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Abstract. In this current study, we introduce a new operator called the P− Bernstein operator derived
through the utilization of “P-factorial” (Pell factorial) and “Pellnomial” (Pell binomial). Subsequently, we
investigate the fundamental properties of the P−Bernstein basis polynomials. Furthermore, we establish
some connections between the P-Bernstein Polynomials and Pell Numbers.

1. Background and Brief History

S. Bernstein introduced a polynomial expressed as a sum in order to demonstrate the Weierstrass
Approximation Theorem which established the cornerstone of approximation theory in 1912. The Bernstein
polynomials find valuable applications in diverse fields including probability theory, numerical analysis
and approximation theory. Many generalizations and applications of the Bernstein polynomials have been
considered in recent years [6, 13, 16]. A notable instance of these modification is the q−analog of the
Bernstein polynomials. George M. Phillips introduced the q−Bernstein polynomials, utilizing q−analysis
as outlined in [15]. For details on q− see [18, 19].

With the influence of approximation theory, Bernstein-type polynomials and Bernstein-type operators
have recently become a dynamic research area. Ong et al. [13] introduced some probabilistic derivations
of the Cheney, Sharma, and Bernstein approximation operators. They established the convergence prop-
erty of the Bernstein generalization. With this probabilistic approach they ensured the positivity of the
approximation operators and made it easier to derive the moments to prove uniform convergence based
on the Korovkin Theorem. Özger at al. introduced a new kind of Bernstein–Schurer operators with real
parameter αwhich are stronger than the classical Bernstein operator in [14] . Based upon this new operator,
they investigated some shape preserving properties and obtained an approximation formula in terms of
Ditzian–Totik uniform modulus of smoothness of first and second order. They give the Voronovskaja-type
approximation theorems of the new operators. Srivastava et al. [16] introduced the idea of construction
of Stancu-Type Bernstein operators based on Bézier Bases with shape parameter. Then they calculated
their moments and established the uniform convergence of the operator and global approximation result
by means of Ditzian-Totik modulus of smoothness. They also constructed the bivariate case of Stancu-type
λ-Bernstein operators and studied their approximation behaviors.

In 2005, Djordjevic and Srivastava [17] presented the generalized incomplete Fibonacci polynomials
and Lucas polynomials, delving into their systematic exploration and analysis. In 2006, They defined
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two separate sequences of numbers, extending the classical Fibonacci numbers, and derived numerous
significant combinatorial properties for these generalized number sequences [4]. In 2017, Srivastava, Tuglu,
and Cetin [5] introduced new sets of q-Fibonacci and q-Lucas polynomials, thereby offering q-analogues
for the incomplete Fibonacci and Lucas numbers, respectively. They provided proofs for various properties
within these polynomial families, including recurrence relations, summation formulas, and generating
functions.

In 1915, Fontené [7] published a concise one-page document outlining a generalization of binomial coef-
ficients wherein the numbers are exchanged for the elements from a given sequence (an) that comprises real
or complex numbers. By substituting the Fibonacci sequence (Fn) with (an), we can establish the Fibonacci
Binomial coefficients, which are commonly referred to as Fibonomial coefficients. Jarden and Motzkin [11]
were the trailblazers in study of generalized Fibonomial coefficients. Also Hoggatt [8] studied in Fibonacci
numbers and generalized binomial coefficients. From onward, there has been a heightened fascination with
the Fibonomial coefficients and some generalizations. One of the modifications is Pellonomial coefficients.
As Various aspects of Pell numbers have been extensively studied in the literature, Diskaya and Hamza
[3] introduced the Gell numbers which are generalization of Pell numbers and İpek [9, 10] introduced the
Pellnomial coefficients and examined their properties.

Inspired by the Fibonacci calculus introduced by E. Krot [12] and related works Diskaya, Erdem and
Menken [6] we define the P− Bernstein polynomials then we examine some properties and relations with
the Pell numbers.

2. Preliminaries

For the reader’s convenience, we give a summary of mathematical notations and foundational concepts.
The Pell sequence which is denoted by {Pn} is given by the reccurence relation

Pn =


0, n = 0
1, n = 1
2Pn−1 + Pn−2, n > 1.

It is well known that Pell numbers have an important place among all integer sequences, as they have
surprising properties [2] .

