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Existence and stability results for fractional Langevin equation in
complex domain
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Abstract. One generalization of the Langevin equation for systems in fractal media replaces the ordinary
derivative with a fractional derivative, providing a more accurate description of dynamics in complex
environments. In this paper, we examine a boundary value problem using a Langevin equation with two
real fractional orders. The operators are taken in Srivastava-Owa sense in the unit disk. The existence of
solutions in a Banach space is established using the contraction mapping concept and Krasnoselskii’s fixed
point theorem. Moreover, Ulam Hyers stability for the fractional Langevin equation(FLE) is introduced in
this study.

1. Introduction

Fractional derivatives are significant tool for understanding the memory and hereditary properties
of many materials and processes. Particularly, Fractional differential equations (FDEs) occur naturally
in a variety of disciplines, including electrical circuitry, biology, the phenomena of blood flow, polymer
rheology, geophysics, aerodynamics, nonlinear seismic oscillation, etc. Srivastava et al. [26] studied the FDE
in the sense of Hadamard fractional derivative involving p-Laplacian operator with three point boundary
conditions in porous medium and in turbulent flow model. They have used some well known fixed point
theorem for obtaining the results and also discussed the stability. For deeper investigation on FDEs, it is
advised to view [4, 5, 11, 14, 18, 19, 21, 22, 24, 29].

The Langevin equations have been widely used to describe stochastic problems in physics, chemistry
and electrical engineering. For instance, when the random fluctuation force is supposed to be white
noise (or not white noise), the Langevin equation (or generalised Langevin equation) accurately describes
Brownian motion. The Langevin equation with two fractional orders is one such generalisation, which
includes fractal and memory features with a dissipative memory kernel. In 2006, K. Sau Fa [23] dis-
cussed FLE with Riemann-Liouville fractional time derivative which modifies the classical Newtonian
force, nonlocal dissipative force, and long-time correlation. Bashir Ahmad et al. [1] studied a nonlinear
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Langevin equation based on generalized Liouville-Caputo-type fractional differential operator of different
order. They considered nonlocal boundary conditions involving generalized integral operator and showed
the existence-uniqueness results using fixed point theorems. For a thorough examination of FLE, see
[2, 9, 17, 20].

Till now FLE have been studied in real variables. But to the best of our knowledge, there are no attempts
on FLE in complex variable. Using complex plane which is analogous toR2, FLE can be used more precisely
to describe the Brownian motion of particles.
Motivated by the work in [3, 15, 16], we study the following boundary value problem of FLE in complex
domain with two real fractional orders :

Dη
s (Dϱ

s + λ)x(s) = u(s, x(s)), s ∈ U, 0 ≤ ϱ, η < 1, 0 < ϱ + η < 1,
x(0) = µ1, x(1) = µ2,

(1)

whereU := {s ∈ C : |s| < 1} is the unit disk. Dϱ
s ,D

η
s are the Srivastava-Owa fractional derivative operators of

order real ϱ and η respectively. λ, µ1, µ2 are complex constants. Both u : U×B → B, x : U→ B are analytic
functions. B is the space of analytic bounded functions on the unit disk. Our objective is to demonstrate
the existence and stability of solutions of considered FLE(1).

2. Preliminaries

Srivastava-Owa [27] defined fractional derivative and integral operators in 1989 as:

Definition 2.1. The fractional derivative of order 0 ≤ η < 1 of a complex valued function x(s) is

Dη
s x(s) =

1
Γ(1 − η)

d
ds

∫ s

0

x(θ) − x(0)
(s − θ)η

dθ,

where the function x(s) is assumed to be analytic in a simply connected region of the complex planeCwhich
contains the origin, and when (s−θ) > 0, the requirement that log(s−θ) be real, eliminates the multiplicity
of (s − θ)−η.

Definition 2.2. The fractional integral of order η > 0 of a complex valued function x(s) is

Iηs x(s) =
1
Γ(η)

∫ s

0
x(θ)(s − θ)η−1 dθ,

where the function x(s) is assumed to be analytic in a simply connected region of the complex planeCwhich
contains the origin, and when (s−θ) > 0, the requirement that log(s−θ) be real, eliminates the multiplicity
of (s − θ)η−1.

