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A matrix reduction based algorithm to solve k-almost normal systems
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Abstract. In this paper, we develop an efficient algorithm to solve linear system Ax = b where the
coefficient matrix A is k-almost normal. We propose an algorithm based on the orthogonalization of the
Kyrylov subspace and reduction of the k-almost normal matrix A to a block tridiagonal form. A comparison
with the popular GMRES method shows that the proposed algorithm is efficient and in many particular
cases generates more accurate results.

1. introduction

Solving linear systems using reduction of the coefficient matrices to block tridiagonal forms, is a popular
technique in the literature of numerical linear algebra. Many researchers have studied the application of
such techniques for various types of linear algebraic systems. For example, perturbed normal and rank
structural matrices [2], the complex symmetric systems [3], the normal systems [4] and conjugate normal
systems [6,7] have been investigated using similar techniques. In [8], the authors obtained a dense block
tridiagonal form for k-almost normal matrices. In [1], the authors performed an extended study on almost
normal matrices and their condensed form. The “Minres-N” method (the minimal residual method for
normal systems) proposed by Danna, Zykov and Ikramov [4], has been extended by Ghasemi-Kamalvand
and Ikramov [7] for conjugate normal systems and they named it the “Minres C-N” method. The aim of
this work is to find a similar technique for k-almost normal systems. For this purpose, we examine the
condensed form obtained by [8] with a slight modification and then we optimize it and achieve an efficient
algorithm to solve k-almost normal systems. Finally, we present a comparison between the proposed
algorithm and GMRES method to demonstrate the efficiency of our proposed algorithm.

2. Reducing the coefficient matrices of linear systems to the block tridiagonal forms

Definition 2.1. An n× n complex matrix A is said to be k-almost normal, if there exists a matrix C ∈Mn(C) of rank
k, such that A(A∗ − C) = (A∗ − C)A.
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The main idea behind the Minres method is to seek the solution of k-almost normal system Ax = b in
the subspace spanned by the following vectors

x,Ax, (A∗ − C)x,A2x,A(A∗ − C)x, (A∗ − C)Ax, (A∗ − C)2x,A3x, . . . , (1)

since rank(C) = k we have,

∃xi ,∃yi ,C =
k∑

i=1

xiy∗i . (2)

Substituting (2) in (1) and performing some simplifications, the sequence (1) becomes (see more details in
[8])

x, x1, ...., xk,Ax,Ax1, ....,Axk,A∗x,A∗x1, ....,A∗xk,A2x,A2x1, ...,A2xk,AA∗x,AA∗x1, ....,AA∗xk, . . . . (3)

The above discussion states that both sequences (1) and (3) generate the same subspace. The i-th layer of
(3) is defined by the collection of following vectors,

AαA∗βx, AαA∗βxt, α + β = i, 1 ≤ t ≤ k.

For example the 0-th layer of sequence (3) comprises

x, x1, x2, . . . , xk, (4)

and the first layer of sequence (3) contains

Ax,Ax1, . . . ,Axk,A∗x,A∗x1, . . . ,A∗xk, (5)

and so on. The subspace spanned by the first i layers of sequence (3) is called the i-th generalized Krylov
subspace denoted by Ki. In other words

Ki = span{v : v = AαA∗βx or v = AαA∗βxt, α + β ≤ i, 1 ≤ t ≤ k},

Now similar to [8], we orthogonalize the sequence (3) and achieve the following algorithm for reducing the
matrix A to the block tridiagonal matrix H.

Algorithm 2.2.

1. Due to the equation (2), find vectors x1, x2, . . . , xk, y1, y2, . . . , yk ∈ C
n, such that C =

∑k
i=1 xiy∗i .

2. Find an appropriate initial vector x and set

q1 =
1
∥x∥2

x. (6)

3. Apply the Gram-Schmidt orthogonalization process, orthonormalize the 0-th layer (4) and extract the orthonor-
mal vectors {q1, q2, . . . , qt} from it. So we have

K0 = span{q1, q2, . . . , qt}, (7)

where t ≤ k + 1.
4. Multiply the basis of previous layer by A and A∗ and orthonormalize the resulting set by applying the Gram-

Schmidt process.
5. The next steps are similar to step 4. The scalars generated during these calculations are the same as the entries

of the matrix H.

