Filomat 38:26 (2024), 9203–9211 https://doi.org/10.2298/FIL2426203C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The core inverse of the sum in a ring with involution

Huanyin Chen^a, Marjan Sheibani Abdolyousefi^{b,*}

^aSchool of Big Data, Fuzhou University of International Studies and Trade, Fuzhou, China ^bFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. We present a necessary and sufficient condition under which the sum of two commuting core invertible elements in a *-ring is core invertible. As applications, we establish various conditions under which a block complex matrix with core invertible subblocks is core invertible.

1. Introduction

An involution of a ring *R* is an anti-automorphism whose square is the identity map 1. Thus an involution of a ring *R* is an operation $* : R \to R$ such that $(x + y)^* = x^* + y^*$, $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for all $x, y \in R$. A ring *R* with involution * is called a *-ring.

Let *R* be a *-ring. An element *a* in *R* has group inverse provided that there exists $x \in R$ such that

$$xa^2 = a, ax^2 = x, ax = xa.$$

Such *x* is unique if it exists, denoted by $a^{\#}$, and called the group inverse of *a*. As is well known, an element $a \in R$ has group inverse if and only if it is strongly regular (i.e., Abelian regular). A square complex matrix *A* has group inverse if and only if $rank(A) = rank(A^2)$. Group invertibility was extensively studied in ring, matrix and operator theory (see [2, 6, 12, 13, 21]).

An element $a \in R$ has core inverse if there exists some $x \in R$ such that

$$xa^2 = a, ax^2 = x, (ax)^* = ax.$$

If such *x* exists, it is unique, and denote it by a^{\oplus} .

Core inverse for complex matrices was firstly introduced by Baksalary and Trenkler in [1]. An element $a \in R$ has (1, 3)-inverse provided that there exists some $x \in R$ such that a = axa and $(ax)^* = ax$. We denote x by $a^{(1,3)}$. We list several characterizations of core inverse in a *-ring.

Theorem 1.1. (see [6, Theorem 2.8], [6, Theorem 2.14], [7, Theorem 3.4] and [18, Theorem 2.6]). Let R be a *-ring, and let $a \in \mathbb{R}$. Then the following are equivalent:

(1) *a* has core inverse.

²⁰²⁰ Mathematics Subject Classification. Primary 15A09; Secondary 16W10.

Keywords. group inverse; core inverse; additive property; block complex matrix; ring

Received: 04 June 2023; Revised: 30 April 2024; Accepted: 25 June 2024

Communicated by Dijana Mosić

^{*} Ccorresponding author: Marjan Sheibani Abdolyousefi

Email addresses: huanyinchenfz@163.com (Huanyin Chen), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

- (2) There exists $x \in R$ such that axa = a, x = xax, $xa^2 = a$, $ax^2 = x$, $(ax)^* = ax$.
- (3) There exists $x \in R$ such that axa = a and $aR = xR = x^*R$.
- (4) There exists some $p^2 = p = p^* \in R$ such that pa = 0 and $a + p \in R$ is invertible.
- (5) $a \in R$ has group inverse and $Ra = Ra^*a$.
- (6) $a \in R$ has group inverse and $a \in R$ has (1, 3)-inverse. In this case, $a^{\oplus} = x = a^{\#}aa^{(1,3)}$.

The core invertibility in a *-ring is attractive. Many authors have studied such problems from many different views, e.g., [1, 3, 6, 8–11, 16, 18, 22].

In [18, Theorem 4.3], Xue, Chen and Zhang proved that $a + b \in R$ has core inverse under the conditions ab = 0 and $a^*b = 0$ for two core invertible elements a and b in R.

In [21, Theorem 4.1], Zhou et al. considered the core inverse of a + b under the conditions $a^2 a^{\oplus} b^{\oplus} b = baa^{\oplus}, ab^{\oplus}b = aa^{\oplus}b$ in a Dedekind-finite ring in which 2 is invertible.

In this paper, we present a new additive result for the core inverse in a ring with involution. We give a necessary and sufficient condition under which the sum of two commuting core invertible elements is core invertible.

Let $C^{n \times n}$ be a *-ring of $n \times n$ complex matrices, with conjugate transpose as the involution. A matrix $A \in C^{n \times n}$ has core inverse X if and only if $AX = P_A$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$, where P_A is the projection on the range space $\mathcal{R}(A)$ of A (see [1, Definition 1]). As applications, we establish various conditions under which a block complex matrix with core invertible subblocks is core invertible.