Hypergeometric Function [25]: Hypergeometric function defined by Carl Friedrich Gauss in 1812, as

F(a, b; q; s) =
∞∑

n=0

(a)n(b)n

(q)n

sn

n!
, |s| < 1,

(a, b, q ∈ C; q < Z−0 = {0,−1,−2, . . .}),

where (l)n represents the Pochhammer symbol by

(l)n =
Γ(l + n)
Γ(l)

=

{
1 for n = 0,

l(l + 1) . . . (l + n − 1) for n ∈N.

Krasnoselskii Lemma [12]: Assume E is a Banach space and D is a non empty subset of E which is bounded,
convex and closed. Let T1,T2 be the two operators on D such that
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(1) if h, k ∈ D, T1h + T2k ∈ D.
(2) T1 is compact and continuous mapping.
(3) T2 is a contraction map.
Then, there exists a w ∈ D such that w = T1w + T2w.

3. Existence and Uniqueness Results

Assume (B, ∥.∥) be a complex Banach space of analytic functions defined on unit disk with sup norm

∥x∥ := sup
s∈U
|x(s)|.

Theorem 3.1. (Existence) let u : U × B → B be a analytic function satisfying the following conditions

(i) ∥u(s, x) − u(s, y)∥ ≤ N∥x − y∥, N > 0, s ∈ U, x, y ∈ B,
(ii) there exists M > 0 such that ∥u(s, x)∥ ≤M, ∀s ∈ U, x ∈ B,

(iii) N B(ϱ,η+1)
Γ(ϱ)Γ(η+1) +

|λ|
Γ(ϱ+1) < 1.

Then, there exists a function x : U→ B solving the FLE(1).

Proof. We construct an operator P : B → B by

(Px)(s) =
∫ s

0

(s − ζ)ϱ−1

Γ(ϱ)

( ∫ ζ

0

(ζ − θ)η−1

Γ(η)
u(θ, x(θ))dθ − λx(ζ)

)
dζ

− sϱ
[∫ 1

0

(1 − ζ)ϱ−1

Γ(ϱ)

( ∫ ζ

0

(ζ − θ)η−1

Γ(η)
u(θ, x(θ))dθ − λx(ζ)

)
dζ

]
(2)

+ (µ2 − µ1)sϱ + µ1.

To show P is a bounded operator on D where the set D = {x ∈ B : ∥x∥ ≤ τ, τ > 0} ⊂ B.
Let us choose

τ ≥

2M B(ϱ,η+1)
Γ(ϱ)Γ(η+1) + |µ2| + 2|µ1|

1 − 2N B(ϱ,η+1)
Γ(ϱ)Γ(η+1) −

2|λ|
Γ(η+1)

with 1 >
2N B(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+
2|λ|
Γ(η + 1)

.

Now

|(Px)(s)| ≤
∫ s

0

∣∣∣∣∣∣ (s − ζ)ϱ−1

Γ(ϱ)

∣∣∣∣∣∣
( ∫ ζ

0

∣∣∣∣∣∣ (ζ − θ)η−1

Γ(η)

∣∣∣∣∣∣
∣∣∣∣∣∣(u(θ, x(θ)) + u(θ, 0) − u(θ, 0)

)∣∣∣∣∣∣dθ +
∣∣∣∣∣∣λx(ζ)

∣∣∣∣∣∣
)
dζ

+

[ ∫ 1

0

∣∣∣∣∣∣ (1 − ζ)ϱ−1

Γ(ϱ)

∣∣∣∣∣∣
( ∫ ζ

0

∣∣∣∣∣∣ (ζ − θ)η−1

Γ(η)

∣∣∣∣∣∣
∣∣∣∣∣∣(u(θ, x(θ)) + u(θ, 0) − u(θ, 0)

)∣∣∣∣∣∣dθ
+

∣∣∣∣∣∣λx(ζ)

∣∣∣∣∣∣
)
dζ

]
+ |µ2| + 2|µ1|

=⇒ |(Px)(s)| ≤
2(Nτ +M) B(ϱ, η + 1)

Γ(ϱ)Γ(η + 1)
+

2|λ|τ
Γ(ϱ + 1)

+|µ2| + 2|µ1| ≤ τ,

hence P is bounded operator.
Now consider two operators T1 : D→ D and T2 : D→ D as follows:

(T1x)(s) =
∫ s

0

(s − ζ)ϱ−1

Γ(ϱ)

( ∫ ζ

0

(ζ − θ)η−1

Γ(η)
u(θ, x(θ))dθ − λx(ζ)

)
dζ.
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(T2x)(s) = − sϱ
[∫ 1

0

(1 − ζ)ϱ−1

Γ(ϱ)

( ∫ ζ

0

(ζ − θ)η−1

Γ(η)
u(θ, x(θ))dθ − λx(ζ)

)
dζ

]
+ (µ2 − µ1)sϱ + µ1.

