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Abstract. Cancer is one of the major causes of death worldwide, despite there are many cancer treatments,
such as surgery, radiation, chemotherapy, etc. This is the reason why immunotherapy has gained more
attention and become approved for the treatment of many types of cancers. The development of the
tumor itself is very complex and multifactorial process, which may differ from one person to the other
due to his/hers state of immune system and environmental conditions. Motivated by this fact, in this
paper we consider the stochastic tumor-immune interaction model, which dynamics is described by the
three-dimensional system of stochastic differential equations. The model is obtained by incorporating
white noise into deterministic tumor-immune interaction model, which is of predator-prey type. For our
stochastic model, we verify that the environmental noise provides a solution that is positive, global and
bounded. Also, we obtain conditions under which our model has an ergodic stationary distribution, which
is important due to the fact that under these conditions tumor cells and immune cells are weakly persistent
in mean, as well as, the conditions which lead to non-persistence in mean. We close the paper by presenting
numerical simulations to verify our theoretical results. For that purpose we use reliable data for growth
of the highly malignant B Lymphoma/Leukemic cells (BCL1) in the spleen of chimeric mice. Both theoretical
and numerical results indicate that the random perturbations may make the model more realistic than its
deterministic analogue.

1. Introduction

According to the World Health Organization (WHO) data, cancer is still one of the leading causes of
death worldwide. Namely, nearly 10 million deaths in 2020 occur mainly due to breast, lung, colon and
rectum, prostate, skin and stomach cancer, and prediction models indicate that by 2030, there will be nearly
21.4 million cases of cancer and number of deaths will rise to 13.5 millions. These numbers indicate that
all strategies of cancer treatment (surgery, radiation, hormonal therapy, virotherapy, chemotherapy, and
recently immunotherapy) have their lacks. Immunotherapy has been recently approved for the treatment
of many types of cancers. The idea of immunotherapy is to increase the efficiency of the immune system in
finding and fighting tumor cells. This goal may be achieved in two ways. The first one includes antibody-
targeted therapy in order to make effector components of the immune system to attack tumor cells directly.
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The second one is to enhance the activity of the immune system by using cancer vaccines, cytokines, and
adoptive cell therapy. For more details about immunotherapy we refer the reader to [19] and references
cited therein.

In the medical literature there is an inexplicable but real phenomenon. Namely, it happens that patients
with advanced stage of the tumor, which is considered incurable, are discharged from the hospital. Some
of them, after five to seven years, appear without illness. It is considered that a spontaneous remission has
occurred, that is, the patients are in the stage of illness where tumor symptoms are almost or completely
absent. This type of behaviour of tumor suggests that this disease is not always fatal, and therefore, the
interaction between the tumor cells and immune system is very important.

Mathematical models of the interaction of tumor and immune cells are a widely represented topic in
mathematical literature (see, [1, 2, 6, 18, 24], for instance). Sarkar et all. [24] developed a deterministic model
for spontaneous tumor regression and progression based on the interaction between immunological (CTL
and macrophages) and tumor cells, which is described by predator-prey model. The role of predators is
played by the cells of the immune system. They occur in two forms: hunting cells and resting cells. Hunting
cells absorb tumor cells, eat them and release substances that activate resting T-lymphocytes (resting cells)
that coordinate the counter attack. Resting cells cannot kill tumor cells, but they are converted into
macrophages, begin to multiply and release substances that further stimulate resting cells.

The deterministic model, presented in [24], is constructed on the basis of the following assumptions.
Tumor cells are destroyed at a rate that is proportional to the number of tumor cells and hunting cells.
Resting cells are converted into hunting cells either by direct contact with them or by contact with cytokines
that produce hunting cells. It is also believed that once a cell is converted from a resting cell to a hunting
cell, it never returns to the resting stage. Hunting cells die at a constant rate per unit of time. All resting
cells and tumor cells are rich in nutrients and they are in the mitosis phase, too. Tumor cells and resting
cells have logistical growth.

Considering the above mentioned assumptions, the deterministic model for interaction between tumor
and immune cells is formulated

dM(t)
dt
=q + rM(t)

(
1 −

M(t)
k1

)
− αM(t)N(t)

dN(t)
dt
=βN(t)Z(t) − d1N(t) (1)

dZ(t)
dt
=sZ(t)

(
1 −

Z(t)
k2

)
− βN(t)Z(t) − d2Z(t), t ≥ 0,

with initial condition:

M(0) =M0,N(0) = N0,Z(0) = Z0, (2)

where M(t), N(t) i Z(t) denote the number of tummor cells, hunting cells and resting cells at time t,
respectively. The parameters of the model are positive constants which are described as follows:
q - the conversion factor of normal cells to malignant ones,
r and s - the growth rates of tumor cells and resting cells, respectively,
k1 and k2 - the carrying capacities of tumor cells and resting cells, respectively,
d1 and d2 - the death rate of hunting cells and resting cells, respectively,
α - the rate of annihilation of tumor cells in interaction with hunting cells,
β - the conversion rate of resting cells into hunting cells.

