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aFaculty of Medicine, University of Niš, Bulevar dr Zorana Djindjića 81, 18108 Niš, Republic of Serbia
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Abstract. In this paper, we investigate the additive properties of the Drazin inverse for complex matrices.
We derive new additive formulas for the Drazin inverse, which generalize some previous results on the
subject. Furthermore, we give a new representation for the Drazin inverse of a block matrix, which extends
some known representations.

1. Introduction

Throughout this paper, we use Cn×n to denote the set of all n × n complex matrices. For A ∈ Cn×n, by
R(A),N(A) and rank(A), we denote the range, the null space and the rank of a matrix A, respectively. The
index of a matrix A, denoted by ind(A), is the smallest nonnegative integer k, such that rank(Ak+1) = rank(Ak).
For every matrix A ∈ Cn×n, such that ind(A) = k, there exists the unique matrix Ad

∈ Cn×n, which satisfies
following relations:

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA.

The matrix Ad is called the Drazin inverse of A [1]. By Aπ = I − AAd, we denote the projection on N(Ak)
along R(Ak). Also, we suppose that A0 = I, where I is the identity matrix of an appropriate size. Moreover,
if the lower limit of a sum is greater than its upper limit, we define the sum to be 0.

Suppose P,Q ∈ Cn×n. In 1958, Drazin [2] investigated additive properties of the Drazin inverse (in the
concept of associative rings and semigroups) and proved that (P+Q)d = Pd +Qd holds when PQ = QP = 0.
In 2001, Hartwig, Wang and Wei reopened this problem and offered the formula for (P + Q)d, which is
valid when PQ = 0 [3]. Since then, this topic attracts a great attention and many authors have studied this
problem, which still remains open (we refer the reader to see the review [4] on this subject). Some of the
conditions, under which is obtained a formula for (P +Q)d are as follows:
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(i) P2Q = 0 and Q2 = 0 [5, Theorem 2.2];

(ii) P2Q = 0 and Q2P = 0 [6, Theorem 3.1];

(iii) P2QP = 0, P3Q = 0 and Q2 = 0 [7, Theorem 3.3];

(iv) PQP2 = 0, PQ2P = 0, PQ3 = 0, QP3 = 0, QPQ2 = 0 and P2Q2 = 0 [8, Theorem 3.2];

(v) PQP2 = 0, PQ2 = 0 and QP3 = 0 [9, Theorem 3.1].

(a)

In this paper, we give the explicit formula for (P + Q)d under conditions PQP2 = 0, PQ2P = 0, PQ3 = 0
and QP3 = 0 (Theorem 2.1). Also, we derive its symmetrical formulation, that is the explicit formula for
(P + Q)d under conditions P2QP = 0, PQ2P = 0, Q3P = 0 and P3Q = 0 (Theorem 2.3). Note that these
conditions generalizes the conditions (i)–(v) from the list (a).

Consider the following 2 × 2 complex block matrix

M =
[

A B
C D

]
, (1.1)

where A and D are square matrices, not necessarily of the same size. The problem of finding the Drazin
inverse of M was opened in 1979, by Campbell and Meyer [10]. Since then, many authors have studied this
problem and offered some formulas for Md, when blocks of matrix M satisfy some certain conditions (see
[4] for a development of this subject). In some papers on this topic, authors considered the block matrix
of the form (1.1), for which generalized Schur complement S = D − CAdB is equal to zero. Some of the
conditions, under which is derived the formula for Md, are given in the following list:

(i) CAπ = 0, AπB = 0 and S = 0 [11];

(ii) ABC = 0 and S = 0 [5, Theorem 3.6];

(iii) ABCAπ = 0, AπABC = 0 and S = 0 [6, Theorem 4.1];

(iv) A2BCAπA = 0, A2BCAπB = 0, AπABC = 0 and S = 0 [8, Theorem 4.1];

(v) AdBC = 0, CAAπBC = 0, A2AπB = 0 and S = 0 [9, Theorem 3.4].

(b)

In this paper, in Theorem 2.4, as an application of our new additive result, we derive the formula for
Md, when conditions AdBCAπA = 0, AdBCAπB = 0, AπA2BC = 0, CAπABC = 0 and S = 0 are satisfied. We
remark that these conditions are weaker than conditions (i)–(v) from the list (b).

Before we give our results, we state the following auxiliary lemmas.

Lemma 1.1. [1] Let A ∈ Cm×n, B ∈ Cn×m. Then (AB)d = A((BA)2)dB.

Lemma 1.2. [3, Theorem 2.1] Let P,Q ∈ Cn×n be such that ind(P) = r and ind(Q) = s. If PQ = 0 then

(P +Q)d =

s−1∑
i=0

QπQi(Pd)i+1 +

r−1∑
i=0

(Qd)i+1PiPπ.