Throughout the paper, all *-rings are associative with an identity. An element $p \in R$ is a projection provided that $p^2 = p = p^*$. Let $a \in R^{\#}$ and $a^{\pi} = 1 - aa^{\#}$. Let $p^2 = p \in R$, and let $x \in R$. We write x = pxp + px(1-p) + (1-p)xp + (1-p)x(1-p), and induce a Pierce representation given by the matrix $x = \begin{pmatrix} pxp & px(1-p) \\ (1-p)xp & (1-p)x(1-p) \end{pmatrix}_{p}$. We use $R^{\#}$ and R^{\oplus} to denote the sets of all group and core invertible

elements in *R*, respectively. *A*^{*} stands for the conjugate transpose \overline{A}^T of the complex matrix *A*.

2. The main result

We begin with some elementary results which will be repeatedly used in the next sequel.

Lemma 2.1. (see [5, Corollary 3.4])) Let $a, b \in \mathbb{R}^{\oplus}$. If ab = ba and $a^*b = ba^*$, then $a^{\oplus}b = ba^{\oplus}$.

Lemma 2.2. Let $a \in R^{\oplus}$ and $b \in R$. Then the following are equivalent:

(1) $(1 - a^{\oplus}a)b = 0.$

- (2) $(1 aa^{\oplus})b = 0.$
- (3) $(1 aa^{\#})b = 0.$

Proof. (1) \Leftrightarrow (2) See [16, Lemma 2.4].

(1) \Rightarrow (3) Since $(1 - a^{\oplus}a)b = 0$, we have $b = a^{\oplus}ab = a^{\#}aa^{(1,3)}ab = a^{\#}ab$. Then $(1 - aa^{\#})b = 0$, as required. (3) \Rightarrow (1) Since $(1 - aa^{\#})b = 0$, we have $b = aa^{\#}b = a^{\#}aa^{(1,3)}ab = a^{\oplus}ab$; hence, $(1 - a^{\oplus}a)b = 0$. This completes the proof. \Box

Lemma 2.3. (see [18, Theorem 4.3]) Let $a, b \in \mathbb{R}^{\oplus}$. If $ab = a^*b = 0$, then $a + b \in \mathbb{R}^{\oplus}$ and $(a + b)^{\oplus} = b^{\pi}a^{\oplus} + b^{\oplus}$.

Lemma 2.4. (see [5, Theorem 3.5])) Let $a, b \in \mathbb{R}^{\oplus}$. If ab = ba and $a^*b = ba^*$, then $ab \in \mathbb{R}^{\oplus}$ and $(ab)^{\oplus} = a^{\oplus}b^{\oplus}$.

We are ready to prove:

Theorem 2.5. Let $a, b \in R^{\oplus}$. If ab = ba and $a^*b = ba^*$, then the following are equivalent:

(1) $a + b \in R^{\oplus}$ and $a^{\pi}(a + b)^{\oplus}a = 0$.

(2) $1 + a^{\oplus}b \in R^{\oplus}$ and $(1 + a^{\oplus}b)^{\pi}a(1 - aa^{\oplus}) = 0$.

Proof. (1) \Rightarrow (2) Since ab = ba and $a^*b = ba^*$, it follows by Lemma 2.1 that $a^{\oplus}b = ba^{\oplus}$. We observe that

$$1 + a^{\oplus}b = (1 - aa^{\oplus}) + (aa^{\oplus} + a^{\oplus}b) = (1 - aa^{\oplus}) + (aa^{\oplus} + ba^{\oplus}) = (1 - aa^{\oplus}) + (a + b)a^{\oplus}$$

Let $p = aa^{\oplus}$. Obviously, $p^{\pi}(a + b)p = 0$. Then

$$a+b = \left(\begin{array}{cc} p(a+b)p & p(a+b)p^{\pi} \\ 0 & p^{\pi}(a+b)p^{\pi} \end{array}\right)_{p}$$

Since $(1-aa^{\#})(a+b)^{\oplus}a = 0$, by using Lemma 2.2, $(1-aa^{\oplus})(a+b)^{\oplus}a = 0$. Then $p^{\pi}(a+b)^{\oplus}p = [(1-aa^{\oplus})(a+b)^{\oplus}a]a^{\oplus} = 0$. Thus, we have

$$(a+b)^{\circledast} = \left(\begin{array}{cc} \alpha & \beta \\ 0 & \gamma \end{array}\right)_p.$$