The procedure described above, lead us to the following theorem.
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Theorem 2.3. Every k-almost normal matrix in Cn×n is unitarily similar to a block tridiagonal matrix of the form

H =


H11 H12
H21 H22 H23

H32 H33
. . .

. . .
. . .

 , (8)

where the diagonal blocks have the maximum orders k + 1, 2(k + 1), 3(k + 1), . . . , i(k + 1), . . . respectively. In fact, if
by orthonormalization procedure of the sequence (3), the orthonormal basis q1, . . . , qn is constructed for Cn, then we
have Q∗AQ = H, where Q = [q1 . . . qn].

Proof: See [8, Theorem 2.1].
It is noteworthy that similar theorems have been proved for normal and conjugate normal matrices (see

[5] and [6]).

3. solving linear systems using matrix reduction

In this section, we propose an algorithm to solve the k-almost normal system Ax = b by reducing the
coefficient matrix A to its block tridiagonal form.

Let Q be the unitary n × n matrix formed column-wise by vectors q1, ..., qn, then theorem 2.3 states that
Q∗AQ = H or equivalently (AQ = QH).
Assume that the st = (t + 1)k + (t + 1) steps of the procedure described in the previous section have been
done, so the first st columns of the block tridiagonal matrix H and the orthonormal vectors q1, ..., qst are
known. The vectors q1, ..., qst construct an orthonormal basis for generalized Krylov subspace

Kt = Kt(A, x, x1, ..., xk).

We choose the vector xst ∈ Kt as the approximate solution of the system Ax = b provided that r = b−Axst ⊥ Kt,
i.e., Q∗st

r = Q∗st
(b − Axst ) = 0. We seek xst in the form xst = y1q1 + ... + yst qst , thus

Qst Yst = xst , f or Yst = [y1, · · · , yst ]
T, (9)

so we have Q∗st
(b−AQst Ysy ) = 0. Note that after performing t steps of the algorithm, we achieve the following

relation
A[q1, ..., qst ] = [q1, ..., qst ]Hst + Rst ,

in other words

AQst = Qst Hst + Rst , (10)

or
AQst = Qst+1 Ĥst , Ĥst = H′st

+ R′st
,

H′st
=

[
Hst

0

]
, 0 = 0[st + 1 : st+1, l : st], Qst+1 R′st

= Rst

in which,

R′st
=

[
0 0
0 R′′st

]
where R′′st

= Ĥst [st + 1 : st+1, l : st], l = tk + t + 2. Now, from (10) we deduce:

0 = Q∗st
(b − AQst Yst )

= Q∗st
(b − (Qst Hst + Rst )Yst )

= Q∗st
b − (Q∗st

Qst Hst +Q∗st
Rst )Yst

= ||b||2 e(st)
1 −Hst Yst −Q∗st

Rst Yst .
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Each column of the matrix Rst is a linear combination of several qi vectors with indices greater than st, thus
Q∗st

Rst = 0 and therefore

Hst Yst = ||b||2 e(st)
1
. (11)

After computing Yst form system (11), xst will be found by substituting Yst in (9). Now we extend the
algorithm 2.2 for k-almost normal systems.

Algorithm 3.1. (MkAN: Matrix reduction method for k-almost normal systems)
Inputs: Matrix A, which is k-almost normal, the positive real number ϵ and the vectors b, x1, x2, x3, . . . , xk.
q1 =

b
∥b∥2

s = 1
f or i = 1 to k

z = xi −
∑s

j=1 q∗jxiq j

i f ∥z∥2 > 0
s = s + 1
qs = z/∥z∥2

end
end f or
c1 = 0
c2 = s
s = s + 1
w = 3
while w ≤ n

j = cw−2 + 1
p = j
i f w < 4

d = 1
else

d = cw−3 + 1
end
f or j = cw−2 + 1 : cw−1

z = Aq j

z = z −
∑s−1

l=d q∗l zql
i f ∥z∥2 > 0

f or l = d to s − 1
hlp = q∗l Aq j

end f or
qs = z/∥z∥2
hsj = ∥z∥2
p = p + 1

end i f
i f s < n

s = s + 1
else

break
end

end f or
a = s
i f w < 4

f = 1
else
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f = b
end i f
f or j = f to cw−1

z = A∗q j

z = z −
∑s−1

l=d q∗l zql
i f ∥z∥2 > 0

qs = z/∥z∥2
f or l = d to s − 1

h jl = q∗l A
∗q j

end f or
h js = ∥z∥2
i f s < n

s = s + 1
else

break
end

end f or
Qw = (q1, ..., qw)
yw = H−1

w ||b||2 e(w)
1

xw = Qwyw
r = b − Axw
i f ∥r∥ < ϵ

breek
end i f
cw = s − 1
b = a
i f s < n + 1

w = w + 1
else

break
end

end while
Outputs: Vector xw (approximate solution of system Ax = b) and the condensed matrix H.