2. Motivation and Construction of Stochastic Model

All populations in nature are inevitably exposed to environmental interference from factors, such
as temperature, radiation, oxygen supply, nutrients, migrations, etc. Hence, by adding randomness to
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deterministic models, we bring population and epidemiological models closer to reality. Environmental
randomness can be introduced to mathematical models by supposing that one of the parameters of the
model is a linear function of the white noise, as it was done in [5, 10, 11, 14, 15, 17, 21, 23, 25, 27, 29], for
instance, or by assuming that random noise is introduced into the deterministic systems in proportion to
the distances of the compartments from their steady states (see [12, 13, 16, 24, 26], among others). Another
approach, which is represented in the literature lately, is to assume that the model parameters satisfy some
mean-reverting stochastic processes, and it was done in [4, 7, 30] with one or more Ornstein-Ulembeck
processes, for example.

Almost every person exhibits the malignant transformation of healthy cells into the tumor ones. How-
ever, due to the activation of immune system, not all of them develop tumors. The outcome of interaction
between tumor and immune cells depends on a several factors such as: characteristics the tumor itself (type
of tumor, type of tissue affected by the tumor, position of the tumor, degree of blood circulation of tumor
tissue), availability and quantity of nutrients, the creation of certain enzymes and cytokines that promote
the spread and growth of tumors. Also, general condition of the host organism has a significant impact
on the interaction (age, morbidity, nutrition and genetic predisposition), as well as the state of the immune
system (congenital and acquired immunodeficiencies) and environmental conditions. The development of
the tumor is very complex and a multifactorial process based on the principle of randomness due to the
individual differences of these factors. Given that the immune system response to a tumor is predicated on
the hunting cells response, which arise from previously resting cells, it is reasonable to assume that the rate
at which these cells become activated is random. Therefore, in the model (1), we perturb the activation rate
βwith Gaussian white noise, and obtain stochastic system

dM(t)=
[
q + rM(t)

(
1 −

M(t)
k1

)
− αM(t)N(t)

]
dt

dN(t)=
[
βN(t)Z(t) − d1N(t)

]
dt + σN(t)Z(t)dw(t) (3)

dZ(t)=
[
sZ(t)

(
1 −

Z(t)
k2

)
− βN(t)Z(t) − d2Z(t)

]
dt − σN(t)Z(t)dw(t), t ≥ 0,

with initial condition

M(0) =M0,N(0) = N0,Z(0) = Z0. (4)

In system (3) σ is a positive constant that represents the intensity of the Gaussian white noise and w =
{w(t), t ≥ 0} is a standard Brownian motion defined on a complete probability space {Ω,F ,P} with a
filtration {Ft}t≥0, satisfying the usual conditions (it is right continuous and increasing, while F0 contains all
P-null sets).

The rest of the paper is arranged as follows. In the following section we state existence and uniqueness
theorem for global and positive solution of model (3). In addition, we obtain upper bounds for number of
tumor and immune cells, as well as the lower bound for resting cells which is reliable result, bearing in mind
their permanent presence in organism. In Section 4 we investigate conditions under which the solution
of model (3) admits a unique ergodic stationary distribution. Existence of a unique ergodic stationary
distribution implies a weak persistence of tumor and immune cells. Furthermore, in Section 5 we obtain the
conditions under which we can claim that the tumor cells, as well as the hunting cells of model (3) are non-
persistent in mean. In Section 6 we carry out the numerical simulations in order to confirm our theoretical
findings. For that purpose we use reliable data for growth of the highly malignant B Lymphoma/Leukemic
cells (BCL1) in the spleen of chimeric mice. The reason why we use experimental data, and not the cllinically
relevant ones lies in the fact that collecting clinical information for the purposes of mathematical modelling,
especially when it comes to models of oncoimmunology and oncoimmunotherapy, is very challenging
due to limited access to clinically relevant data. We close the paper with Section 7 where we give some
concluding remarks about the contributions and advantages of the proposed framework. We also provide
possible ways for future investigation of this topic.
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3. Existence and Uniqueness of Global Solution

For some applications of stochastic differential equations it is important to determine whether the
stochastic model described by them has a unique and global solution. Due to the fact that the coefficients
of the system of stochastic differential equations very often do not satisfy conditions of existence and
uniqueness theorem of stochastic differential equations (see [20], for example), we present the additional
theoretical results which may be used for proving positivity and global character of the solution of stochastic
differential equations.