Set x = a + b, $c_1 = p(a + b)p$ and $x_1 = \alpha$. In light of Theorem 1.1, we have

$$x = xx^{\oplus}x, (xx^{\oplus})^* = xx^{\oplus}, x^{\oplus}x^2 = x, x(x^{\oplus})^2 = x^{\oplus}.$$

Hence, $c_1 = c_1 x_1 c_1$, $(c_1 x_1)^* = c_1 x_1$, $x_1 c_1^2 = c_1$, $c_1 x_1^2 = x_1$. Therefore $c_1 = aa^{\#}(a + b)aa^{\#} \in R^{\oplus}$ and $[p(a + b)p]^{\oplus} = c_1^{\oplus} = x_1 = \alpha$. Thus, $(a + b)aa^{\oplus} \in R^{\oplus}$. We easily check that

$$\begin{aligned} [(a+b)aa^{\circledast}]a^{\circledast} &= a^2[a^{\circledast}]^2 + ba[a^{\circledast}]^2 \\ &= aa^{\circledast} + ba^{\circledast} \\ &= aa^{\circledast} + b(a^{\circledast}aa^{\circledast}) \\ &= [a^{\circledast}a^2]a^{\circledast} + a^{\circledast}(baa^{\circledast}) \\ &= a^{\circledast}[(a+b)aa^{\circledast}]. \end{aligned}$$

In view of [16, Lemma 2.1], $(a + b)a^{\oplus} = [(a + b)aa^{\oplus}]a^{\oplus} \in \mathbb{R}^{\#}$. Set $y = [(a + b)aa^{\oplus}]^{\oplus}$. Then

$$(a+b)aa^{\oplus} = (a+b)aa^{\oplus}y(a+b)aa^{\oplus}, [(a+b)aa^{\oplus}y]^* = (a+b)aa^{\oplus}y.$$

We verify that

$$[(a + b)a^{\oplus}](a^2a^{\oplus}y)[(a + b)a^{\oplus}]$$

=
$$[(a + b)aa^{\oplus}]y[(a + b)aa^{\oplus}]a^{\oplus}$$

=
$$[(a + b)aa^{\oplus}]^{\oplus}$$

=
$$(a + b)a^{\oplus}$$

and

$$[(a+b)a^{\oplus}(a^2a^{\oplus}y)]^*$$

$$= [(a+b)aa^{\oplus}y]^*$$

$$= (a+b)aa^{\oplus}y$$

$$= (a+b)a^{\oplus}(a^2a^{\oplus}y).$$

Therefore $(a + b)a^{\oplus}$ has (1, 3)-inverse $a^2a^{\oplus}y$. By virtue of Theorem 1.1, $(a + b)a^{\oplus} \in R^{\oplus}$. Obviously, we have

$$(1 - aa^{\text{\tiny (\#)}})(a + b)a^{\text{\tiny (\#)}} = (1 - aa^{\text{\tiny (\#)}})^*(a + b)a^{\text{\tiny (\#)}} = 0.$$

According to Lemma 2.3, $1 + a^{\oplus}b \in R^{\oplus}$.

Since
$$(a + b)(a + b)^{\oplus}(a + b) = a + b$$
, we have

$$p(a+b)p^{\pi} = p(a+b)p\alpha p(a+b)p^{\pi} + [p(a+b)p\beta + p(a+b)p^{\pi}\gamma]p^{\pi}(a+b)p^{\pi}.$$

Moreover, we have $[(a + b)(a + b)^{\oplus}]^* = (a + b)(a + b)^{\oplus}$, we have

$$p(a+b)p\beta + p(a+b)p^{\pi}\gamma = 0.$$

Then

$$p(a+b)p^{\pi} = p(a+b)p\alpha p(a+b)p^{\pi},$$

and then $[p(a + b)p]^{\pi}p(a + b)p^{\pi} = [p(a + b)p]^{\pi}[p(a + b)]p\alpha p(a + b)p^{\pi} = 0$. It is easy to verify that

$$\begin{array}{rcl} (a^2a^{\oplus})a^{\oplus} &=& aa^{\oplus}=a^{\oplus}(a^2a^{\oplus}),\\ a^{\oplus}(a^2a^{\oplus})a^{\oplus} &=& a^{\oplus}(aa^{\oplus})=a^{\oplus},\\ (a^2a^{\oplus})a^{\oplus}(a^2a^{\oplus}) &=& (aa^{\oplus})(a^2a^{\oplus})=a^2a^{\oplus}. \end{array}$$