It is obvious that set D is bounded, convex and closed.
Now if x, y ∈ D, then

∥(T1x)(s) + (T2y)(s)∥ ≤
2(Nτ +M) B(ϱ, η + 1)

Γ(ϱ)Γ(η + 1)
+

2|λ|τ
Γ(ϱ + 1)

+ |µ2| + 2|µ1|,

which yields
∥(T1x)(s) + (T2y)(s)∥ ≤ τ.

So (T1x)(s) + (T2y)(s) ∈ D.
The continuity of 1 implies the continuity of the operator T1.
The operator T1 is uniformly bounded on D as

|(T1x)(s)| ≤
2(Nτ +M) B(ϱ, η + 1)

Γ(ϱ)Γ(η + 1)
+

2|λ|τ
Γ(ϱ + 1)

.

Next we prove that T1 is compact operator. For this, we will prove the equicontinuity of the operator T1.
For any s1, s2 ∈ U, s1 , s2, and for all x ∈ D, we obtain

|(T1x)(s1) − (T1x)(s2)| ≤
2MB(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+
2|λ|τ
Γ(ϱ + 1)

,

which is independent from x. This shows the equicontinuity of the operator T1. Hence using Arzela Ascoli
theorem [8] , T1 is compact on D̄. Hence T1 is compact on D.
Further, we prove that T2 is a contraction map.

∥(T2x)(s) − (T2y)(s)∥ ≤
(N B(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+
|λ|

Γ(ϱ + 1)

)
∥x − y∥ < ∥x − y∥.

So, T2 is contraction mapping.
Using Krasnoselskii lemma, there exists x : U→ B such that (Px)(s) = (T1x)(s) + (T2x)(s) = x(s). Hence, the
FLE (1) has atleast a solution.

Theorem 3.2. (Uniqueness) Let the conditions (i) - (ii) hold with

2N B(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+
2|λ|
Γ(ϱ + 1)

< 1. (3)

Then, there exists a unique solution x : U→ B of the FLE (1).

Proof. We show the uniqueness of the fixed point of operator P defined by eq(2).

∥(Px)(s) − (Py)(s)∥ ≤
∫ s

0

∣∣∣∣ (w − ζ)ϱ−1

Γ(ϱ)

∣∣∣∣( ∫ ζ

0

∣∣∣∣ (ζ − θ)η−1

Γ(η)

∣∣∣∣∥u(θ, x(θ)) − u(θ, y(θ))∥dθ + |λ|∥x − y∥
)
dζ

+

∫ 1

0

∣∣∣∣ (1 − ζ)ϱ−1

Γ(ϱ)

∣∣∣∣( ∫ ζ

0

∣∣∣∣ (ζ − θ)η−1

Γ(η)

∣∣∣∣∥u(θ, x(θ)) − u(θ, y(θ))∥dθ + |λ|∥x − y∥
)
dζ

≤

(2N B(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+
2|λ|
Γ(ϱ + 1)

)
∥x − y∥ < ∥x − y∥.

Thus P is a contraction map. Hence by applying Banach fixed point theorem, P has a unique fixed point
which leads to the solution of the FLE (1).
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4. Hyers - Ulam Stability

Due to the fact that fractional derivatives are nonlocal and have weakly singular kernels, the analysis of
the stability of FDE is more difficult than that of a classical differential equation. An overview of the stability
of FDEs was provided by Li and Zhang [13]. Ulam initially established the Ulam stability in 1940 and Hyers
[10] later extended it in 1941. Ulam stability and data dependence for FDE with Caputo derivative has been
posed by Wang et al [28]. In 2023, Chen et al. [7] performed the existence and stability of the bifurcating
solution in Chemotaxis model, which bifurcated from the steady state, by using the Crandall-Rabinowitz
local bifurcation theory.