Let us consider the d-dimensional stochastic differential equation

dx(t) = f (x(t))dt +
d∑

r=1

1r(x(t))dwr(t), (5)

with initial value x(0) = x0 ∈ Rd, while w(t) represents m-dimensional standard Brownian motion defined
on complete probability space {Ω,F ,P}. Define the differential operator L associated to equation (5) by

L=
∂
∂t
+

d∑
i=1

fi(t, x)
∂
∂xi
+

1
2

d∑
i, j=1

[
1T(t, x)1(t, x)

]
i j

∂2

∂xi∂xi
. (6)

Theorem 3.1 (D - invariance [8]). LetD andDn be open sets in Rn with

Dn ⊆ Dn+1, D =
⋃

n

Dn and Dn ⊆ D

and suppose functions a and b satisfy the existence and uniqueness conditions for solution of equation (5) on each
set {(t, x) : t>0, x∈Dn}. Assume there is a nonnegative continuous function V : [0,T] ×D → R+ with continuous
partial derivatives of first order with respect to t and first and second order with respect to x and satisfying LV ≤ cV
for some positive constant c and t > 0, x ∈ D. If also

inf
t>0,x∈D\Dn

V(t, x)→∞ when n→∞,

then, for any x0 ∈ D, there is a unique Markovian continuous time solution x(t) of (5) with x(0) = x0 and x(t) ∈ D,
for all t > 0, a.s.

Bearing in mind that M(t) represents the number of tumor cells at time t, while N(t) and Z(t) represent
the number of hunting and resting cells, respectively, we need to prove that the solution of system (3) is
global and positive.

As it was mentioned in the previous section, it is important to point out that the resting cells can remain
in a resting state for long periods until they find their specific antigen. Therefore, it is reasonable to consider
that there is a lower bound for this kind of cells, for example Z∗. The number of tumor cells tends to zero
when the disease disappears. On the other hand when the tumor is in progress (the immune system is
weakened) the hunting cells lose the energy needed to fight the cancer and their number can also tends to
zero. In the absence of the disease there are no tumor and hunting cells, but the resting cells are still present.
In order to take into consideration those real facts, we introduce change of variables Z̄(t) = Z(t) − Z∗, t ≥ 0,
where Z∗ is a minimal number of resting cells present in organism, and obtain the following system:

dM(t)=
[
q + rM(t)

(
1 −

M(t)
k1

)
− αM(t)N(t)

]
dt

dN(t)=
[
βN(t)

(
Z̄(t) + Z∗

)
− d1N(t)

]
dt + σN(t)

(
Z̄(t) + Z∗

)
dw(t) (7)

dZ̄(t)=
[
s
(
Z̄(t) + Z∗

) (
1 −

Z̄(t) + Z∗

k2

)
− βN(t)

(
Z̄(t) + Z∗

)
− d2

(
Z̄(t) + Z∗

)]
dt − σN(t)

(
Z̄(t) + Z∗

)
dw(t), t ≥ 0,



M. Krstić, V. Vujović / Filomat 38:25 (2024), 8773–8787 8777

with initial condition

M(0) =M0,N(0) = N0, Z̄(0) = Z̄0 = Z0 − Z∗. (8)

If we prove that the system (7) has global and positive solution, then, the resting cells Z(t) has the lower
bound, i.e. Z(t) ≥ Z∗, t ≥ 0. Thus, let

D = {(M,N, Z̄) : (M,N, Z̄) ∈ R3
+}, (9)

where Rd
+ = {x = (x1, x2, . . . , xd) ∈ Rd : xi > 0, 1 ≤ i ≤ d}.

Theorem 3.2. There is a unique continuous time, Markovian global solution (M(t),N(t), Z̄(t)), of system (7) on
t ≥ 0, for any initial condition (8). The solution is invariant with respect to setD with probability 1.

Proof. Coefficients of system (7) are locally Lipschitz continuous, for any initial condition (8). Consequently,
there exists a unique local solution (M(t),N(t), Z̄(t)) of system (7) for t ∈ [0, τ(D)), where τ(D) represents the
moment of explosion (see [20]). In order to show that this solution is global, we have to prove that τ(D)=∞
almost surely. For n ∈Nwe define setsDn as follows

Dn=
{
(M,N, Z̄) : e−n <M < en, e−n < N < en, e−n < Z̄ < en} .

The system (7) has a unique local solution up to stopping time τ(Dn).
Let (M0,N0, Z̄0) ∈ D. The first equation of system (7) is differential equation for which holds

dM(t) ≤
(
q + rM(t)

(
1 −

M(t)
k1

))
dt, t ∈ [0, τ(D)),

with initial condition M(0) =M0. Equation

dX(t) =
(
q + rX(t)

(
1 −

X(t)
k1

))
dt, t ≥ 0,

with initial condition X(0) =M0 is Riccati differential equation that has particular solution

X(t)=
k1

2
+

√
k1(k1r + 4q) tanh

[
tanh−1

[
2M0

√
rk1(k1r+4q)−

√
k3

1r(k1r+4q)
k1(k1r+4q)

]
+

√
r(k1r+4q)

2
√

k1
t
]

2
√

r
.

Since
lim
t→∞

X(t) = B,

where

B =
1
2

k1 +

√
k1

√
k1r + 4q
√

r

 , (10)

there exists some t0 such that for every t ≥ t0, according to Comparison theorem for differential equations
[22], we conclude that X(t) ≤ B. Since the function X(t), t ≥ 0, is monotonically increasing, then

M(t) ≤ B for t ≥ 0.