Thus $[a^2a^{\oplus}]^{\#} = a^{\oplus}$. Since $p(a + b)p = a^2a^{\oplus} + baa^{\oplus} = (1 + a^{\oplus}b)a^2a^{\oplus}$, we have

$$[p(a+b)p]^{\#} = (1+a^{\oplus}b)^{\#}(a^2a^{\oplus})^{\#} = (1+a^{\oplus}b)^{\#}a^{\oplus}.$$

Hence,

$$\begin{array}{l} [p(a+b)p]^{\pi} \\ = & 1 - [p(a+b)p][p(a+b)p]^{\#} \\ = & 1 - [(1+a^{\oplus}b)a^{2}a^{\oplus}][(1+a^{\oplus}b)^{\#}a^{\oplus}] \\ = & 1 - [(1+a^{\oplus}b)(1+a^{\oplus}b)^{\#}][a^{2}a^{\oplus}a^{\oplus}] \\ = & 1 - (1+a^{\oplus}b)(1+a^{\oplus}b)^{\#} + (1+a^{\oplus}b)(1+a^{\oplus}b)^{\#}(1-aa^{\oplus}) \\ = & (1+a^{\oplus}b)^{\pi} + (1+a^{\oplus}b)(1+a^{\oplus}b)^{\#}(1-aa^{\oplus}). \end{array}$$

Thus we check that

$$(1 + a^{\oplus}b)^{\pi}a(1 - aa^{\oplus})$$

= $(1 + a^{\oplus}b)^{\pi}aa^{\oplus}a(1 - aa^{\oplus})$
= $[p(a + b)p]^{\pi}aa^{\oplus}(a + b)(1 - aa^{\oplus})$
= $[p(a + b)p]^{\pi}p(a + b)p^{\pi}$
= 0.

Therefore $(1 + a^{\oplus}b)^{\pi}a(1 - aa^{\oplus}) = 0.$

(2) \Rightarrow (1) Let $z = (1 + a^{\oplus}b)^{\oplus}$. Then we verify that

$$[(1 + a^{\oplus}b)a][a^{\oplus}z][(1 + a^{\oplus}b)a]$$

= $aa^{\oplus}[(1 + a^{\oplus}b)z(1 + a^{\oplus}b)]a$
= $aa^{\oplus}(1 + a^{\oplus}b)a$
= $(1 + a^{\oplus}b)a$.

Since $(1 + a^{\oplus}b)aa^{\oplus} = aa^{\oplus}(1 + a^{\oplus}b)$ and $(aa^{\oplus})^* = aa^{\oplus}$, we have

$$aa^{\oplus}(1+a^{\oplus}b)^* = (1+a^{\oplus}b)^*aa^{\oplus}.$$

In light of Lemma 2.1, we get $aa^{\oplus}z = zaa^{\oplus}$.

Step 1. By the argument above, $a^2 a^{\oplus} \in R^{\#}$. In view of Theorem 1.1, $1 + a^{\oplus} b \in R^{\#}$. Since

$$\begin{array}{rcl} & (1+a^{\circledast}b)a^{2}a^{\circledast} \\ = & a^{2}a^{\circledast} + b(a^{\circledast}a^{2})a^{\circledast} \\ = & (a+b)aa^{\circledast} \\ = & a^{2}a^{\circledast} + aa^{\circledast}b \\ = & a^{2}a^{\circledast}(1+a^{\circledast}b), \end{array}$$

it follows by [16, Lemma 2.1] that $(1 + a^{\oplus}b)a^2a^{\oplus} \in R^{\#}$ and

$$[(a + b)aa^{\oplus}]^{\pi}$$

$$= [(1 + a^{\oplus}b)a^{2}a^{\oplus}]^{\pi}$$

$$= 1 - (1 + a^{\oplus}b)a^{2}a^{\oplus}(1 + a^{\oplus}b)^{\#}a^{\oplus}$$

$$= 1 - (1 + a^{\oplus}b)(1 + a^{\oplus}b)^{\#}aa^{\oplus}.$$

Step 2. We check that

$$[(1 + a^{\oplus}b)a^2a^{\oplus}](a^{\oplus}z)$$

= [(1 + a^{\oplus}b)z](aa^{\oplus}).

