) sub-additive when s ∈ (−∞,−1] ∪ [0, 1),
(c) super-additive when s ∈ (−1, 0) ∪ (1,∞).

2. Let h : [0,+∞)→ [0,+∞) defined by h(x) = x3
− x2 + x for x ≥ 0. It is easy to prove that

(a) h(xy) − h(x)h(y) = xy(x + y)(1 − x)(1 − y).
(b) h(x + y) − h(x) − h(y) = 2xy

[
(x − 1) + (y − 1)

]
.

This implies that the function h is super-multiplicative on [0,+∞), super-additive on [1,+∞) and sub-additive
on [0, 1].

3. If the function h : [0,+∞) → [0,+∞) satisfies h(µx) ≤ µh(x) for every x ≥ 0 and µ ∈ [0, 1], then h is
super-additive. Indeed, let x, y ∈ [0,+∞). Clearly that h(0) = 0, since 0 ≤ h(0) ≤ µh(0) for all µ ∈ [0, 1]. So
the result is trivial when either x = 0 or y = 0. Now let’s suppose that x, y > 0. Putting µ1 =

x
x + y

and

µ2 =
y

x + y
. Obviously, µ1, µ2 ∈ (0, 1), h(x) = h

(
µ1(x + y)

)
and h(y) = h

(
µ2(x + y)

)
. Therefore, by combining

this fact with the hypothesis, we get the desired result.
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4. It follows from the part (3) that if h : [0,+∞) → [0,+∞) is a convex function such that h(0) = 0, then it is
super-additive. In fact, by convexity and the fact that h(0) = 0, we can conclude that h(µx) ≤ µh(x) for every
x ≥ 0 and µ ∈ (0, 1).

Before we move on, it should be notice that if h is a super-additive function then h(x − y) ≤ h(x) − h(y)

whenever x − y ∈ J, and if h is super-multiplicative then h
(x

y

)
≤

h(x)
h(y)

whenever
x
y
∈ J and h(y) , 0, in

particular, h
(1
x

)
≤

1
h(x)

for all x ∈ J \ {0} such that x−1
∈ J and h(x) , 0.

In the future, for n ∈N∗, we denote by Ip,n the subset of I × In
×Rn

+ defined by

Ip,n =

(a,b, µ̃) ∈ I × In
×Rn

+ :


1 +

n∑
i=1

µi

 ap
−

n∑
i=1

µib
p
i


1
p

∈ I

 ,
where b = (bi)n

i=1 and µ̃ = (µi)n
i=1. Clearly, for every n ∈ N∗, Ip,n , ∅. In fact, let a, b ∈ I, by letting bi = b and

µi = 0 for i = 1, . . . ,n, then we have (a,b, µ̃) ∈ Ip,n.
We start this section by the following result, which provides a extrapolated version of Jensen’s inequality

for (p, h)-convex functions.

Theorem 2.4. Let (a,b, µ̃) ∈ Ip,n and f : I → [0,+∞) be a (p, h)-convex function. If the non-negative function h is
super-multiplicative, then

h(1 + ν) f (a) −
n∑

i=1

h
(
µi

)
f (bi) ≤ f


(1 + ν)ap

−

n∑
i=1

µib
p
i


1
p
 , (11)

where
n∑

i=1

µi = ν.

Proof. We first treat the case where µi = 0 for all i ∈ {1, . . . ,n}. Since h is super-multiplicative, we obtain that
h(1) ≤ 1. Hence, by the positivity of terms f (a), h(0) and f (bi) for 1 ≤ i ≤ n, we get the following inequlalities

h(1) f (a) ≤ f (a)

≤ f (a) + h(0)
n∑

i=1

f (bi)

= f


(1 + ν)ap

−

n∑
i=1

µib
p
i


1
p
 +

n∑
i=1

h
(
µi

)
f (bi),

which give the desired result in this case.
We assume that at least one of the µi is non-zero. Notice first that for (x, y, s) ∈ Ip,1, we have

xp =
s

s + 1
yp +

1
s + 1

((
(1 + s)xp

− syp) 1
p

)p
.