Motivated by the Fibonacci calculus [12] the Pell calculus is based on combinatorial interpretation of
the Pell numbers. The P−factorial definied as Pn! = PnPn−1 · · ·P2P1 with P0! = 1

The Pellnomial coefficients are definied for n ≥ m ≥ 0 in [10] as(
n
m

)
P
=

Pn!
Pn−m!Pm!

with
(
n
0

)
P
= 1 and

(
n
m

)
P
= 0 for n < m. It’s remarkably peculiar that all Pell coefficients consistently take

integer values. This observation can be found in [9] through mathematical induction.
The Pellnomial coefficients exhibit the following characteristics:

·

(
n
r

)
P
=

(
n

n − r

)
P

·

(
n
r

)
P

(
r
v

)
P
=

(
n
v

)
P

(
n − v
r − v

)
P

·

(
n
r

)
P

(
n − r

v

)
P
=

(
n

r + v

)
P

(
r + v

r

)
P

·

(
n
r

)
P
=

Pn−r+1

Pr

(
n

r − 1

)
P

(r , 0)

·

(
n
r

)
P
=

Pn

Pn−r

(
n − 1

r

)
P

(r , n) ·

(
n
r

)
P
= Pr−1

(
n − 1

r

)
P
+ Pn−r

(
n − 1
r − 1

)
P



A. Erdem / Filomat 38:25 (2024), 8795–8804 8797

The Pellnomial triangle, with its general term denoted as
(
n
k

)
P
, showcases alluring properties. By making

use of this triangle, the Pellnomial matrix can be derived as displayed below.

P =



1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 5 5 1 0 0 0 . . .
1 12 30 12 1 0 0 . . .
1 29 174 174 29 1 0 . . .
1 70 1015 2436 1015 70 1 . . .
...
...

...
...

...
...
...
. . .


Let {a(p)

n } is the sequence of the numbers which are placed through the p−th column in the Pellnomial
matrix. A first few columns of the Pellnomial matrix are given below.

{a(1)
n } = (1, 1, 1, 1, 1, · · · )

{a(2)
n } = (0, 1, 2, 5, 12, 29, 70 · · · )

{a(3)
n } = (0, 0, 1, 5, 30, 174, 1015 · · · )

{a(4)
n } = (0, 0, 0, 1, 12, 174, 2436 · · · )

It is readily apparent that the general term of {a( j)
n } can expressed by

a( j)
n =


0, i f n ≤ j − 1

Pn·Pn+1 ··· Pn+ j−2

P j−1! , i f n > j − 1
(1)

where j ≥ 2. Thus, we have the following results.

Proposition 2.1. The sequence {a( j)
n } has a recursive relation as follows:

a( j)
n+1 =

Pn+ j−1

Pn
a( j)

n

where p ≥ 1.

Proof. From (1), we have

a( j)
n+1 =

Pn+1Pn+2 · · ·Pn+ j−2Pn+ j−1

P j−1!
=

PnPn+1Pn+2 · · ·Pn+ j−2Pn+ j−1

PnP j−1!
=

Pn+ j−1

Pn
a( j)

n .

An operator L( f ; t) is called linear operator if any the functions f (x) and 1(x) which are in its domain, the
function a f (x) + b1(x) belongs its domain and

L(σ f + ω1; t) = σL( f ; t) + ωL(1; t)

where σ and ω are constants.
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Let P represent the polynomial algebra over the field K of characteristic zero. So, the linear operator
defined by ∂P : P → P is the P−derivative operator:

∂Ptm = Pmtm−1 (2)

for m ≥ 0.
The binomial theorem for the P−analogue is given by

(x +P y)σ =
∑

0≤m≤σ

(
σ
m

)
P
xσ−mym (3)

and the P−exponential function eµP is defined by

eµP =
∑
0≤n

µn

Pn!
(4)

(cf. [12]).

3. P−Bernstein Basis Polynomials and Their Properties

Definition 3.1. Let σ,ω ∈ R, r,n ∈ Z+ where r ≤ n. Then the n−th degree P−Bernstein basis polynomials defined
by

BP[σ,ω]
r,n (t) =

(
n
r

)
P

(t − σ)r(ω − t)n−r

(ω − σ)n

for r = 0, 1, · · · ,n.

If we take σ = 0 and ω = 1 we have

BP[0,1]
r,n (t) =

(
n
r

)
P
tr(1 − t)n−r (5)

where r = 0, 1, · · · ,n. For simplicity we write BP
r,n instead of BP[0,1]

r,n .

The first few polynomials are detailed and visually presented in the chart below.