Lemma 1.3. [12, Theorem 2.1] Let P,Q ∈ Cn×n be such that ind(P) = r, ind(Q) = s. If PQP = 0 and PQ2 = 0,
then

(P +Q)d = Y1 + Y2 +
(
Y1(Pd)2 + (Qd)2Y2 −Qd(Pd)2

− (Qd)2Pd
)

PQ,

where Y1 and Y2 are defined as follows

Y1 =

s−1∑
i=0

QπQi(Pd)i+1, Y2 =

r−1∑
i=0

(Qd)i+1PiPπ.
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Lemma 1.4. [13, 14] Let M1 and M2 be block matrices of a form:

M1 =

[
A 0
C B

]
, M2 =

[
B C
0 A

]
,

where A and B are square matrices, with ind(A) = k, ind(B) = l. Then max {k, l} ≤ ind(Mi) ≤ k + l, for i ∈ {1, 2},
and

Md
1 =

[
Ad 0
X Bd

]
, Md

2 =

[
Bd X
0 Ad

]
,

where

X = X(B,C,A) =
l−1∑
i=0

(Bd)i+2CAiAπ +
k−1∑
i=0

BπBiC(Ad)i+2
− BdCAd.

Lemma 1.5. [15, Theorem 3.2] Let M be matrix of a form (1.1) such that BCA = 0, ABD = 0 and CBD = 0. Then

Md =


AΩ+ B(F1 + F2)

ΩB + BD(F1Ω+ (Dd)2F2)B
+B(Dd)2

− BDd(CA +DC)Ω2B

CΩ+D(F1 + F2) Dd + (F1 + F2)B

 ,
where

Ω = (A2 + BC)d =

ν4−1∑
i=0

(Ad)2i+2(BC)i(BC)π +
ν1−1∑
i=0

AπA2i((BC)d)i+1,

F1 =

ν2−1∑
i=0

DπD2i(CA +DC)Ωi+2,

F2 =

ν3−1∑
i=0

(Dd)2i+4(CA +DC)(A2 + BC)i(BC)π −
ν3∑

i=0

(Dd)2i+2(CA +DC)A2iΩ,

ν1 = ind(A2), ν2 = ind(D2), ν3 = ind(A2 + BC) and ν4 = ind(BC).

Lemma 1.6. [11] Let M be matrix of a form (1.1), such that S = 0. If AπB = 0 and CAπ = 0, then

Md =

[
I

CAd

] (
(AW)d

)2
A

[
I AdB

]
,

where W = AAd + AdBCAd.

2. Results

In 2017, Yang et al. offered a formula for (P +Q)d, which is valid when conditions PQP2 = 0, PQ2P = 0,
PQ3 = 0, QP3 = 0, QPQ2 = 0 and P2Q2 = 0 hold [8, Theorem 3.2]. In the following theorem we prove that
conditions QPQ2 = 0 and P2Q2 = 0 from the previously mentioned result are superfluous for finding the
explicit formula for (P + Q)d. Namely, we derive the formula for (P + Q)d, which is valid when conditions
PQP2 = 0, PQ2P = 0, PQ3 = 0 and QP3 = 0 are satisfied.
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Theorem 2.1. Let P,Q ∈ Cn×n. If PQP2 = 0, PQ2P = 0, PQ3 = 0 and QP3 = 0, then

(P +Q)d =

r−1∑
i=0

(
PπP2i+1 +QπQ2i+1

) ((
(PQ)d

)i+1
+

(
(QP)d

)i+1 (
I + (QP)dQ2

))

+

⌈
r2−1

2 ⌉−1∑
i=0

QπQ2i+1
(
QP

(
(PQ)d

)i+2
+ P2

(
(QP)d

)i+2 (
I + (QP)dQ2

))
+

s−1∑
i=0

(
(Pd)2i+1 + (Qd)2i+1

) (
(PQ)i(PQ)π + (QP)i(QP)π

)
+

s−1∑
i=0

(Qd)2i+3
(
QP(PQ)i(PQ)π + P2(QP)i(QP)π

)
+

s2−1∑
i=0

(
(Pd)2i+3 + (Qd)2i+5P2 + (Qd)2i+3

)
(QP)i(QP)πQ2

− Pd
− 2Qd

− (Qd)2P −QdP2(QP)d
−QdQP(PQ)d

−QdP(PQ)dQ

− Pd(QP)dQ2
−Qd(QP)dQ2

− (Qd)3P2(QP)dQ2,

(2.1)

where r1 = ind(P), r2 = ind(Q), s1 = ind(PQ), s2 = ind(QP), r = max
{⌈ r1 − 1

2

⌉
,
⌈ r2 − 1

2

⌉}
and s = max{s1, s2}.

Proof. Using Lemma 1.1, we have that

(P +Q)d =

([
P Q

] [ I
I

])d

=
[

P Q
] ([ I

I

] [
P Q

])2d [
I
I

]
=

[
P Q

] [ P2 +QP Q2 + PQ
P2 +QP Q2 + PQ

]d [
I
I

]
.