4. Numerical experiments

In this section, we provide some numerical examples to demonstrate the efficiency and applicability
of the proposed algorithm. In all examples we implement the algorithms using MATLAB with ϵ = 10−7.
Finally we will compare the performance of our algorithm with the famous GMRES method.

Example 4.1. Suppose that

A =


∗

. . .
∗

0

0
5 0
3 5


100×100

The entries of the main diagonal in the upper left block of matrix A are chosen uniformly random in (0, 1). By defining

C =

 0 0

0
−

3
2 3

3
4 −

3
2


100×100

,
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duo to definition 2.1 one can verify that A is 1-almost normal (see [1]). Now, we choose the vector b ∈ R100 with
uniformly random entries in (0, 1) and focus on the linear system Ax = b.

After running the algorithm MkAN (Algorithm 3.1), the matrix H is constructed with diagonal blocks having
sizes of

2 × 2, 4 × 4, 6 × 6, · · · ,

respectively. The matrix H has about 3,500 non-zero entries. The dimensions of the diagonal blocks as shown in
Figure 1, grow increasingly, hence the matrix H has a huge amount of non-zero entries and these cause to increase
the cost of computations.

H =

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 1 : The shape of the reduced matrix H in example 4.1

Let the k-almost normal matrix A be chosen such that the length of the layers in sequence (3) does not
grows, then the reduced matrix H resulting from the algorithm MkAN is a block tridiagonal matrix having
constant size diagonal blocks. In this situation, the performance of the algorithm improves. The following
examples provides some instants of this situation.

Example 4.2. In this example, we select the entries of the 1-almost normal matrix A in example 4.1 such that its
eigenvalues are on an ellipse, in this case (A∗)2x and (A∗)2x1 are linear combinations of A2x and A2x1, this causes that
the length of the layers in sequence (3) does not exceed 4, so the size of the diagonal blocks in the matrix H is 4× 4 and
it has about 900 non-zero entries (see Figure 2). The implementation results of two algorithms MkAN and GMRES
are shown in the table 1.

method w cpu time r(xs) = b − Axs

MkAN 100 0.023 9.06 × 10−7

GMRES 64 0.026 5.76 × 10−7

table 1 : Comparison of the two methods MkAN and GMRES in Example 4.2
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H=
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Figure 2 : The shape of the reduced matrix H in example 4.2

Example 4.3. Assume that x1, x2 ∈ R100 with uniformly random entries in (0, 1). Now, consider the following
relations

A = B + x2xT
1 , C = x1xT

2 − x2xT
1 ,

where B is a symmetric matrix. It can be easily seen that,

ATA − AAT = CA − AC.

Since rank(C) = 2, the matrix A is 2-almost normal. Now consider the vector b as in previous example, table 2
compares the methods MkAN and GMRES to solve the linear system Ax = b.

method w cpu time r(xs) = b − Axs

MkAN 54 0.021 5.96 × 10−7

GMRES 24 0.094 4.74 × 10−7

table 2 : Comparison of the two methods MkAN and GMRES in Example 4.3

In example (4.3), matrix A is 2-almost normal, and after running the algorithm MkAN, matrix H has
diagonal blocks with sizes of 3 × 3, and has about 600 non-zero entries (See figure 3). The reason for the
above is that, there are only three linear independent vectors in each layer of sequence (3). For example, in
the first layer, the vectors A∗x, A∗x1, and A∗x2 are linear combinations of vectors Ax, Ax1 and Ax2.

H=

10 20 30 40 50 60

10

20

30

40

50

60

Figure 3 : The shape of the reduced matrix H in example 4.3
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In examples (4.2) and (4.3), although the number of iterations of the MkAN algorithm is greater than
GMRES, its execution time is lesser than GMRES (Compare tables 1 and 2). The reason of this situation is
that the number of arithmetic operations in each step of MkAN algorithm is lesser than GMRES algorithm.

In figures 1, 2 and 3, the black parts are non-zero and the white parts are zero entries.
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