On the other hand, for W(t) = N(t) + Z̄(t), t ∈ [0, τ(D)), it holds

dW(t)≤
(
−min{d1, d2}W(t)+s(Z̄ + Z∗)−

s
k2

(Z̄ + Z∗)2
)

dt≤
(
−min{d1, d2}W(t)+

sk2

4

)
dt,
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due to the fact that the maximum value of function f (x) = − s
k2

x2 + sx is sk2
4 .

In addition, we consider linear differential equation

dY(t) =
(
−min{d1, d2}Y(t) +

sk2

4

)
dt, t ≥ 0,

with initial condition Y(0) = N0 + Z̄0, that has a particular solution

Y(t) =
(
N0 + Z̄0 −

sk2

4 min{d1, d2}

)
e−min{d1,d2}t +

sk2

4 min{d1, d2}
.

For t ≥ 0, and n ∈ N, under assumption (M0,N0, Z̄0) ∈ D, we obtain Y(t) ≤ sk2
4 min{d1,d2}

. By means of the
Comparison theorem for differential equations [22], we can conclude that

W(t) ≤
sk2

4 min{d1, d2}
, t ≥ 0,

i.e. N(t) + Z̄(t) ≤ B̄, for t ≥ 0, where

B̄ =
sk2

4 min{d1, d2}
. (11)

Let us define a function V ∈ C2(D,R+)

V(M,N, Z̄)=M − ln M+N+Z̄.

Nonegativity of this function can be seen from inequality u − 1 − ln u ≥ 0 for any u > 0. Thus, we can
conclude that V(M,N, Z̄) ≥ 1 for (M,N, Z̄) ∈ D.

Application of differental operator L on V(M,N, Z̄) yields

LV(M,N, Z̄)=
(
1 −

1
M

) (
q + rM

(
1 −

M
k1

)
− αMN

)
− d1N(t) + s

(
Z̄(t) + Z∗

) (
1 −

Z̄(t) + Z∗

k2

)
− d2

(
Z̄(t) + Z∗

)
.

Removing some nonpositive terms we obtain

LV(M,N, Z̄) ≤ c,

where c = q + rk1
4

(
1 + 1

k1

)2
+ αB̄ + sk2

4 .

Since V(M,N, Z̄) ≥ 1 for (M,N, Z̄) ∈ D, then LV(M,N, Z̄) ≤ cV(M,N, Z̄) and inf(M,N,Z̄)∈D\Dn
V(M,N, Z̄) >

5
2 en, za n ∈N.

Now, we define function W(t,M,N, Z̄) = e−ctV(M,N, Z̄) on [0,∞) ×D. Then

LW(t,M,N, Z̄) = e−ct(−cV(M,N, Z̄)) + LV(M,N, Z̄)) ≤ 0.

Let τn = min{t, τ(Dn)}, n ∈N, be the array of stopping times for fixed t ∈ [0,∞).Application of Dynkin’s
formula yields

EW(τn,M(τn),N(τn), Z̄(τn)) = EW(0,M(0),N(0), Z̄(0)) + E
[∫ τn

0
LW(u,M(u),N(u), Z̄(u))du

]
≤ EW(0,M(0),N(0), Z̄(0))
= EV(M(0),N(0), Z̄(0)) = V(M0,N0, Z̄0).

Next to show P(τ(D) < t) = 0,we take the expected value

E
[
ec(t−τn)V(M(τn),N(τn), Z̄(τn))

]
= E

[
ectW(τn,M(τn),N(τn), Z̄(τn))

]
≤ ectV(M(0),N(0), Z̄(0)). (12)
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Bearing in mind thatDn ⊂ D,we obtain

0 ≤ P(τ(D) < t) ≤ P(τ(Dn) < t) = P(τn < t)
= E(1{τn<t})

≤ E

[
ec(t−τ(Dn)) V(M(τ(Dn)),N(τ(Dn)), Z̄(τ(Dn)))

inf(M,N,Z̄)∈D\Dn
V(M(t),N(t), Z̄(t))

1{τn<t}

]
≤ ect V(M0,N0, Z̄0)

inf(M,N,Z̄)∈D\Dn
V(M(t),N(t), Z̄(t))

≤ ect V(M0,N0, Z̄0, )
5
2 en

→ 0, n→∞,

for arbitrary (M0,N0, Z̄0) ∈ D and for all fixed t ≥ 0. Thus, P(τ(D) < t) = 0 for (M0,N0, Z̄0) ∈ D, t ≥ 0,
that is P(τ(D) = ∞) = 1. This proves the invariance property and the global existence of the solution
(M(t),N(t), Z̄(t)), t ≥ 0.

Now, let us denote the set

Γ = {(M,N,Z) ∈ R3
+ : M ≤ B,N + Z ≤ B̄ + Z∗,Z ≥ Z∗}, (13)

where B and B̄ are the positive constants defined in (10) and (11). Then, the following theorem is a direct
corollary of Theorem 3.2.