If we denote by E =
[

QP PQ
QP PQ

]
and F =

[
P2 Q2

P2 Q2

]
, we have

(P +Q)d =
[

P Q
]

(E + F)d
[

I
I

]
. (2.2)

By the hypothesis of the theorem, we get that EFE = 0 and EF2 = 0. Hence, matrices E and F satisfy the
conditions of Lemma 1.3 and therefore

(E + F)d = Z1 + Z2 +
(
Z1(Ed)2 + (Fd)2Z2 − Fd(Ed)2

− (Fd)2Ed
)

EF, (2.3)

where

Z1 =

t2−1∑
i=0

FπFi(Ed)i+1, Z2 =

t1−1∑
i=0

(Fd)i+1EiEπ, t1 = ind(E) and t2 = ind(F). (2.4)

Thus, we should find the expressions of Ei, Fi, (Ed)i and (Fd)i, for every i ∈N, and also Eπ and Fπ. Using the
induction by i and by the hypothesis of the theorem, we get:

Ei =

[
(QP)i (PQ +QP)(PQ)i−1

(QP)i (PQ +QP)(PQ)i−1

]
, for every i ≥ 2, (2.5)
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Fi =

[
(P2 +Q2)i−1P2 (P2 +Q2)i−1Q2

(P2 +Q2)i−1P2 (P2 +Q2)i−1Q2

]
, for every i ≥ 1. (2.6)

In order to find the expression for Ed, denote by E1 =

[
0 PQ
0 PQ

]
and E2 =

[
QP 0
QP 0

]
. Obviously,

E = E1 + E2. Moreover, since PQ2P = 0, we have that E1E2 = 0. Thus, matrices E1 and E2 satisfy the
conditions of Lemma 1.2 and after applying this lemma we get:

Ed =

m2−1∑
i=0

Eπ2 Ei
2(Ed

1)i+1 +

m1−1∑
i=0

(Ed
2)i+1Ei

1Eπ1 , (2.7)

where m1 = ind(E1) and m2 = ind(E2). One can easily check that:

Ei
1 =

[
0 (PQ)i

0 (PQ)i

]
and Ei

2 =

[
(QP)i 0
(QP)i 0

]
, for every i ≥ 1.

Also, using Lemma 1.4, we get:

(Ed
1)i =

[
0 ((PQ)d)i

0 ((PQ)d)i

]
and (Ed

2)i =

[
((QP)d)i 0
((QP)d)i 0

]
, for every i ≥ 1.

Moreover, we obtain:

Eπ1 =
[

I −PQ(PQ)d

0 (PQ)π

]
and Eπ2 =

[
(QP)π 0
−QP(QP)d I

]
.

Using the above expressions, we have that

m2−1∑
i=0

Eπ2 Ei
2(Ed

1)i+1 =


0

s2−1∑
i=0

(QP)π(QP)i((PQ)d)i+1

0
s2−1∑
i=0

(QP)π(QP)i((PQ)d)i+1

 .

Since PQP2 = 0, we have that (QP)i(PQ)d = 0, for every i ≥ 2. Therefore, we obtain

m2−1∑
i=0

Eπ2 Ei
2(Ed

1)i+1 =

[
0 (PQ +QP)((PQ)d)2

0 (PQ +QP)((PQ)d)2

]
. (2.8)

Further, we have

m1−1∑
i=0

(Ed
2)i+1Ei

1Eπ1 =


(QP)d

s1−1∑
i=0

((QP)d)i+1(PQ)i(PQ)π − (QP)d

(QP)d
s1−1∑
i=0

((QP)d)i+1(PQ)i(PQ)π − (QP)d

 .
From PQP2 = 0, it follows that (QP)dPQ = 0 and thereby

m1−1∑
i=0

(Ed
2)i+1Ei

1Eπ1 =
[

(QP)d 0
(QP)d 0

]
. (2.9)
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Substituting (2.8) and (2.9) into (2.7), we get

Ed =

[
(QP)d (PQ +QP)((PQ)d)2

(QP)d (PQ +QP)((PQ)d)2

]
.

Using the induction by i, we obtain

(Ed)i =

[
((QP)d)i (PQ +QP)((PQ)d)i+1

((QP)d)i (PQ +QP)((PQ)d)i+1

]
, for i ≥ 1. (2.10)

Moreover, we get

Eπ =
[

(QP)π −(PQ +QP)(PQ)d

−QP(QP)d I − (PQ +QP)(PQ)d

]
. (2.11)

In order to find the expression for Fd, notice that matrix F satisfies the conditions of Lemma 1.5. Hence,

Fd =


P2Ω1 +Q2(G1 + G2)