In this section, we are going to discuss stability in Hyers-Ulam sense of FLE in the complex domain
with two point boundary conditions on the unit disk.
Let ϵ > 0. Consider the FLE(1) and the inequality

|Dη
s (Dϱ

s + λ)x(s) − u(s, x(s))| < ϵ, s ∈ U. (4)

Definition 4.1 [6] FLE(1) is Hyers Ulam stable if there exists a real number c > 0 such that for each ϵ > 0
and for each analytic solution ψ : U → B of the inequality (4), there exists an analytic solution x : U → B
of the FLE(1) with ∥ψ − x∥ ≤ cϵ.

Definition 4.2 [6] An analytic functionψ : U→ B is a solution of the inequality (4) if there exists an analytic
function f : U→ B such that | f (s)| ≤ ϵ and

Dη
s (Dϱ

s + λ)ψ(s) = u(s, ψ(s)) + f (s), s ∈ U.

Definition 4.3 [6] FLE(1) is generalized Hyers Ulam stable if there exist an analytic function v : R+ → R+
such that for each analytic solution ψ : U → B of the inequality (4), there exists an analytic solution
x : U→ B of the FLE(1) with ∥ψ − x∥ ≤ v(ϵ).

Theorem 4.1. Under the assumption of Theorem 3.2, FLE(1) is stable in Hyers -Ulam sense on the unit diskU.

Proof. Let ψ : U→ B be analytic solution of inequality (4) and x : U→ B be the unique solution of FLE(1),
then

∥ψ(s) − x(s)∥ ≤
∫ s

0

∣∣∣∣ (s − ζ)ϱ−1

Γ(ϱ)

∣∣∣∣( ∫ ζ

0

∣∣∣∣ (ζ − θ)η−1

Γ(η)

∣∣∣∣(∣∣∣∣u(θ,ψ(θ)) − u(θ, x(θ)) + f (θ)
∣∣∣∣)dθ + |λ||ψ(ζ) − x(ζ)|

)
dζ

+

[∫ 1

0

∣∣∣∣ (1 − ζ)ϱ−1

Γ(ϱ)

∣∣∣∣( ∫ ζ

0

∣∣∣∣ (ζ − θ)η−1

Γ(η)

∣∣∣∣(∣∣∣∣u(θ,ψ(θ)) − u(θ, x(θ)) + f (θ)
∣∣∣∣)dθ + |λ||ψ(ζ) − x(ζ)|

)
dζ

]

∥ψ(s) − x(s)∥ ≤
2N∥ψ − x∥ B(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+ 2ϵ
B(ϱ, η + 1)
Γ(ϱ)Γ(η + 1)

+
2|λ|∥ψ − x∥
Γ(ϱ + 1)

.

Hence, there exist a constant c > 0 achieving

∥ψ − x∥ ≤c ϵ, where c =
2 B(ϱ,η+1)
Γ(ϱ)Γ(η+1)

1 − 2N B(ϱ,η+1)
Γ(ϱ)Γ(η+1) −

2|λ|
Γ(ϱ+1)

.

Hence FLE(1) is Ulam-Hyers stable. By putting v(ϵ) = cϵ, it is generalized stable in Hyers-Ulam sense.

Theorem 4.2. [25] Let 0 < η < 1, and x(s) be the univalent function, Then

|Dη
s x(s)| ≤

r1−η

Γ(1 − η)

∫ 1

0

1 + rα
(1 − α)η(1 − rα)3 dα,

(|s| = r < 1, s ∈ U).



A. Yadav et al. / Filomat 38:25 (2024), 8805–8812 8810

Theorem 4.3. Let 0 < η < 1, 0 < ϱ < 1 with |λ| < Γ(ϱ+1)
2 . If the FLE (1) has an univalent solution, then It is

generalized stable in Hyers -Ulam sense on the unit diskU.

Proof. By applying the Theorem 4.2 , we get

|Dη
s (Dϱ

s + λ)x(s)| ≤
r1−(ϱ+η)

Γ(1 − (ϱ + η))

∫ 1

0

1 + rα
(1 − α)ϱ+η(1 − rα)3 dα +

|λ| r1−η

Γ(1 − η)

∫ 1

0

1 + rα
(1 − α)η(1 − rα)3 dα, (|s| = r < 1),

Using the integral representation [25],

(rF(2, 1, 2 −Λ : r))′ = (1 −Λ)
∫ 1

0

1 + rα
(1 − α)Λ(1 − rα)3 dα, where 0 < Λ < 1.