· BP
0,0(t) = 1

· BP
0,1(t) = 1 − t, B1,1(t) = t

· BP
0,2(t) = 1 − 2t + t2, BP

1,2(t) = 2t − 2t2, BP
2,2(t) = t2

· BP
0,3(t) = 1 − 3t + 3t2

− t3, BP
1,3(t) = 5t − 10t2 + 5t3, BP

2,3(t) = 5t2
− 5t3, BP

3,3(t) = t3

· BP
0,4(t) = 1 − 4t + 6t2

− 4t3 + t4, BP
1,4(t) = 12t − 36t2 + 36t3

− 12t4, BP
2,4(t) = 30t2

− 60t3 + 30t4,

BP
3,4(t) = 12t3

− 12t4, BP
4,4(t) = t4
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Figure 1: Graphs of BP
r,n for 0 ≤ n ≤ r ≤ 3

Figure 2: Graphs of BP
r,n for 4 ≤ n ≤ r ≤ 5

Proposition 3.2. The P−Bernstein basis polynomials are symmetric.

Proof. From (5), we have

BP
r,n(t) =

(
n
r

)
P
tr(1 − t)n−r =

(
n

n − r

)
P
(1 − t)n−rtr = BP

n,n−r(1 − t).

Proposition 3.3. The P−Bernstein basis polynomials have the following recursive relation such as

BP
r,n(t) =

Pn−r+1

Pr
BP

r−1,n(t)
t

1 − t

where t ∈ [0, 1).

Proof. For the proof, we use (5).

BP
r,n(t) =

(
n
r

)
P
tr(1 − t)n−r =

Pn−r+1

Pr

(
n

r − 1

)
P
tr(1 − t)n−r =

Pn−r+1

Pr

(
n

r − 1

)
P
tr−1(1 − t)n−(r−1) t

1 − t

=
Pn−r+1

Pr

t
1 − t

BP
r−1,n(t).
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Theorem 3.4. Any n-th degree P−Bernstein basis polynomial can be expressed using the power basis which is
expressed by {1, t, t2, · · · }, i.e.

BP
r,n(t) =

∑
r≤i≤n

(
n
r

)
P

(
n − r
i − r

)
(−1)i−rti.

Proof. By virtue of the definition of the P−Bernstein basis polynomials, we get

BP
r,n(t) =

(
n
r

)
P
tr(1 − t)n−r =

(
n
r

)
P
tr

∑
0≤i≤n−r

(−1)i
(
n − r

i

)
ti =

∑
0≤i≤n−r

(
n
r

)
P

(
n − r

i

)
(−1)iti+r

=
∑

r≤i≤n

(
n
r

)
P

(
n − r
i − r

)
(−1)i−rti

which is desired.

Theorem 3.5. The P−Bernstein basis polynomial of degree n can be written by combining two P−Bernstein basis
polynomials with the degree n − 1 such as

BP
r,n(t) = (1 − t) Pr−1 BP

r,n−1(t) + t Pn−r BP
r−1,n−1(t)

where r = 0, 1, · · · ,n and t ∈ [0, 1].

Proof. It follows from (5) and properties of the Pellnomials,

BP
r,n(t) =

(
n
r

)
P
tr(1 − t)n−r =

[
Pr−1

(
n − 1

r

)
P
+ Pn−r

(
n − 1
r − 1

)
P

]
tr(1 − t)n−r

= Pr−1

(
n − 1

r

)
P
tr(1 − t)n−r + Pn−r

(
n − 1
r − 1

)
P
tr(1 − t)n−r

= (1 − t)Pr−1

(
n − 1

r

)
P
tr(1 − t)n−r−1 + tPn−r

(
n − 1
r − 1

)
P
tr−1(1 − t)n−r

= (1 − t) Pr−1 BP
r,n−1(t) + t Pn−r BP

r−1,n−1(t).

Theorem 3.6. Lower-degree P−Bernstein basis polynomials, those of degree less than n, are representable as linear
combinations of n-th degree P−Bernstein basis polynomials as

BP
r,n−1(t) =

Pn−r

Pn
BP

r,n(t) +
Pr+1

Pn
BP

r+1,n(t).