Ω1Q2 +Q4(G1Ω1 + (Qd)4G2)Q2

+(Qd)2
−QQd(P4 +Q2P2)Ω1

2Q2

P2Ω1 +Q2(G1 + G2) (Qd)2 + (G1 + G2)Q2

 , (2.12)

where

Ω1 =

ν4−1∑
i=0

(Pd)4(i+1)(Q2P2)i(Q2P2)π +
ν1−1∑
i=0

PπP4i((Q2P2)d)i+1,

G1 =

ν2−1∑
i=0

QπQ4i(P4 +Q2P2)Ωi+2
1 ,

G2 =

ν3−1∑
i=0

(Qd)4(i+2)(P4 +Q2P2)(P4 +Q2P2)i(Q2P2)π −
ν3∑

i=0

(Qd)4(i+1)(P4 +Q2P2)P4iΩ1,

ν1 = ind(P4), ν2 = ind(Q4), ν3 = ind(P4 +Q2P2) and ν4 = ind(Q2P2). Since PQ2P = 0, we get Pd(Q2P2)i = 0,
for i ≥ 1. Moreover, since (Q2P2)2 = 0, we have (Q2P2)d = 0 and (Q2P2)π = I. Thus,

Ω1 = (Pd)4. (2.13)

Further, since QP3 = 0 and PQ2P = 0 we obtain:

G1 = (Pd)4 and G2 = (Qd)6P2. (2.14)

After substituting (2.14) and (2.13) into (2.12), we get

Fd =

[
((Pd)4 + (Qd)4)P2 ((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

((Pd)4 + (Qd)4)P2 ((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

]
.

Using the induction by i, we obtain

(Fd)i =

[
((Pd)2(i+1) + (Qd)2(i+1))P2 ((Pd)2(i+1) + (Qd)2(i+1))Q2 + (Qd)2(i+2)P2Q2

((Pd)2(i+1) + (Qd)2(i+1))P2 ((Pd)2(i+1) + (Qd)2(i+1))Q2 + (Qd)2(i+2)P2Q2

]
, (2.15)

for every i ≥ 1. Moreover, we get

Fπ =
[

I − PPd
− (Qd)2P2

−QQd
− (Pd)2Q2

− (Qd)4P2Q2

−PPd
− (Qd)2P2 I −QQd

− (Pd)2Q2
− (Qd)4P2Q2

]
. (2.16)
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In order to find the expressions for Z1 and Z2 from (2.4), we note the following. Using the hypothesis of the
theorem, we get:

(PQ +QP)i = (PQ +QP)(PQ)i−1 + (QP)i, for i ≥ 2,

(P2 +Q2)i = P2i + P2i−2Q2 +Q2i−4P2Q2 +Q2i−2P2 +Q2i, for i ≥ 3.
(2.17)

Moreover, since PQ2P = 0, using Lemma 1.2 we obtain

(PQ +QP)d = (PQ +QP)((PQ)d)2 + (QP)d.

Further, since PQ2P = 0 and PQ3 = 0, using Lemma 1.3 we get

(P2 +Q2)d =
(
(Pd)4 + (Qd)4

)
(P2 +Q2) + (Qd)6P2Q2. (2.18)

Using the induction by i, we obtain:(
(PQ +QP)d

)i
= (PQ +QP)((PQ)d)i+1 + ((QP)d)i, for i ≥ 1,(

(P2 +Q2)d
)i
=

(
(Pd)2i+2 + (Qd)2i+2

)
(P2 +Q2) + (Qd)2i+4P2Q2, for i ≥ 1.

(2.19)

In addition, we have:

(PQ +QP)π = I −
(
(PQ +QP)(PQ)d +QP(QP)d

)
,

(P2 +Q2)π = I − (PPd +QQd + (Qd)2P2 + (Pd)2Q2 + (Qd)4P2Q2).
(2.20)

Also,

(PQ +QP)(PQ +QP)π = PQ − (PQ +QP)PQ(PQ)d +QP(QP)π,

(PQ +QP)i(PQ +QP)π = (PQ +QP)(PQ)i−1(PQ)π + (QP)i(QP)π, for i ≥ 2.
(2.21)

Now, we can determine the expressions for Z1 and Z2. Using (2.6), (2.15),(2.16) and (2.20), we get:

FπEd =

 (P2 +Q2)π(QP)d (P2 +Q2)π(PQ +QP)((PQ)d)2

(P2 +Q2)π(QP)d (P2 +Q2)π(PQ +QP)((PQ)d)2

 ,
FπFi(Ed)(i+1) =

 (P2 +Q2)π(P2 +Q2)i((QP)d)i+1 (P2 +Q2)π(P2 +Q2)i(PQ +QP)((PQ)d)i+2

(P2 +Q2)π(P2 +Q2)i((QP)d)i+1 (P2 +Q2)π(P2 +Q2)i(PQ +QP)((PQ)d)i+2

 ,
for i ≥ 1. Hence,

Z1 =



µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+1
µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i(PQ +QP)((PQ)d)i+2

µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+1
µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i(PQ +QP)((PQ)d)i+2


,

where µ1 = ind(P2 +Q2).