From the fact that f is (p, h)-convex, we get

f (x) = f
(
(xp)

1
p
)
≤ h

( s
s + 1

)
f (y) + h

( 1
s + 1

)
f
[(

(1 + s)xp
− syp) 1

p

]
≤

h(s)
h(s + 1)

f (y) +
1

h(s + 1)
f
[(

(1 + s)xp
− syp) 1

p

]
.
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Hence

h(s + 1) f (x) − f
[(

(1 + s)xp
− syp) 1

p

]
≤ h(s) f (y). (12)

Now we put x = a, y =

 n∑
i=1

µi

ν
bp

i


1
p

and s = ν. Since, (a,b, µ̃) ∈ Ip,n, we obtain that (x, y, s) ∈ Ip,1. So, by

applying (12), we infer that

h(1 + ν) f (a) − f


(1 + ν)ap

−

n∑
i=1

µib
p
i


1
p


= h(1 + ν) f (x) − f
([

(1 + ν)xp
− νyp] 1

p

)
≤ h(ν) f


 n∑

i=1

µi

ν
bp

i


1
p


≤ h(ν)
n∑

i=1

h
(µi

ν

)
f (bi) [by (6)]

≤

n∑
i=1

h
(
µi

)
f (bi).

This completes the proof.

We now give the following simple inequality, which is a one-term refinement of Theorem 2.4, allowing us
to obtain the general form presented in Theorem 2.7.

Theorem 2.5. Let (a,b, µ̃) ∈ Ip,n and the function f : I → [0,+∞) be a (p, h)-convex. If the non-negative function
h is super-multiplicative and super-additive, we then have

h(1 + ν) f (a) −
n∑

i=1

h
(
µi

)
f (bi) ≤ f


(1 + ν)ap

−

n∑
i=1

µib
p
i


1
p


− (n + 1)h
(
µmin

)  1
n + 1

(
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p

 ,

where
n∑

i=1

µi = ν and µmin = min{µi : i = 1, 2, . . . ,n}.
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Proof. Since h is super-multiplicative and super-additive, we have

I := h(1 + ν) f (a) −
n∑

i=1

h(µi) f (bi)

+ (n + 1)h
(
µmin

)  1
n + 1

(
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p



=
(
h(1 + ν) + h(µmin)

)
f (a) +

n∑
i=1

(
−h(µi) + h(µmin)

)
f (bi)

− (n + 1)h(µmin) f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p


≤ h
(
1 + ν + µmin

)
f (a) −

n∑
i=1

h
(
µi − µmin

)
f (bi)

− (n + 1)h(µmin) f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p
 .

We now define the (2n + 1)-tuples µ̃′ = (µ′i )
2n+1
i=1 and b′ = (b′i )

2n+1
i=1 by

µ′i =


µi − µmin if 1 ≤ i ≤ n,

µmin if i ≥ n + 1,
and b′i =


bi if 1 ≤ i ≤ n,

(
ap+

∑n
i=1(bi)p

n+1

) 1
p

if i ≥ n + 1.

Clearly,
2n+1∑
i=1

µ′i = ν + µmin. By a simple calculation, we can prove that

1 +
2n+1∑
i=1

µ′i

 ap
−

2n+1∑
i=1

µ′i (b
′

i )
p =

1 +
n∑

i=1

µi

 ap
−

n∑
i=1

µib
p
i .

This implies that (a,b′, µ̃′) ∈ Ip,2n+1. Hence, it follows from Theorem 2.4 that

I ≤ f


(1 + ν + µmin

)
ap
−

n∑
i=1

(
µi − µmin

)
bp

i − (n + 1)µmin

ap +
∑n

i=1 bp
i

n + 1




1
p


= f


(1 + ν)ap

−

n∑
i=1

µib
p
i


1
p
 .

This completes the proof.