Theorem 3.3. The set Γ defined in (13) is almost surely positively invariant set of system (3), i.e. if (M0,N0,Z0) ∈ Γ,
then, for any t ≥ 0,

P((M(t),N(t),Z(t)) ∈ Γ) = 1.

4. Existence of Stationary Distribution

In this section, we will establish sufficient conditions for the positive recurrence and the existence of a
stationary distribution for system (3). The existence of a stationary distribution indicates the persistence of
the disease in the future under some conditions related to the intensity of the white noise. This means that
the stochastic model fluctuates around the endemic equilibrium of the corresponding deterministic model,
as it was highlighted in [28].

Assume that x(t) is a regular time-homogeneous Markov process in Ed, where Ed denotes the d-
dimensional Euclidean space, and satisfies stochastic differential equation (5). The diffusion matrix of
the process x(t) is defined as follows

A(x) = (ai j(x)), i, j = 1, . . . , d, ai j(x) =
d∑

k=1

1i
k(x)1 j

k(x).

Now, we present lemma which will be used to prove the main result of this section.

Lemma 4.1. [28] The Markov process X(t) has a unique ergodic stationary distribution π(·) if there exists a bounded
domain D ∈ Rd with smooth boundary ∂D and

(A.1) There is a positive numberM such that
∑d

i, j=1 ai j(x)ξiξ j ≥ M|ξ|, x ∈ D, ξ ∈ Rd.

(A.2) There exists nonnegative C2 functional V such that LV is negative for any x ∈ Rd
\D.

Remark 4.2. Conditions (A.1) and (A.2) from the previous lemma represent different variants of equivalent
sufficient conditions for existence of the unique ergodic stationary distribution which mainly originated
from conditions presented in [8]. Related to that, in [31], Remark 3.2, the authors show that condition (A.1)
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from Lemma 4.1 can be replaced by a following condition: There exist some i = 1, 2, . . . , d and positive constant
κ such that

aii(x) ≥ κ for any x ∈ D.

The stated condition is the one which will be proven for system (3).

Theorem 4.3. Let the following conditions hold

q > B
( r

k1
B + α(B̄ + Z∗) − r

)
, (14)

s > d1 + d2, (15)
σ2 < 2d1. (16)

Then, the solution (M(t),N(t),Z(t)), t ≥ 0, of system (3) is positive recurrent and admits a unique ergodic stationary
distribution in Γ for any initial value (M0,N0,Z0) ∈ Γ.

Proof. The diffusion matrix of system (3) is of the form

A =

 0 0 0
0 σ2N(t)2Z2(t) −σ2N(t)2Z2(t)
0 −σ2N(t)2Z2(t) σ2N(t)2Z2(t)

 .
Let us denote bounded open subset of Γ by

Dε =
{
(M,N,Z) ∈ Γ : ε <M < B − ε, ε < N < B̄ + Z∗ − ε, Z∗ − ε < Z < B̄ + Z∗ − ε

}
,

where ε ∈ (0, 1). For any (M,N,Z) ∈ Dε, and, for example i = 3, we have

a33(M,N,Z) = σ2N2(t)Z2(t) > σ2ε2(Z∗ − ε)2,

which proves the condition (A.1) of Lemma 4.1, according to the Remark 4.2. Thus, to prove the theorem, in
view of Remark 4.2, we only need to verify the condition (ii) in Lemma 4.1, i.e. to construct a nonnegative
C2-function V ∈ C2(Γ, [0,∞)), such that LV(M,N,Z) < 0 for any (M,N,Z) ∈ Γ \ Dε. For that purpose let us
denote by

p(M) = q + rM −
r
k1

M2

a quadratic function with respect to M. Motivated by the discussion in [27], we conclude that this quadratic

function has two real roots, M0 = B, where B is defined in (10) and −M1 =
1
2

(
k1 −

√
k1

√
k1r+4q
√

r

)
. Thus,

p(M) = −
r
k1

(M − B)(M +M1).

Bearing in mind that −(M−B)2 = −(M−B)(M+M1)+ (M−B)(B+M1) ≤ 0, we obtain that (M−B)(M+M1) ≥
(M − B)(B +M1), and, therefore,

p(M) = −
r
k1

(M − B)(M +M1) ≤ −
r
k1

(M − B)(B +M1).

Now, we define functions

W1 =
M

B +M1
W2 = −

1
B +M1

ln M.

By applying the Itô formula, we obtain

LW1 ≤
p(M)

B +M1
≤ −

r
k1

(M − B),

LW2 =
1

B +M1

(
−

q
M
− r +

r
k1

M + αN
)
≤

1
B +M1

(
−

q
M
− r +

r
k1

B + α
(
B̄ + Z∗

))
.
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In the sequel we construct the function U1 = c1W1+c2W2. Using the results which we have already obtained,
as well as AM − GM inequality, we conclude that

LU1 ≤ −c1
r
k1

M + c1
r
k1

B −
c2

B +M1

q
M
+

c2

B +M1

( r
k1

B + α
(
B̄ + Z∗

)
− r

)
≤ −2

√
c1c2rq

k1(B +M1)
+ c1

r
k1

B +
c2

B +M1

( r
k1

B + α
(
B̄ + Z∗

)
− r

)
.