Now, we need to determine Z2. By (2.11) and (2.15), we have

FdEπ =


((Pd)4 + (Qd)4)P2

−((Pd)4 + (Qd)4)(P2 +Q2)QP(QP)d
((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

−(((Pd)4 + (Qd)4)(P2 +Q2) + (Qd)6P2Q2)(PQ +QP)(PQ)d

((Pd)4 + (Qd)4)P2

−((Pd)4 + (Qd)4)(P2 +Q2)QP(QP)d
((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

−(((Pd)4 + (Qd)4)(P2 +Q2) + (Qd)6P2Q2)(PQ +QP)(PQ)d

 ,
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Using (2.18), we get that the entry (1.1) (and also (2.1)), for matrix FdEπ, is (P2+Q2)d(QP)π−((Pd)4+(Qd)4)Q2
−

(Qd)6P2Q2. Further, by (2.20), we have that −(PQ+QP)(PQ)d = (PQ+QP)π − (QP)π. Thereby, the entry (1.2)
(and also (2.2)), for matrix FdEπ, is ((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2 + (P2 +Q2)d(PQ +QP)π − (P2 +Q2)d(QP)π.
Hence,

FdEπ =


(P2 +Q2)d(QP)π

−((Pd)4 + (Qd)4)Q2
− (Qd)6P2Q2

((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

+(P2 +Q2)d(PQ +QP)π − (P2 +Q2)d(QP)π

(P2 +Q2)d(QP)π

−((Pd)4 + (Qd)4)Q2
− (Qd)6P2Q2

((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

+(P2 +Q2)d(PQ +QP)π − (P2 +Q2)d(QP)π

 .

Further, by (2.11), (2.15) and (2.19), we have

(Fd)2EEπ = (Fd)2

[
QP(QP)π PQ − (PQ +QP)PQ(PQ)d

QP(QP)π PQ − (PQ +QP)PQ(PQ)d

]

=

 ((P2 +Q2)d)2QP(QP)π ((P2 +Q2)d)2(PQ − (PQ +QP)PQ(PQ)d)

((P2 +Q2)d)2QP(QP)π ((P2 +Q2)d)2(PQ − (PQ +QP)PQ(PQ)d)

 .

By (2.21), we have that PQ − (PQ +QP)PQ(PQ)d = (PQ +QP)(PQ +QP)π −QP(QP)π. Thereby

(Fd)2EEπ =

 ((P2 +Q2)d)2QP(QP)π ((P2 +Q2)d)2(PQ +QP)(PQ +QP)π − ((P2 +Q2)d)2QP(QP)π

((P2 +Q2)d)2QP(QP)π ((P2 +Q2)d)2(PQ +QP)(PQ +QP)π − ((P2 +Q2)d)2QP(QP)π

 .
Moreover, by (2.5), (2.11) and (2.15), for i ≥ 2 we have

(Fd)i+1EiEπ = (Fd)i+1

[
(QP)i(QP)π (PQ +QP)(PQ)i−1(PQ)π

(QP)i(QP)π (PQ +QP)(PQ)i−1(PQ)π

]

=

 ((P2 +Q2)d)i+1(QP)i(QP)π ((P2 +Q2)d)i+1(PQ +QP)(PQ)i−1(PQ)π

((P2 +Q2)d)i+1(QP)i(QP)π ((P2 +Q2)d)i+1(PQ +QP)(PQ)i−1(PQ)π

 .

Using (2.21), we have (PQ +QP)(PQ)i−1(PQ)π = (PQ +QP)i(PQ +QP)π − (QP)i(QP)π and thereby

(Fd)i+1EiEπ =


((P2 +Q2)d)i+1(QP)i(QP)π

((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π

−((P2 +Q2)d)i+1(QP)i(QP)π

((P2 +Q2)d)i+1(QP)i(QP)π
((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π

−((P2 +Q2)d)i+1(QP)i(QP)π

 ,

for i ≥ 2. Therefore, we get
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Z2 =



s2−1∑
i=0

((P2 +Q2)d)i+1(QP)i(QP)π

−((Pd)4 + (Qd)4)Q2
− (Qd)6P2Q2

((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

−

s2−1∑
i=0

((P2 +Q2)d)i+1(QP)i(QP)π

+

µ2−1∑
i=0

((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π

s2−1∑
i=0

((P2 +Q2)d)i+1(QP)i(QP)π

−((Pd)4 + (Qd)4)Q2
− (Qd)6P2Q2

((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

−

s2−1∑
i=0

((P2 +Q2)d)i+1(QP)i(QP)π

+

µ2−1∑
i=0

((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π



,

where µ2 = ind(PQ +QP). In order to find the expression for (E + F)d, given in (2.3), we also need to
determine Z1EdF, (Fd)2Z2EF, FdEdF and (Fd)2EdEF. We obtain:

Z1EdF =


0

µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+2Q2

0
µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+2Q2


,

(Fd)2Z2EF =


0

µ2−1∑
i=0

((P2 +Q2)d)i+3(PQ +QP)i(PQ +QP)πQPQ2

0
µ2−1∑
i=0

((P2 +Q2)d)i+3(PQ +QP)i(PQ +QP)πQPQ2

 ,

FdEdF =
[

0 (P2 +Q2)d(QP)dQ2

0 (P2 +Q2)d(QP)dQ2

]
and

(Fd)2EdEF =
[

0 ((P2 +Q2)d)2(QP)dQPQ2

0 ((P2 +Q2)d)2(QP)dQPQ2

]
.