Hence,

$$[(1 + a^{\oplus}b)a^{2}a^{\oplus}(a^{\oplus}z)]^{*}$$

$$= (aa^{\oplus})^{*}[(1 + a^{\oplus}b)z]^{*}$$

$$= (aa^{\oplus})[(1 + a^{\oplus}b)z]$$

$$= [(1 + a^{\oplus}b)z](aa^{\oplus})$$

$$= [(1 + a^{\oplus}b)a^{2}a^{\oplus}](a^{\oplus}z).$$

So $(1 + a^{\oplus}b)a^2a^{\oplus}$ has a (1, 3) inverse $a^{\oplus}z$.

Accordingly, $(a + b)aa^{\oplus} = (1 + a^{\oplus}b)a^2a^{\oplus} \in R^{\oplus}$. Let $p = aa^{\oplus}$. Then $p^{\pi}bp = (1 - aa^{\oplus})baa^{\oplus} = (1 - aa^{\oplus})aba^{\oplus} = 0$. Similarly, $pbp^{\pi} = 0$. So we get

$$a = \begin{pmatrix} a_1 & a_2 \\ 0 & 0 \end{pmatrix}_p, b = \begin{pmatrix} b_1 & 0 \\ 0 & b_4 \end{pmatrix}_p.$$

Hence

$$a+b=\left(\begin{array}{cc}a_1+b_1&a_2\\0&b_4\end{array}\right)_p.$$

Here $a_1 + b_1 = a(a^{\oplus}a^2)a^{\oplus} + aa^{\oplus}baa^{\oplus} = a^2a^{\oplus} + b(aa^{\oplus})^2 = (a+b)aa^{\oplus}, b_4 = p^{\pi}(a+b)p^{\pi} = bp^{\pi}$. Since $bp^{\pi} = p^{\pi}b, b^*p^{\pi} = (p^{\pi}b)^* = (bp^{\pi})^* = p^{\pi}b^*$. In light of Lemma 2.4, $b_4 = bp^{\pi} \in R^{\oplus}$ and $b_4^{\oplus} = b^{\oplus}p^{\pi}$. Le

$$x = \begin{pmatrix} (a_1 + b_1)^{\oplus} & -(a_1 + b_1)^{\oplus} a_2 b_4^{\oplus} \\ 0 & b_4^{\oplus} \end{pmatrix}_p.$$

Since $(1 + a^{\oplus}b)^{\pi}a(1 - aa^{\oplus}) = 0$, we verify that

$$a_{2} - (a_{1} + b_{1})(a_{1} + b_{1})^{\oplus}a_{2}$$

$$= [1 - (a_{1} + b_{1})(a_{1} + b_{1})^{\oplus}]aa^{\oplus}a(1 - aa^{\oplus})$$

$$= [1 - (1 + a^{\oplus}b)(1 + a^{\oplus}b)^{\#}aa^{\oplus}]aa^{\oplus}a(1 - aa^{\oplus})$$

$$= (1 + a^{\oplus}b)^{\pi}a(1 - aa^{\oplus})$$

$$= 0.$$

That is, $(a_1 + b_1)^{\pi} a_2 = 0$. In view of [12, Theorem 2.1], $a + b \in R^{\#}$ and

$$(a+b)^{\#} = \left(\begin{array}{cc} (a_1+b_1)^{\#} & *\\ 0 & (b_4)^{\#} \end{array}\right)_p.$$

Then we we have

$$\begin{array}{rcl} & (a+b)x \\ & = & \left(\begin{array}{cc} (a_1+b_1) & a_2 \\ & 0 & b_4 \end{array}\right)_p \left(\begin{array}{cc} (a_1+b_1)^{\oplus} & -(a_1+b_1)^{\oplus}a_2b_4^{\oplus} \\ & 0 & b_4^{\oplus} \end{array}\right)_p \\ & = & \left(\begin{array}{cc} (a_1+b_1)(a_1+b_1)^{\oplus} & 0 \\ & 0 & b_4b_4^{\oplus} \end{array}\right)_p. \end{array}$$

Hence $[(a + b)x]^* = (a + b)x$. We further verify that

$$= \begin{pmatrix} (a+b)x(a+b)\\ (a_1+b_1)(a_1+b_1)^{\oplus} & 0\\ 0 & b_4b_4^{\oplus} \end{pmatrix}_p \begin{pmatrix} a_1+b_1 & a_2\\ 0 & b_4 \end{pmatrix}_p$$

= $a+b$.