Corollary 2.6. Under the same notations as in Theorem 2.5, we have

h(1 + ν)h(a) −
n∑

i=1

h
(
µi

)
f (bi) ≤ f


(1 + ν)ap

−

n∑
i=1

µib
p
i


1
p


− h
(
(n + 1)µmin

) h ( 1
n + 1

) (
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p

 .
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Proof. By Theorem 2.5, it suffices to show that

(n + 1)h
(
µmin

)  1
n + 1

(
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p



≥ h
(
(n + 1)µmin

) h ( 1
n + 1

) (
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p

 .

Indeed, using the super-multiplicative and super-additive of h, and the non-negative of f , we find that

(n + 1)h
(
µmin

)  1
n + 1

(
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p



= h(µmin)
(

f (a) +
n∑

i=1

f (bi)
)
− (n + 1)h(µmin) f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p


≥ h
( (n + 1)µmin

n + 1

)(
f (a) +

n∑
i=1

f (bi)
)
− h((n + 1)µmin) f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p


≥ h((n + 1)µmin)h
( 1
n + 1

)(
f (a) +

n∑
i=1

f (bi)
)
− h((n + 1)µmin) f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p


= h((n + 1)µmin)
(
h
( 1
n + 1

)(
f (a) +

n∑
i=1

f (bi)
)
− f

(ap +
∑n

i=1(bi)p

n + 1

) 1
p
 ).

This finishes the proof.

Before presenting the refinement of inequality (11) by many terms, we need to introduce some notations
which will be used in the sequel.

The cardinal of a subset A ofN is denoted by |A|. For µ̃(1) =
(
µ(1)

1 , . . . , µ
(1)
n

)
∈ Rn

+, we define the sequence{
µ̃(k)

}
k∈N∗

of elements of Rn
+ by

µ(k+1)
i =


µ(k)

i − µ
(k)
min if µ(k)

i , µ
(k)
min

(n+1)
|Ak |

µ(k)
min if µ(k)

i = µ
(k)
min

(1 ≤ i ≤ n), (13)

where k ∈N∗, µ̃(k) =
(
µ(k)

1 , . . . , µ
(k)
n

)
, µ(k)

min = min
1≤i≤n

µ(k)
i and Ak =

{
i : µ(k)

i = µ
(k)
min

}
.

We now give another sequence of elements of In which is associated to the sequence
{
µ̃(k)

}
k∈N∗

. Given

b(1) =
(
b(1)

1 , . . . , b
(1)
n

)
∈ In, the sequence

{
b(k)

}
k∈N∗

of elements of In is defined by induction as follows:

b(k+1)
i =


b(k)

i if µ(k)
i , µ

(k)
min

ap +
∑n

i=1

(
b(k)

i

)p

n + 1


1
p

if µ(k)
i = µ

(k)
min

(1 ≤ i ≤ n), (14)

where k ∈N∗ and b(k) =
(
b(k)

1 , . . . , b
(k)
n

)
.

We now present our improvement of the extrapolated version of Jensen’s inequality for (p, h)-convex
functions by many terms.
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Theorem 2.7. Let
(
a,b(1), µ̃(1)

)
∈ Ip,n and f : I→ [0,+∞) be a (p, h)-convex function. If the non-negative function

h is super-multiplicative and super-additive, then for every N ∈N∗, we have

h(1 + ν(1)) f (a) −
n∑

i=1

h(µ(1)
i ) f

(
b(1)

i

)

+

N∑
k=1

h
(
(n + 1)µ(k)

min

) h( 1
n + 1

)(
f (a) +

n∑
i=1

f (b(k)
i )

)
− f


ap +

∑n
i=1(b(k)

i )p

n + 1


1
p



≤ f


(1 + ν(1))ap

−

n∑
i=1

µi(b
(1)
i )p


1
p
 , (15)

where ν(1) =

n∑
i=1

µ(1)
i .