Substituting the above equalities in (2.3), we get:

(E + F)d =

[
α1 α2
α1 α2

]
, (2.22)

where

α1 =

µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+1

+

s2−1∑
i=0

((P2 +Q2)d)i+1(QP)i(QP)π

− ((Pd)4 + (Qd)4)Q2
− (Qd)6P2Q2
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and

α2 =

µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i(PQ +QP)((PQ)d)i+2

+

µ2−1∑
i=0

((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π

+ ((Pd)4 + (Qd)4)Q2 + (Qd)6P2Q2

−

s2−1∑
i=0

((P2 +Q2)d)i+1(QP)i(QP)π

+

µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+2Q2

+

µ2−1∑
i=0

((P2 +Q2)d)i+3(PQ +QP)i(PQ +QP)πQPQ2

− (P2 +Q2)d(QP)dQ2
− ((P2 +Q2)d)2(QP)dQPQ2.

Now, after substituting (2.22) in (2.2), we obtain

(P +Q)d = (P +Q)
( µ1−1∑

i=0

(P2 +Q2)π(P2 +Q2)i((PQ +QP)d)i+1

+

µ2−1∑
i=0

((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π

+

µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+2Q2

+

µ2−1∑
i=0

((P2 +Q2)d)i+3(PQ +QP)i(PQ +QP)πQPQ2

− (P2 +Q2)d(QP)dQ2
− ((P2 +Q2)d)2(QP)dQPQ2

)
.

(2.23)

Using (2.17), (2.19), (2.20), (2.21) and after some computation, we get:

(P +Q)
µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((PQ +QP)d)i+1 =

=

r−1∑
i=0

(
PπP2i+1 +QπQ2i+1

) ((
(PQ)d

)i+1
+

(
(QP)d

)i+1
)

+

r2−1∑
i=0

QπQ2i+1P2((QP)d)i+2 +

r2−1∑
i=0

QπQ2i+2P((PQ)d)i+2

−QdP2(QP)d,
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(P +Q)
µ2−1∑
i=0

((P2 +Q2)d)i+1(PQ +QP)i(PQ +QP)π =

=

s−1∑
i=0

(
(Pd)2i+1 + (Qd)2i+1

) (
(PQ)i(PQ)π + (QP)i(QP)π

)
+

s2−1∑
i=0

(Qd)2i+3P2(QP)i(QP)π +
s1−1∑
i=0

(Qd)2i+2P(PQ)i(PQ)π

+ (Pd)3Q2 + (Qd)5P2Q2
−QQdP(PQ)d

− (Qd)2P −Qd
− Pd,

(P +Q)
µ1−1∑
i=0

(P2 +Q2)π(P2 +Q2)i((QP)d)i+2Q2 =

=

r−1∑
i=0

(
PπP2i+1 +QπQ2i+1

) (
(QP)d

)i+2
Q2

+

r2−1∑
i=0

QπQ2i+1P2((QP)d)i+3Q2
−QdP(PQ)dQ

(P +Q)
µ2−1∑
i=0

((P2 +Q2)d)i+3(PQ +QP)i(PQ +QP)πQPQ2

=

s2−1∑
i=0

(
(Pd)2i+5 + (Qd)2i+7P2 + (Qd)2i+5

)
(QP)i+1(QP)πQ2,

(P +Q)(P2 +Q2)d(QP)dQ2 = Pd(QP)dQ2 + (Qd)3P2(QP)dQ2 +Qd(QP)dQ2

and

(P +Q)((P2 +Q2)d)2(QP)dQPQ2 = (Pd)3QP(QP)dQ2 + (Qd)5P2QP(QP)dQ2 + (Qd)3QP(QP)dQ2.

Substituting the previously obtained expressions into (2.23), we get that the additive formula (2.1) is
valid.

In the following example, we analyze two matrices P and Q, which do not satisfy the conditions of [8,
Theorem 3.2], but which satisfy the conditions of the previously proved theorem.

Example 2.2. Let P,Q ∈ C5×5 be such that:

P =


0 1 1 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 1
0 0 0 0 −1

 and Q =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 .
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We have that PQP2 = 0, PQ2P = 0, PQ3 = 0 and QP3 = 0. Meanwhile, QPQ2 , 0 and P2Q2 , 0, so we can
not apply the formula for (P+Q)d from [8, Theorem 3.2]. However, we have that the conditions of Theorem
2.1 are satisfied and therefore we can apply the additive formula (2.1). In order to determine the expression
for (P +Q)d, we have the following. We get that ind(P) = 3, ind(Q) = 3 and:

Pd =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 −1

 , Qd =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
Moreover, we obtain ind(PQ) = 2, ind(QP) = 2 and:

(PQ)d =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (QP)d =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0

 .
After applying the formula (2.1) and after some computation, we get that

(P +Q)d =


1 0 −1 −1 −1
0 0 2 1 1
0 0 0 0 0
0 1 0 0 1
0 0 0 0 −1

 .