Thus $a + b \in \mathbb{R}^{(1,3)}$. According to Theorem 1.1, a + b has core inverse.

Moreover, we have

$$\begin{array}{rcl} & (a+b)^{\oplus} \\ = & (a+b)^{\#}(a+b)x \\ = & \left(\begin{array}{cc} (a_1+b_1)^{\#} & * \\ 0 & (b_4)^{\#} \end{array}\right)_p \left(\begin{array}{cc} (a_1+b_1)(a_1+b_1)^{\oplus} & 0 \\ 0 & b_4 b_4^{\oplus} \end{array}\right)_p \\ = & \left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right)_p. \end{array}$$

We infer that $p^{\pi}(a+b)^{\oplus}a = p^{\pi}(a+b)^{\oplus}pa = 0$. In light of Lemma 2.2, $a^{\pi}(a+b)^{\oplus}a = 0$, as asserted. \Box

An element $a \in R$ has dual core inverse if there exists some $x \in R$ such that

$$a^{2}x = a, x^{2}a = x, (xa)^{*} = xa.$$

If such *x* exists, it is unique, and denote it by a_{\oplus} (see [7]).

Corollary 2.6. Let $a, b \in R_{\oplus}$. If ab = ba and $a^*b = ba^*$, then the following are equivalent:

- (1) $a + b \in R_{\oplus}$ and $a(a + b)_{\oplus}a^{\pi} = 0$.
- (2) $1 + a_{\oplus}b \in R_{\oplus}$ and $(1 aa_{\oplus})a(1 + a_{\oplus}b)^{\pi} = 0$.

Proof. Since $x \in R$ has dual core if and only if $x^* \in R$ has core inverse and $x_{\oplus} = (x^*)^{\oplus}$. In view of Lemma 2.1, we have $a_{\oplus}b = ba_{\oplus}$. Therefore we complete the proof by Theorem 2.5. \Box

Recall that $a \in R$ is EP, if there exists $x \in R$ such that $xa^2 = a, ax = xa, (ax)^* = ax$. Evidently, $a \in R$ is EP if and only if $a \in R^{\oplus}$ and $a^{\oplus} = a^{\#}$ if and only if $a \in R^{\oplus}$ and $(aa^{\#})^* = aa^{\#}$ if and only if $a \in R^{\oplus} \bigcap R_{\oplus}$ and $a^{\oplus} = a_{\oplus}$ (see [14, 15, 17]). We now derive

Corollary 2.7. Let $a, b \in R$ be EP. If ab = ba and $a^*b = ba^*$, then the following are equivalent:

- (1) $a + b \in R$ is EP.
- (2) $1 + a^{\#}b \in R$ is EP.

Proof. (1) ⇒ (2) Since $a + b \in R$ is EP, $a + b \in R^{\oplus}$ and $(a + b)^{\oplus} = (a + b)^{\#}$. As $a \in R$ is EP, $a^{\oplus} = a^{\#}$. Clearly, a(a + b) = (a + b)a, and so $a^{\#}(a + b) = (a + b)a^{\#}$. Write $1 + a^{\#}b = a_1 + a_2$, where $a_1 = 1 - aa^{\oplus}$ and $a_2 = (a + b)a^{\oplus}$. In view of Lemma 2.1, we have $a_1, a_2 \in R^{\oplus}$. Obviously, $a_1a_2 = a_2a_1 = a_1^*a_2 = 0$. In light of [18, Theorem 4.3], $a_1 + a_2 \in R^{\oplus}$. By virtue of [2, Theorem 2.1], we have $(1 + a^{\#}b)^{\#} = a_1^{\#} + a_2^{\#}$. Hence,

$$(1 + a^{\#}b)(1 + a^{\#}b)^{\#} = (a_1 + a_2)(a_1^{\#} + a_2^{\#})$$

= $(a_1 + a_2)(a_1^{\#} + a_2^{\#})$
= $a_1a_1^{\#} + (a_1a_2)(a_2^{\#})^2 + (a_2a_1)(a_1^{\#})^2 + a_2a_2^{\#}$
= $a_1a_1^{\#} + a_2a_2^{\#}$
= $(1 - aa^{\oplus}) + (a + b)(a + b)^{\oplus}aa^{\oplus},$

and then $[(1 + a^{\#}b)(1 + a^{\#}b)^{\#}]^* = (1 + a^{\#}b)(1 + a^{\#}b)^{\#}$. Therefore $1 + a^{\#}b \in R$ is EP, as required.