Proof. Before we start our proof, it should be noted that h(0) = 0 and mh(x) ≤ h(mx) for all x ∈ J and all
m ∈N. Now, let N ∈N∗. For k ∈ {1, . . . ,N}, we define the following terms

Γk = h
(
(n + 1)µ(k)

min

) h( 1
n + 1

)(
f (a) +

n∑
i=1

f (b(k)
i )

)
− f


ap +

∑n
i=1(b(k)

i )p

n + 1


1
p

 ,

Θk = h
(
1 + ν(k)

)
f (a) −

n∑
i=1

h(µ(k)
i ) f

(
b(k)

i

)
,

ν(k) =

n∑
i=1

µ(k)
i .

For every k ∈ {1, . . . ,N − 1}, we have

ν(k+1) =

n∑
i=1

µ(k+1)
i

=

n∑
i=1

(
µ(k)

i − µ
(k)
min

)
+

∑
i∈Ak

(n + 1)µ(k)
min

|Ak|

= ν(k)
− nµ(k)

min + (n + 1)µ(k)
min

= ν(k) + µ(k)
min,

and

Θk + Γk ≤

(
h(1 + ν(k)) + h(µ(k)

min)
)

f (a) −
n∑

i=1

(
h
(
µ(k)

i

)
− h

(
µ(k)

min

))
f
(
b(k)

i

)

− h
(
(n + 1)µ(k)

min

)
f


ap +

∑n
i=1(b(k)

i )p

n + 1


1
p


≤ h
(
1 + ν(k) + µ(k)

min

)
f (a) −

n∑
i=1

h
(
µ(k)

i − µ
(k)
min

)
f
(
b(k)

i

)

− h
(
(n + 1)µ(k)

min

)
f


ap +

∑n
i=1(b(k)

i )p

n + 1


1
p
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≤ h
(
1 + ν(k) + µ(k)

min

)
f (a) −

∑
i<Ak

h
(
µ(k)

i − µ
(k)
min

)
f
(
b(k)

i

)

− |Ak|h

 (n + 1)µ(k)
min

|Ak|

 f


ap +

∑n
i=1(b(k)

i )p

n + 1


1
p


= h
(
1 + ν(k)

)
f (a) −

n∑
i=1

h(µ(k)
i ) f

(
b(k)

i

)
= Θk+1.

From this, one can obtain that

Θk +

N∑
l=k

Γl ≤ Θk+1 +

N∑
l=k+1

Γl for all 1 ≤ k ≤ N − 1.

As a consquence, we get that

Θ1 +

N∑
l=1

Γl ≤ ΘN + ΓN. (16)

On the other hand, for every k ∈ {1, . . . ,N − 1}, we have(
1 + ν(k+1)

)
ap
−

n∑
i=1

µ(k+1)
i

(
b(k+1)

i

)p

=
(
1 + ν(k) + µ(k)

min

)
ap
−

n∑
i=1

(
µ(k)

i − µ
(k)
min

) (
b(k)

i

)p
− (n + 1)µ(k)

min

ap +
∑n

i=1

(
b(k)

i

)p

n + 1

=
(
1 + ν(k)

)
ap
−

n∑
i=1

µ(k)
i

(
b(k)

i

)p
.

In particular,

(
1 + ν(N)

)
ap
−

n∑
i=1

µ(N)
i

(
b(N)

i

)p
=

(
1 + ν(1)

)
ap
−

n∑
i=1

µ(1)
i

(
b(1)

i

)p
. (17)

Hence, by combining (16) and (17) together with Theorem 2.5, we obtain the desired inequality.

An immediate consequence of Theorem 2.7 is the following (p, h)-log-convex version. Recall that a
function f : I→ (0,+∞) is said to be (p, h)-log-convex if the function log ◦ f is (p, h)-convex.