Let
c1 =

q
B(B +M1)

, c2 =
rq

k1

(
r
k1

B + α
(
B̄ + Z∗

)
− r

) .
Then, the function U1 is positive, and

LU1 ≤ −2
rq

k1(B +M1)


√

q

B
(

r
k1

B + α
(
B̄ + Z∗

)
− r

) − 1


≤ −2

rq
k1(B +M1)

Q,

where Q =
√

q

B
(

r
k1

B+α(B̄+Z∗)−r
) − 1 is a positive constant, due to condition (14).

The next step in this proof is to define functions

V1 = N + Z, V2 = − ln N, V3 = − ln Z, V4 = (M − ln M) , V5 =
(N + Z)2

2
, V6 = CZ,

where C represents positive constant which will be determined in the sequel. By applying the Itô formula,
we obtain

LV1=−d1N+sZ−
s
k2

Z2
−d2Z,

LV2=−βZ+d1+
σ2

2
Z2,

LV3=−s+
s
k2

Z+βN+d2+
σ2

2
N2,

LV4=q+rM−
r
k1

M2
−αMN−

q
M
−r+

r
k1

M+αN≤q+rM−
r
k1

M2
−r+

r
k1

M+αN,

LV5=−d1N2+(s−d1−d2)NZ−
s
k2

NZ2+(s − d2)Z2
−

s
k2

Z3
≤−d1N2+(s−d1−d2)NZ+(s − d2)Z2

−
s
k2

Z3

LV6=−CβNZ+C(s−d2)Z−
s
k2

Z2.

Having in mind that (M,N,Z) ∈ Γ \Dε, for

U2(M,N,Z) = V1 + V2 + V3 + V4 + V5 + V6,

we obtain

LU2≤
(
d1+d2−s+q−r

)
−

r
k1

M2+r
(
1+

1
k1

)
M−

(
d1−
σ2

2

)
N2+(α+β−d1)N

−
s
k2

Z3+

(
s−d2−2

s
k2
+
σ2

2

)
Z2+

(
s
(
1+

1
k2

)
−d2−β+C(s−d2)

)
Z+

(
s−d1−d2−Cβ

)
NZ.
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Now, we choose constant C to annul the quantity in the brackets multiplying NZ, i.e.

C =
s − (d1 + d2)

β
,

which is positive constant, due to condition (15). Note that, under condition (16), LU2 is bounded by some
positive constant, for example D, for all (M,N,Z) ∈ Γ.

Therefore, if we define nonnegative function V ∈ C2(Γ,R+) as follows

V(M,N,Z) = K̄U1 +U2,

where K̄ is a positive constant such that

K̄ >
D + 1

2
√

rq
k1(B+M1) Q

,

we have

LV≤−2K̄
√

rq
k1(B +M1)

Q+D ≤−1,

which means that the condition (A.2) of Lemma 4.1 is satisfied. This proves the theorem.

Remark 4.4. From the previous theorem, we conclude that our results align with expected tumor-immune
interaction trends. Namely, condition (14) indicates that if k1∼B and an annihilation rate α is small enough,
while the growth rate of resting cells s is greater then the sum of death rates for immune cells d1+d2
(condition (15)), the tumor cells, as well as the immune cells will be persistent in organism.

5. Non-Persistence in Mean

If the number of tumor cells and hunting cells tends to zero, then the organism is in a state of remission,
that is, the stage of absence of the disease. A decrease in the number of tumor cells and hunting cells
indicates decreased activity of tumor, which leads to curing. In this case, it is said that the tumor cells
and hunting cells of the system (3) are non-persistent in mean. Thus, in the sequel we state the theorem to
obtain conditions under which M(t) and N(t), t≥0, of system (3) are non-persistent in mean

Theorem 5.1. Let the parameters of model (3) satisfy conditions

s < d2, (17)

β
q + d1 +

rk1
2 +

r
2k1

d2 − s
≤ α, (18)

σ2
≤ 2

(
d2−s

(
1−

1
k2

))
, (19)

for any given initial data (4). Then, the tummor cells M(t) and hunting cells N(t), t≥0, of system (3) are non-persistent
in mean, i.e.

lim sup
t→∞

1
t

[
r
k1

∫ t

0
M2(s)ds +

(
d1+
σ2

2

) ∫ t

0
N2(s)ds

]
= 0, a.s.

Proof. Define the functions Vi ∈ C2(Γ,R), i = 1, 2, 3, 4, as follows

V1(M) =M − ln M, V2(N,Z) =
1
2

(N + Z)2, V3(Z) = ln Z, V4(N) = − ln N.