Now we give a symmetrical formulation of Theorem 2.1. We note that this result extends the result from
[8, Theorem 3.1], where the formula for (P + Q)d is given under conditions P2QP = 0, PQ2P = 0, Q3P = 0,
P3Q = 0, Q2PQ = 0 and Q2P2 = 0.

Theorem 2.3. Let P,Q ∈ Cn×n. If P2QP = 0, PQ2P = 0, Q3P = 0 and P3Q = 0, then

(P +Q)d =

r−1∑
i=0

((
(QP)d

)i+1
+

(
I +Q2(PQ)d

) (
(PQ)d

)i+1
) (

P2i+1Pπ +Q2i+1Qπ
)

+

⌈
r2−1

2 ⌉−1∑
i=0

((
(QP)d

)i+2
PQ +

(
I +Q2(PQ)d

) (
(PQ)d

)i+2
P2

)
Q2i+1Qπ

+

s−1∑
i=0

(
(QP)π(QP)i + (PQ)π(PQ)i

) (
(Pd)2i+1 + (Qd)2i+1

)
+

s−1∑
i=0

(
(QP)π(QP)iPQ + (PQ)π(PQ)iP2

)
(Qd)2i+3

+Q2
s1−1∑
i=0

(PQ)π(PQ)i
(
(Pd)2i+3 + P2(Qd)2i+5 + (Qd)2i+3

)
− Pd

− 2Qd
− P(Qd)2

− (PQ)dP2Qd
− (QP)dPQQd

−Q(QP)dPQd

−Q2(PQ)dPd
−Q2(PQ)dQd

−Q2(PQ)dP2(Qd)3,

(2.24)

where r1 = ind(P), r2 = ind(Q), s1 = ind(PQ), s2 = ind(QP), r = max
{⌈ r1 − 1

2

⌉
,
⌈ r2 − 1

2

⌉}
and s = max{s1, s2}.
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In the following theorem we give a new representation for a block matrix M of a form (1.1), as an
application of Theorem 2.3.

Theorem 2.4. Let M be a complex block matrix of a form (1.1), such that S = 0. If AdBCAπA = 0, AdBCAπB = 0,
AπA2BC = 0 and CAπABC = 0, then

Md =

[
(AπBC)π − AAπB((CAπB)d)2CAπA −AπBC(AπBC)dAdB − AAπB(CAπB)d

−(CAπB)dCAπA (CAπB)π

]
Pd

+

[
AπA2

− AAπB(CAπB)dCAπA AAπB(CAπB)π

0 0

]
(Pd)3

+

t−1∑
i=0

[
((AπBC)d)i+1 + AπAB((CAπB)d)i+3CAπA ((AπBC)d)i+1AdB + AAπB((CAπB)d)i+2

((CAπB)d)i+2CAπA ((CAπB)d)i+1

]
·

·

(
P2i+1Pπ +

[
AπA2i+1 AπA2iB

0 0

])
+

v∑
i=1

[
(AπBC)π(AπBC)i (AπBC)π(AπBC)iAdB

(CAπB)π(CAπB)i−1CAπA (CAπB)π(CAπB)i

]
(Pd)2i+1

+

v2∑
i=1

[
AAπB(CAπB)π(CAπB)i−1CAπA AAπB(CAπB)π(CAπB)i

0 0

]
(Pd)2i+3,

where

P =
[

A2Ad AAdB
C CAdB

]
,

(Pd)i = (Pd
1)i

(
I + Pd

1

[
0 0

CAπ 0

])
,

(Pd
1)i =

[
I

CAd

]
((AW)d)i+1A

[
I AdB

]
, W = AAd + AdBCAd,

for every i ∈N and for r1 = ind(P), t1 = ind(A), t = max
{⌈ r1 − 1

2

⌉
,
⌈ t1

2

⌉}
, v1 = ind(AπBC) and v2 = ind(CAπB),

v = max {v1, v2}.

Proof. Let the assumptions of the theorem hold. If we denote by

P =
[

A2Ad AAdB
C CAdB

]
and Q =

[
AAπ AπB

0 0

]
,

we have that M = P+Q. Moreover, we have that P2Q = 0, PQ2P = 0 and Q3P = 0. Therefore, we can apply
Theorem 2.3. In order to find the expression for Md, we need to determine Pd, Qd, (PQ)d and (QP)d. If we
use notation:

P1 =

[
A2Ad AAdB
CAAd CAdB

]
and P2 =

[
0 0

CAπ 0

]
,

we have that P = P1 +P2. Since P2P1 = 0 and P2
2 = 0, we can apply Lemma 1.2 and we get Pd = Pd

1 + (Pd
1)2P2.

By induction, we get

(Pd)i = (Pd
1)i + (Pd

1)i+1P2, for i ≥ 1. (2.25)



I. D. Ilić et al. / Filomat 38:26 (2024), 9009–9023 9022

In order to determine Pd
1, notice that matrix P1 satisfies the conditions of Lemma 1.6 (we have (A2Ad)d = Ad)

and after applying this lemma, we get Pd
1 =

[
I

CAd

]
((AW)d)2A

[
I AdB

]
, where W = AAd + AdBCAd.