Corollary 2.8. Let
(
a,b(1), µ̃(1)

)
∈ Ip,n and f : I → [0,+∞) be a (p, h)-log-convex function. If h is super-

multiplicative and super-additive function, then for every N ∈N∗, we have

f h(1+ν(1))(a)∏n
i=1 f h(µ(1)

i )
(
b(1)

i

) N∏
k=1


(

f (a)
∏n

i=1 f
(
b(k)

i

))h( 1
n+1 )

f

[ ap+
∑n

i=1(b(k)
i )p

n+1

] 1
p



h
(
(n+1)µ(k)

min

)

≤ f


(1 + ν(1)

)
ap
−

n∑
i=1

µ(1)
i (b(1)

i )p


1
p
 ,
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where ν(1) =

n∑
i=1

µ(1)
i .

If we take n = 1 in Theorem 2.7, we obtain the following result which generalizes [3, Theorem 2.5].

Corollary 2.9. Let
(
a, b, µ

)
∈ Ip,1 and f : I → [0,+∞) be a (p, h)-convex function. If h is super-multiplicative and

super-additive function, then for every N ∈N∗, we have

h(1 + µ) f (a) − h(µ) f (b)

+

N∑
k=1

h(2iµ)

h
(1

2

)  f (a) + f



(
2k−1
− 1

)
ap + bp

2k−1


1
p

 − f



(
2k
− 1

)
ap + bp

2k


1
p



≤ f
[
((1 + µ)ap

− µbp)
1
p
]
.

3. Improved Jensen’s inequality for (p, h)-convex functions

We now start this section with the following improvement of the first inequality in Theorem 1.5 when
λ = 1.

Theorem 3.1. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, f : I → R+ be a (p, h)-convex

function and a1, . . . , an ∈ I. If h is a super-multiplicative and super-additive function, then

n∑
i=1

h
(
µi

)
f (ai) − f

( n∑
i=1

µia
p
i

) 1
p

 ≥ nh(µmin)

1
n

n∑
i=1

f (ai) − f

(1
n

n∑
i=1

ap
i

) 1
p




≥ h(nµmin)


h

(1
n

) n∑
i=1

f (ai)

 − f

(1
n

n∑
i=1

ap
i

) 1
p


 ,

where µmin = min{µi : i = 1, . . . ,n}.

Proof. Since h is super-multiplicative and super-additive, we have

n∑
i=1

h
(
µi

)
f (ai) − nh(µmin)

1
n

n∑
i=1

f (ai) − f

(1
n

n∑
i=1

ap
i

) 1
p




=

n∑
i=1

(
h
(
µi

)
− h

(
µmin

))
f (ai) + nh(µmin) f

(1
n

n∑
i=1

ap
i

) 1
p


≥

n∑
i=1

h
(
µi − µmin

)
f (ai) + nh(µmin) f

(1
n

n∑
i=1

ap
i

) 1
p


≥ f


 n∑

i=1

(
µi − µmin

)
ap

i + nµmin

(1
n

n∑
i=1

ap
i

)
1
p
 by (6)

= f

( n∑
i=1

µia
p
i

) 1
p

 .
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The second inequality follows from the fact that

nh(µmin)

1
n

n∑
i=1

f (ai) − f

(1
n

n∑
i=1

ap
i

) 1
p




≥ h(µmin)
n∑

i=1

f (ai) − h(nµmin) f

(1
n

n∑
i=1

ap
i

) 1
p


≥ h(nµmin)


h

(1
n

) n∑
i=1

f (ai)

 − f

(1
n

n∑
i=1

ap
i

) 1
p


 .

The purpose of the rest of this section is to extend Theorem 3.1 to a more general framework using the so-
called weak sub-majorization theory. In the sequel, we denote by X∗ =

(
X∗1, . . . ,X

∗

n

)
the vector obtained from

the vector X = (X1, . . . ,Xn) ∈ Rn by rearranging the components of it in decreasing order, i.e., X∗n ≥ · · · ≥ X∗1.
Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two vectors with real components, we say that Y is weakly

sub-majorized by X, written X ≻w Y, if

k∑
i=1

X∗i ≥
k∑

i=1

Y∗i for all k = 1, . . . ,n.