Since (M(t),N(t),Z(t)) ∈ Γ, t ≥ 0, application of the Itô formula yields

LV1=q+rM−
r
k1

M2
−αMN−

q
M
−r+

r
k1

M+αN ≤ q+rM−
r
k1

M2
−r+

r
k1

M+αN ≤ q−r+
rk1

2

(
1+

1
k1

)2

−
r

2k1
M2+αN,
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The last estimation follows from the fact that the quadratic function f (M) = − r
2k1

M2 + r
(
1+ 1

k1

)
M has

maximum value rk1
2

(
1+ 1

k1

)2
for M = k1

(
1+ 1

k1

)
. Similarly,

LV2=−d1N2+(s−d1−d2)NZ−
( s

k2
+d2−s

)
Z2
−

s
k2

Z3.

Condition (17) guaranties that the expression in the brackets that multiplies NZ is negative. Thus, we have

LV2 ≤ −d1N2
−

( s
k2
+d2−s

)
Z2.

Moreover,

LV3 = s−
s
k2

Z−βN−d2−
σ2

2
N2.

By applying the Itô formula on V4, we get

LV4=−βZ+d1+
σ2

2
Z2.

We consider the function U(X), X = (M,N,Z), determined by

U(X) = V1 + V2 + aV3 + V4,

where a is nonnegative constant which will be determined in the sequel . According to the previously
obtained inequalities, we get

LU ≤
(
q−r+

rk1

2

(
1+

1
k1

)2

+d1−a(d2−s)
)
−

r
2k1

M2
−

(
d1+
σ2

2

)
N2
−

(
d2+

s
k2
−s−

σ2

2

)
Z2
−(aβ−α)N.

We can choose a positive constant a = αβ to eliminate the term in the brackets multiplying N. On the other
hand, conditions (17) and (19) guarantee the positivity of the therm in brackets by Z2. Hence, we get

LU≤−
r

2k1
M2
−

(
d1+
σ2

2

)
N2
−

(
α
β

(d2−s)−
(
q+

rk1

2
+

r
2k1

))
.

The constant W = αβ (d2−s)−
(
q+ rk1

2 +
r

2k1

)
is positive, due to condition (18). Finally,

dU(t)≤
[
−

r
k1

M2(t)−
(
d1+
σ2

2

)
N2(t)

]
dt−σ (N(t)+Z(t)) dw(t).

Integrating the last inequality from 0 to t and dividing both sides by t we obtain

U(t)−U(0)
t

≤
1
t

∫ t

0

[
−

r
k1

M2(s)−
(
d1+
σ2

2

)
N2(s)

]
ds +

H̄(t)
t
, (20)

where H̄(t) = −
∫ t

0 σ(N(s) + Z(s))dw(s) is a local continuous martingale with H̄(0)=0 and lim supt→∞
⟨H̄,H̄⟩t

t ≤

σ2B̄2(B̄+Z∗)2< ∞ a.s. By using Strong law of large numbers for martingales, we conclude that limt→∞
H̄(t)

t = 0.
Letting t→∞ in (20) yields

lim sup
t→∞

1
t

[
r
k1

∫ t

0
M2(s)ds +

(
d1+
σ2

2

) ∫ t

0
N2(s)ds

]
= 0, a.s.

which completes the proof.

Remark 5.2. Let us highlight that, opposite to conditions of Theorem 4.3 and discussion in Remark 4.4,
from the conditions of Theorem 5.1 it follows that greater α and small β (condition (18)) and the growth rate
of resting cells s greater then its death rate d2 (condition (17)), leads the tumor cells, as well as the hunting
immune cells to extinction.



M. Krstić, V. Vujović / Filomat 38:25 (2024), 8773–8787 8784

6. Numerical Simulations

In order to verify our theoretical results and become aware of their biological significance, we consider
dynamics of growth of highly malignant B Lymphoma/Leukemic cells (BCL1) in the spleen of chimeric mice.

Using the Milstein higher order method mentioned in [3, 9, 29], we get the discretization equation of
system

Mk+1=Mk +
[
q + rMk

(
1 −

Mk

k1

)
− αMkNk

]
∆t

Nk+1=Nk +
[
βNkZk − d1Nk

]
∆t + σNkZk

√

∆tξk +
σ2

2
NkZ2

k

√

∆t
(
ξ2

k − 1
)

(21)

Zk+1=Zk +
[
sZk

(
1 −

Zk

k2

)
− βNkZk − d2Zk

]
∆t − σNkZk

√

∆tξk +
σ2

2
N2

k Zk
√

∆t
(
ξ2

k − 1
)
, t ≥ 0,

where ξk, k = 1, . . . ,n are the independent Gaussian random variables N(0, 1) and ∆t > 0 is the time
increment. The reason why we used the Milstein method is because it is more effective than the Euler-
Maruyama method, due to its higher order of convergence (1) compared to order of convergence for the
Euler-Maruyama method (0.5).