Proof. Via a straightforward calculation

Pn−r

Pn
BP

r,n(x) =
Pn−r

Pn

∑
0≤r≤n

(
n
r

)
P
tr(1 − t)n−r =

∑
0≤r≤n

(
n − 1

r

)
P
tr(1 − t)n−r = (1 − t)BP

r,n−1(t)

and

Pr+1

Pn
BP

r+1,n(t) =
Pr+1

Pn

∑
0≤r≤n

(
n

r + 1

)
P
tr+1(1 − t)n−r−1 =

∑
0≤r≤n

(
n − 1

r

)
P
tr+2(1 − t)n−r−1 = xBP

r,n−1(t)
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thus

BP
r,n−1(t) =

Pn−r

Pn
BP

r,n(t) +
Pr+1

Pn
BP

r+1,n(t)

which illustrates a n−1 degree P−Bernstein basis polynomial regarding the linear combination of P−Bernstein
basis polynomials with degree n.

Theorem 3.7. Polynomials of degree n − 1 are obtained as the P−derivatives of P−Bernstein basis polynomials with
degree n. Moreover, this derivative can be explicitly expressed as a linear combination of the P−Bernstein basis
polynomials such as

∂PBP
r,n(t) = Pn

(
BP

r−1,n−1(t) − BP
r,n−1(t)

)
.

Proof. By virtue of the definition of the P−derivative (2), we get

∂PBP
r,n(t) = ∂P

[(
n
r

)
P
tr(1 − t)n−r

]
=

Pn!
Pn−r!Pr!

[
Prtr−1(1 − t)n−r

− Pn−rtr(1 − t)n−r−1
]

=
Pn!

Pn−r!Pr!
Prtr−1(1 − t)n−r

−
Pn!

Pn−r!Pr!
Pn−rtr(1 − t)n−r−1

= Pn

( Pn−1!
Pn−r!Pr−1!

tr−1(1 − t)n−r
−

Pn−1!
Pn−r−1!Pr!

tr(1 − t)n−r−1
)

= Pn

(
BP

r−1,n−1(t) − BP
r,n−1(t)

)
.

Theorem 3.8. The generating function for the P−Bernstein basis polynomials is∑
0≤r≤n

BP
r,n(t)µr = ((1 − x) +P µx)n.

Proof. By using (3), we have

((1 − t) +P µt)n =
∑

0≤r≤n
(n

r
)

P(µt)r(1 − t)n−r =
∑

0≤r≤n
(n

r
)

Ptr(1 − t)n−rµr =
∑

0≤r≤n BP
r,n(t)µr.

The next theorem has proved by a similar method which was given in [1].

Theorem 3.9. The exponential generating function for the P−Bernstein polynomials is∑
r≤n

BP
r,n(t)

µn

Pn!
=

trµr

Pr!
e(1−t)µ

P .

Proof. Using the P−exponential function et
P (4), we get

trµr

Pr!
e(1−t)Pµ

P =
trµr

Pr!

∑
0≤n

(1 − t)nµn

Pn!
=

1
Pr!

∑
0≤n

tr(1 − t)nµn+r

Pn!
=

∑
0≤n

Pn+r!
Pn!Pr!

tr(1 − t)nµn+r

Pn+r!

=
∑
0≤n

(
n + r

r

)
tr(1 − t)nµn+r

Pn+r!

=
∑
r≤n

(
n
r

)
P

tr(1 − t)n−rµn

Pn!

=
∑
r≤n

BP
r,n(t)

µn

Pn!
.
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4. P−Bernstein Polynomials and Their Associations with Pell Numbers

Definition 4.1. Let σ,ω ∈ R, f : [σ,ω] → R a function, r,n ∈ Z+ and r ≤ n. Then the n-th degree P−Bernstein
Polynomial with respect to the function f is defined by

B
F[σ,ω]
n ( f ; t) =

∑
0≤r≤n

f
( Pr

Pn

)
BF[σ,ω]

r,n (t)

for r = 0, 1, · · · ,n.

If we take σ = 0 and ω = 1 then

B
P[0,1]
n ( f ; t) =

n∑
r=0

f
( Pr

Pn

)
BP[0,1]

r,n (t)

For simplicity we write BP
n instead of BP[0,1]

n .
The first few P−Bernstein polynomials with respect to the functions f (x) = 1 and f (x) = x are listed with

below.
BP

0 (1; t) = 1

BP
1 (1; t) = 1

BP
2 (1; t) = 1 − t + t2

BP
3 (1; t) = 1 − t + t2

BP
4 (1; t) = 1 − t + 3t2

− 4t3 + 2t4

BP
5 (1; t) = 1 + 5t2

− 10t3 + 5t4

...
...