A very important tool in weak sub-majorization, which will be used to prove our results, is given in the
following lemma.

Lemma 3.2. [9, pp. 13] Let X = (Xi)
n
i=1 ,Y = (Yi)

n
i=1 ∈ R

n and J ⊂ R be an interval containing the components of
X and Y. If X ≻w Y and ψ : J→ R is a continuous increasing convex function, then

n∑
i=1

ψ (Xi) ≥
n∑

i=1

ψ (Yi) .

The following lemmas allow us to derive the general form of Theorem 3.1.

Lemma 3.3. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I and f : I→ R+ be a

(p, h)-convex function on I. Let X = (X1,X2) and Y = (Y1,Y2) be two vectors in R2 with components

X1 =

n∑
i=1

h(µi) f (ai), X2 = nh
(
µmin

)
f


 n∑

i=1

1
n

ap
i


1
p


Y1 = f


 n∑

i=1

µia
p
i


1
p
 and Y2 = h

(
µmin

) n∑
i=1

f (ai).

If h is a super-multiplicative and super-additive function, then we have X ≻w Y, namely, the vectors X∗ and Y∗ have
components satisfying that

X∗1 ≥ Y∗1, (18)
X∗1 + X∗2 ≥ Y∗1 + Y∗2. (19)
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Proof. The second inequality (19) comes directely from the first one in Theorem 3.1, since X1 +X2 ≥ Y1 +Y2.
To prove the first inequality (18), it is sufficient to show that X1 ≥ Yi for i = 1, 2. Indeed, on one hand, we
have

X1 − Y2 =

n∑
i=1

h(µi) f (ai) − h
(
µmin

) n∑
i=1

f (ai)

=

n∑
i=1

[
h(µi) − h

(
µmin

)]
f (ai)

≥

n∑
i=1

h
(
µi − µmin

)
f (ai)

≥ 0.

On the other hand, by Theorem 1.4, we get that X1 ≥ Y1. Hence, from this we can conclude that X∗1 ≥ Y∗1.

Lemma 3.4. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I and f : I→ R+ be a

(p, h)-convex function on I. Let T = (T1,T2) and Z = (Z1,Z2) be two vectors in R2 with components

T1 = h(µmin)
n∑

i=1

f (ai), T2 = h
(
nµmin

)
f


 n∑

i=1

1
n

ap
i


1
p


Z1 = h
(
nµmin

)
h
(1

n

) n∑
i=1

f (ai) and Z2 = nh
(
µmin

)
f


 n∑

i=1

1
n

ap
i


1
p
 .

If h is a super-multiplicative and super-additive function, then we have T ≻w Z, namely, the vectors T∗ and Z∗ have
components satisfying that

T∗1 ≥ T∗1, (20)
T∗1 + T∗2 ≥ Z∗1 + Z∗2. (21)

Proof. Since h is supermultipicative and superadditive, we have T1 ≥ Z1 and T2 ≥ Z2. This implies that
T∗1 ≥ Zi for i = 1, 2. Consequently, we get (18). The second inequality (19) comes directly from the second
inequality of Theorem 3.1.

Theorem 3.5. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I, f : I → R+

be a (p, h)-convex function on I and ψ be a strictly increasing convex function defined on [0,+∞). If h is super-
multiplicative and super-additive function, then we have

ψ

 n∑
i=1

h(µi) f (ai)

 − ψ ◦ f


 n∑

i=1

µia
p
i


1
p


≥ ψ

h
(
µmin

) n∑
i=1

f (ai)

 − ψ
nh

(
µmin

)
f


 n∑

i=1

1
n

ap
i


1
p



≥ ψ

h
(
µmin

)
h
(1

n

) n∑
i=1

f (ai)

 − ψ
h

(
nµmin

)
f


 n∑

i=1

1
n

ap
i


1
p

 .
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Proof. Consider the vectors X = (X1,X2), Y = (Y1,Y2) T = (T1,T2) and Z = (Z1,Z1) defined in Lemmas 3.3
and 3.4. These lemmas assert that X ≻w Y and T ≻w Z. Hence, by applying Lemma 3.2, we infer that

ψ(X1) + ψ(X2) ≥ ψ(Y1) + ψ(Y2)

and

ψ(T1) + ψ(T2) ≥ ψ(Z1) + ψ(Z2).