It should be pointed out once again that collecting clinical information for the purposes of mathe-
matical modelling is a major challenge, especially when it comes to models of oncoimmunology and
oncoimmunotherapy, due to limited access to clinically relevant data. Also, the complexity of information
involving tumor, immune and organic systems on molecular, cellular and tissue level is also an obstacle.
Even assuming that such information is available, it is difficult to give satisfying interpretation in terms of
the meaning of the parameter values. Thus, models should be constructed on the basis on the availability
of informations about their parameters and meaningful interpretation, which is not a trivial task.

All the parameters used in this example are reliable data which can be found in [2] and references cited
therein, and they are all joined in the following table.

Parameter Unit Value
k1 cells 3.3 · 102

k2 cells 5 · 104

q cells/day 10
r cells/day 0.0185
s cells/day 0.0245
β cells/day 6.2 · 10−7

α cells/day 0.0422
d1 cells/day 0.0412
d2 cells/day 0.03
σ2 / 0.01

Table 1: The values of the model parameters

Parameters from Table 1 satisfy conditions (17), (18) and (19) of Theorem 5.1. For the initial value

M0=1.5 · 102, N0=2.04 · 102, Z0=5.33 · 103, (22)

we obtain numerical simulations of tumor and immune cells. Namely, the trajectories of number of tumor
cells M(t), t ≥ 0, of system (3) are presented on Figure 1. On Figure 2 we plot the trajectories that simulate
the number of hunting cells N(t), t ≥ 0, and resting cells Z(t), t ≥ 0, of system (3).

Based on the presented numerical simulations, we can conclude that immunotherapy is very effective.
Namely, after about one month of treatment, the number of tumor cells in chimeric mice is significantly
reduced (Figure 1). Along with that, the hunting immune cells also reduce their activity, which results in
a decrease of their number in about 100 days after the beginning of treatment. As it was expected, and
proved by Theorems 3.2 and 3.3, number of resting cells is reduced, but resting cells do not tend to zero, as
it is shown in Figure 2.
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Figure 1: Deterministic and stochastic trajectories for tumor cells M(t) of model (3) with model parameters from Table 1, initial value
(22), and unit of time △t = 1

24·60 day.

Figure 2: Deterministic and stochastic trajectories for immune cells: hunting cells N(t) (left) and resting cells Z(t) (right) of model (3)
with model parameters from Table 1, initial value (22), and unit of time △t = 1

24·60 day.

7. Concluding Remarks

Before closing the paper, let us highlight one more time that cancer is one of the greatest causes of death
worldwide, it is ubiquitous, unlike some epidemics that appear and vanish, and that is the main reason
why the control of tumor growth requires special attention.

In this paper, we developed a stochastic predator–prey like model of interaction between malignant
(tumor) and immune cells. We constructed our model by assuming that environmental fluctuations will
manifest themselves through the conversion rate of resting cells into hunting ones. Namely, given that the
immune system response to a tumor is caused by the hunting cells response, and they arise from previously
resting cells, it is reasonable to assume that the rate at which these cells become activated is random.
Also, we prove that resting cells are bounded from below, due to the fact that resting cells are part of the
immune system and develop from stem cells in the bone marrow, and, hence, they are always present in the
organism, waiting for infected or cancerous cells to activate. To the best of our knowledge, in the existing
mathematical literature, there are no papers that include this property in the model of interaction between
tumor and immune cells.

In addition, we obtained the conditions under which the solution of model (3) fluctuates around the
interior endemic equilibrium point of model (1), which stability is discussed in [24] in terms of the rate of
predation of tumor cells by hunting cells (α) and the conversion rate (β). Our results, presented in Theorem
4.3, are also related to the rate α, and they completely agree with the results obtained for the deterministic
model, when the intensity of the noise is small enough. On the other hand, in comparison with the results
obtained for the stochastic model, our results are much simpler and, therefore, more applicable for the



M. Krstić, V. Vujović / Filomat 38:25 (2024), 8773–8787 8786

medical practitioners, experimental scientists, and others who may use them to control the disease. Also,
in our analysis, the important factor is relation between the growth rate of resting cells s and death rates
of immune cells d1 and d2. More precisely, if s > d1 + d2 and α and σ2 are small enough, the density of the
malignant tumor cells decreases to an equilibrium value and fluctuates around it, that is, there occurs the
regression of malignancy. On the other hand, if s < d2, β and σ2 are small enough, while α is large enough,
we expect the disease to become non-persistent in mean, which is proved in Theorem 5.1.

Since the reasons for spontaneous regression and progression of a malignant tumor system and its
possible control mechanism is still in infancy, we hope that there will be more mathematical models which
will require special attention to this topic. Possible future models may become more realistic than our
model by adding telegraph or coloured noise to describe the switching from one environmental regime to
another, or Lévy noise to represent certain sudden environmental catastrophes which can affect the human
body, and, therefore, human immune system. Also, it is important to consider time delay, since activation
process and conversion from resting into hunting cells are not instantaneous but followed by some time
lag. All these challenges would improve applicability of our model in validating the future course of the
cancers that can be cured by immunotherapy.
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