Moreover, since (AW)dAAd = (AW)d and by induction, we derive

(Pd
1)i =

[
I

CAd

]
((AW)d)i+1A

[
I AdB

]
, for every i ∈N.

Further, we have that

Qi =

[
AπAi AπAi−1B

0 0

]
, for every i ∈N. (2.26)

Thereby, matrix Q is (t1 + 1)-nilpotent, where t1 = ind(A). Therefore, Qd = 0 and Qπ = I. Furthermore, by
induction we obtain:

(PQ)i =

[
0 0

(CAπB)i−1CAπA (CAπB)i

]
and (QP)i =

[
(AπBC)i (AπBC)iAdB

0 0

]
(2.27)

for every i ∈N. Moreover, after applying Lemma 1.4, we get:

((PQ)d)i =

[
0 0

((CAπB)d)i+1CAπA ((CAπB)d)i

]
,

((QP)d)i =

[
((AπBC)d)i ((AπBC)d)iAdB

0 0

]
,

(2.28)

for every i ∈N. It remains to apply the expressions (2.25), (2.26), (2.27) and (2.28) into the following formula

(P +Q)d =

r−1∑
i=0

((
(QP)d

)i+1
+

(
I +Q2(PQ)d

) (
(PQ)d

)i+1
) (

P2i+1Pπ +Q2i+1
)

+

s−1∑
i=0

(
(QP)π(QP)i + (PQ)π(PQ)i

)
(Pd)2i+1 +Q2

s1−1∑
i=0

(PQ)π(PQ)i(Pd)2i+3
− Pd

−Q2(PQ)dPd,

where r1 = ind(P), r2 = ind(Q), s1 = ind(PQ), s2 = ind(QP), r = max
{⌈ r1 − 1

2

⌉
,
⌈ r2 − 1

2

⌉}
and s = max{s1, s2}.

After some computation, we get that the statement of the theorem is true.

Now we give the following example, to illustrate Theorem 2.4.

Example 2.5. Let M ∈ C7×7, M =
[

A B
C D

]
, where:

A =


1 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0

 , B =


1 0 1
0 0 0
1 1 0
1 1 1

 , C =

 1 1 0 0
0 1 0 1
0 0 0 0

 and D =

 1 0 1
0 0 0
0 0 0

 .
We have that S = D − CAdB = 0. Also, we have that AπABC , 0 and AdBC , 0. Thereby, we can not
apply formulas for Md given under conditions (i)–(v) from the list (b). However, since AdBCAπA = 0,
AdBCAπB = 0, AπA2BC = 0 and CAπABC = 0, we can apply Theorem 2.4. We have that ind(A) = 3 and

Ad =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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Moreover, we get that ind(AW) = 1, ind(P) = 2 and

(AW)d =


1
2

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , Pd =



1
4

1
8

0 0
1
4

0
1
4

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
4

1
8

0 0
1
4

0
1
4

0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

After applying Theorem 2.4, we get

Md =



1
4

1
8

0 0
1
4

0
1
4

0 0 0 0 0 0 0

−
3
4

17
8

0 1
1
4

1
1
4

−
1
2

3
4

0 0
1
2

1
1
2

1
4

1
8

0 0
1
4

0
1
4

−
1
4

11
8

0 1 −
1
4

0 −
1
4

0 0 0 0 0 0 0



.
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[5] M. F. Martı́nez–Serrano, N. Castro-González, On the Drazin inverse of block matrices and generalized Schur complement. Appl.

Math. Comput. 215, 2733–2740 (2009).
[6] C. Bu, C. Feng, S. Bai, Representations for the Drazin inverse of the sum of two matrices and some block matrices, Appl. Math.

Comput. 218, 10226–10237 (2012).
[7] L. Sun, B. Zheng, S. Bai, C. Bu, Formulas for the Drazin inverse of matrices over skew fields. Filomat 30(12), 3377–3388 (2016).
[8] X. Yang, X. Liu, F. Chen, Some additive results for the Drazin inverse and its application. Filomat 31(20), 6493–6500 (2017).
[9] R. Yousefi, M. Dana, Generalizations of some conditions for Drazin inverses of the sum of two matrices. Filomat 32(18), 6417–6430

(2018).
[10] S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transformations. Pitman, London (1979); Dover, New York (1991).
[11] J. Miao, Results of the Drazin inverse of block matrices. J. Shanghai Normal Univ. 18, 25–31 (1989) (in Chinese).
[12] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications. J. Comput. Appl. Math. 235, 1412–1417

(2011).
[13] R. E. Hartwig, , J. M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices. J. Austral. Math.

Soc. Ser A, 24, 10–34 (1977).
[14] C.D. Meyer, N.J. Rose, The index and the Drazin inverse of block triangular matrices. SIAM J. Appl. Math. 33, 1–7 (1977).
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