These inequalities give the required result.

Replacing f by log f in Theorem 3.5, we derive the log-convex version of the previous result as follows.

Theorem 3.6. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I, f : I → R+

be a (p, h)-log-convex function on I and ψ be a strictly increasing convex function defined on [0,+∞). If h is a
super-multiplicative and super-additive function, then we have

ψ ◦ log

 n∏
i=1

f h(µi)(ai)

 − ψ ◦ log f


 n∑

i=1

µia
p
i


1
p


≥ ψ ◦ log

 n∏
i=1

f h(µmin)(ai)

 − ψ
log f nh(µmin)


 n∑

i=1

1
n

ap
i


1
p



≥ ψ ◦ log

 n∏
i=1

f h(µmin)h( 1
n )(ai)

 − ψ
log f h(nµmin)


 n∑

i=1

1
n

ap
i


1
p

 .

Now, by letting ψ(x) = xλ (λ ≥ 1, x ≥ 0) in Theorem 3.5, we get the following improvement of Theorem 1.5.

Theorem 3.7. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I, f : I → R+

be a (p, h)-convex function on I and ψ be a strictly increasing convex function defined on [0,+∞). If h is super-
multiplicative and super-additive function, then we have n∑

i=1

h(µi) f (ai)


λ

− f λ


 n∑

i=1

µia
p
i


1
p


≥
(
nh

(
µmin

))λ 
 n∑

i=1

f (ai)


λ

− f λ


 n∑

i=1

1
n

ap
i


1
p



≥

h
(
µmin

)
h
(1

n

) n∑
i=1

f (ai)


λ

−

h
(
nµmin

)
f


 n∑

i=1

1
n

ap
i


1
p


λ

.

By taking ψ(x) = exp(x) (x ∈ R) in Theorem 3.6, we find the following result.

Theorem 3.8. Let µ1, . . . , µn be positive real numbers (n ⩾ 2) such that
n∑

i=1

µi = 1, a1, . . . , an ∈ I, f : I → R+

be a (p, h)-log-convex function on I and ψ be a strictly increasing convex function defined on [0,+∞). If h is a
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super-multiplicative and super-additive function, then we have n∏
i=1

f h(µi)(ai)

 − f


 n∑

i=1

µia
p
i


1
p


≥

n∏
i=1

f h(µmin)(ai) − f nh(µmin)


 n∑

i=1

1
n

ap
i


1
p


≥

n∏
i=1

f h(µmin)h( 1
n )(ai) − f h(nµmin)


 n∑

i=1

1
n

ap
i


1
p
 .
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[7] I. Işcan, Hermite Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat. 43(6), (2014), 935–942.
[8] X. Jin, B. Jin, J. Ruan and X. Ma, Some characterization of h-convex functions, J. Math. Inequal. 16 2, (2022), 751–764.
[9] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second edition, Springer Series in

Statistics, Springer, New York (2011).
[10] M. Sababheh, Convexity and matrix means, Linear Algebra Appl. 506, (2016), 588–602.
[11] M. Sababheh, Log and harmonically log-convex functions related to matrix norms, Oper. Matrices 10(2), (2016), 453–465.
[12] M. Sababheh, Means refinements via convexity, Mediterr. J. Math. 14 (3), (2017), Paper no. 125, 16 p.
[13] M. Sababheh, Convex functions and means of matrices, Math. Inequal. Appl. 20 (1), (2017), 29–47.
[14] M. Sababheh, Extrapolation of convex functions, Filomat 32(1), (2018), 127–139.
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