We obtain

|Dη
s (Dϱ

s + λ)x(s)| ≤
r1−(ϱ+η)

Γ(2 − (ϱ + η))
(rF(2, 1, 2 − (ϱ + η) : r))′ +

|λ| r1−η

Γ(2 − η)
(rF(2, 1, 2 − η : r))′,

where F is hypergeometric function.
Let |1| ≤M < ∞, thus we obtain

|Dη
s (Dϱ

s + λ)x(s) − u(s, x(s))| ≤
r1−(ϱ+η)

Γ(2 − (ϱ + η))
(rF(2, 1, 2 − (ϱ + η) : r))′ +

|λ| r1−η

Γ(2 − η)
(rF(2, 1, 2 − η : r))′ +M = ϵ.

To show that FLE(1) is generalized stable in Ulam-Hyers sense. Now,

|x(s) − ψ(s)| ≤
4 B(ϱ,η+1)
Γ(ϱ)Γ(η+1) M

1 − 2|λ|
Γ(ϱ+1)

,

|x(s) − ψ(s)| ≤
4 B(ϱ,η+1)
Γ(ϱ)Γ(η+1)

(
ϵ − r1−(ϱ+η)

Γ(2−(ϱ+η)) (rF(2, 1, 2 − (ϱ + η) : r))′ − |λ| r1−η

Γ(2−η) (rF(2, 1, 2 − η : r))′
)

1 − 2|λ|
Γ(ϱ+1)

= v(ϵ),

for sufficiently small r. Hence FLE(1) is generalized Ulam-Hyers stable.

5. Examples

Example 5.1. Consider FLE in complex domain

D
1
3
s (D

1
4
s +

1
15 + 3ι

)x(s) =
1

(5 + 7ι)1/4

1
(5 + 7ι)1/3

x(s) +
1

(15 + 3ι)
1

(5 + 7ι)1/3
x(s), s ∈ U, (5)

x(0) = 1, x(1) = e
1

5+7ι . (6)

where x(s),u(s, x(s)) are analytic functions. x(s) = e
s

5+7ι is a solution of above problem.
Now, ∀x, y ∈ B,

∥u(s, x(s)) − u(s, y(s))∥ ≤
∣∣∣∣ 1
(5 + 7ι)1/4

1
(5 + 7ι)1/3

+
1

(15 + 3ι)
1

(5 + 7ι)1/3

∣∣∣∣|x − y|

≤ N∥x − y∥, where N = 0.317 . . .

thus condition (i) is satisfied with N = 0.317 . . .. Moreover

2
(0.317 . . .)B( 1

4 ,
4
3 )

Γ( 1
4 )Γ( 4

3 )
+

2| 1
15+3ι |

Γ( 5
4 )
= 0.8559 . . . < 1.
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Hence by Theorem 3.2, there exists a unique solution of the problem(5) satisfying boundary conditions (6).
Also, it is Ulam- Hyers stable.

Example 5.2. Consider the following FLE in complex domain

D
2
3
s (D

1
6
s +

1
100 + 5ι

)x(s) =
|x|

35(1 + |x|)
, s ∈ U, (7)

x(0) = µ1, x(1) = µ2. (8)

where x(s),u(s, x(s)) are analytic functions,
Now, ∀x, y ∈ B,

∥u(s, x(s)) − u(s, y(s))∥ = ∥
|x|

35(1 + |x|)
−

|y|
35(1 + |y|)

∥ ≤
1

35
∥x − y∥,

thus condition (i) is satisfied with N = 1
35 . Moreover

2B( 1
6 ,

5
3 )

35Γ( 1
6 )Γ( 5

3 )
+

2| 1
100+5ι |

Γ( 7
6 )
= 0.0822792436 . . . . . . < 1.

Hence using Theorem 3.2, the considered problem (7) has a unique solution satisfying boundary conditions
(8). Also the problem (7) is Ulam-Hyers stable.

6. Conclusion

In this paper, we established the conditions for the existence and uniqueness of the solutions of FLE(1) in
complex domain using fixed point theory. We employed Srivastava-Owa fractional operator in the unit disk
for this problem. In the section 4, we have presented some results dealing with the Hyers-Ulam stability in
terms of Hypergeometric function using the univalency of the solution for the considered FLE(1). Examples
are provided to verify the obtained results.
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