BP
0 (x; t) = t

BP
1 (x; t) = t

BP
2 (x; t) = t

BP
3 (x; t) = t − t2 + t3

BP
4 (x; t) = t − t2 + t3

BP
5 (x; t) = t − t2 + 3t3

− 4t4 + 2t5

...
...

Proposition 4.2. The relationship between the P−Bernstein Polynomials corresponding to f (x) = 1 and f (x) = x is
as follows:

BP
n(x; t) = t ·BP

n−1(1; t).

Proof. With smooth calculation, we have

BP
n(x; t) =

∑
0≤r≤n

Pr

Pn

(
n
r

)
P
tr(1 − t)n−r =

∑
0≤r≤n

(
n − 1
r − 1

)
P
tr(1 − t)n−r =

∑
−1≤r≤n−1

(
n − 1

r

)
P
tr+1(1 − t)n−1−r

= t
∑

0≤r≤n−1

(
n − 1

r

)
P
tr(1 − t)n−1−r

= t ·BP
n−1(1; t).

Theorem 4.3. A notable property of the P−Bernstein polynomials with respect to the function f (x) = 1 is as follows:

[tβ]BP
n(1; t) =

∑
0≤ j≤β

(−1)β− j
(
n
j

)
P

(
n − j
n − β

)
(6)

where [tβ]BP
n(1; t) denotes the coefficient of tβ in BP

n(1; t).
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Proof. By using the P-Bernstein polynomials to define the following, we get

BP
n(1; t) =

∑
0≤r≤n

(
n
r

)
P
tr(1 − t)n−r =

∑
0≤r≤n

(nr
)

P
tr

∑
0≤i≤n−r

((
n − r

i

)
(−1)n−r−itn−r−i

)
=

∑
0≤r≤n

(nr
)

P

∑
0≤i≤n−r

((
n − r

i

)
(−1)n−r−itn−i

) .
As a consequence, we acquire

[tβ]BP
n(1; t) =

(
n
0

)
P

(
n

n − β

)
(−1)β +

(
n
1

)
P

(
n − 1
n − β

)
(−1)β−1 + · · · +

(
n
β

)
P

(
n − β
n − β

)
(−1)0 =

∑
0≤ j≤β

(−1)β− j
(
n
j

)
P

(
n − j
n − β

)
which completes the proof.

Corollary 4.4. The P−Bernstein polynomials with respect to f (x) = 1 is related to Pell numbers in the following
manner:

[t]BP
n(1; t) = Pn − n

where [t]BP
n(1; t) denotes the coefficients of t in BP

n(1; t).

Proof. From the equality (6) for β = 1, we acquire

[t]BP
n(1; t) = Pn − n

which is desired.

Theorem 4.5. For the P−Bernstein Polynomials with respect to f (x) = xβ where β ≥ 2 has following relation with
respect to Pell numbers as

[t]BP
n(xβ; t) =

1

(Pn)β−1

where [t]BP
n(xβ; t) denotes the coefficients of t in BP

n(xβ; t).

Proof. By virtue of the definition of the P−Bernstein polynomials, we get

clBP
n(xβ; t) =

∑
0≤r≤n

( Pr

Pn

)β (n
r

)
P
tr(1 − t)n−r =

∑
0≤r≤n

( Pr

Pn

)β (n
r

)
P
tr

∑
0≤i≤n−r

(
n − r

i

)
(−t)n−r−i


=

∑
0≤r≤n

( Pr

Pn

)β (n
r

)
P

∑
0≤i≤n−r

(
n − r

i

)
(−1)n−r−itn−i


=

∑
0≤r≤n

[( Pr

Pn

)β (n
r

)
P

((
n
0

)
(−1)n−rtn +

(
n − r

1

)
(−1)n+r−1tn−1 + · · · +

(
n − r
n − r

)
tr
)]

From here, we obtain

[t]BP
n(xβ; t) =

(P0

Pn

)β (n
0

)
P

(
n

n − 1

)
P
(−1) +

(P1

Pn

)β (n
1

)
P

(
n − 1
n − 1

)
=

1
(Pn)β−1

as desired.
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5. Conclusion

The P−Bernstein operator, formulated using the concept of ”P-factorial” (Pell factorial) and ”Pellnomial”
(Pell binomial) is given. We delved into the core characteristics of the P−Bernstein basis polynomials
and explore their essential properties. Additionally, established connections between the P-Bernstein
Polynomials and Pell Numbers.
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