(2) \Rightarrow (1) Since $a \in R$ is EP, $a \in R^{\oplus}$ and $a^{\oplus} = a^{\#}$. Then $(1 + a^{\oplus}b)^{\pi}a(1 - aa^{\oplus}) = 0$. In light of Theorem 2.5, $a + b \in R^{\oplus}$. One easily checks that

$$a + b = a(1 + a^{\#}b) + (1 - aa^{\#})b.$$

By hypothesis, we see that $a(1 + a^{\#}b), (1 - aa^{\#})b \in R^{\#}$ and $a(1 + a^{\#}b)(1 - aa^{\#})b = (1 - aa^{\#})ba(1 + a^{\#}b) = 0$. According to [2, Theorem 2.1], we have

$$(a+b)^{\#} = a^{\#}(1+a^{\#}b)^{\#} + (1-aa^{\#})b^{\#}$$

Hence,

$$(a+b)(a+b)^{\#} = aa^{\#}(1+a^{\#}b)(1+a^{\#}b)^{\#} + (1-aa^{\#})bb^{\#} = aa^{\oplus}(1+a^{\#}b)(1+a^{\#}b)^{\oplus} + (1-aa^{\oplus})bb^{\oplus}.$$

Then $[(a + b)(a + b)^{#}]^{*} = (a + b)(a + b)^{#}$, thus yielding the result. \Box

3. Applications

Let $A, B, C, D \in \mathbb{C}^{n \times n}$ have core inverses and $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. The aim of this section is to present the core invertibility of the block complex matrix M by using the core invertibility of its subblocks.

Lemma 3.1. If
$$B(CB)^{\pi} = 0$$
 and $C(BC)^{\pi} = 0$, then $\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$ has core inverse. In this case,
$$Q^{\oplus} = \begin{pmatrix} 0 & (BC)^{\#}BCC^{\oplus} \\ (CB)^{\#}CBB^{\oplus} & 0 \end{pmatrix}.$$

Proof. Let $Q = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$. Then $(CB)(CB)^D = (CB)^D(CB), (CB)^D = (CB)^D(CB)(CB)^D$. Since $B(CB)^{\pi} = 0$, we have $CB(CB)^{\pi} = 0$. Hence *CB* has group inverse. Likewise, *BC* has group inverse. One directly checks that $Q^{\#} = \begin{pmatrix} 0 & B(CB)^{\#} \\ C(BC)^{\#} & 0 \end{pmatrix}$. Moreover, we verify that

$$Q\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} B^{\oplus} & 0 \\ 0 & C^{\oplus} \end{pmatrix} Q$$

$$= \begin{pmatrix} 0 & BB^{\oplus}B \\ CC^{\oplus}C & 0 \end{pmatrix}$$

$$= Q;$$

$$(Q\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} B^{\oplus} & 0 \\ 0 & C^{\oplus} \end{pmatrix})^*$$

$$= \begin{pmatrix} BB^{\oplus} & 0 \\ 0 & CC^{\oplus} \end{pmatrix}^*$$

$$= Q\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} B^{\oplus} & 0 \\ 0 & C^{\oplus} \end{pmatrix}.$$

This implies that Q has (1, 3)-inverse. In light of [16, Lemma 2.1], Q has core inverse. In this case,

$$\begin{aligned} Q^{\oplus} &= Q^{\#}QQ^{(1,3)} \\ &= \begin{pmatrix} 0 & B(CB)^{\#} \\ C(BC)^{\#} & 0 \end{pmatrix} \begin{pmatrix} BB^{\oplus} & 0 \\ 0 & CC^{\oplus} \end{pmatrix} \\ &= \begin{pmatrix} 0 & B(CB)^{\#}CC^{\oplus} \\ C(BC)^{\#}BB^{\oplus} & 0 \\ 0 & (BC)^{\#}BCC^{\oplus} \\ (CB)^{\#}CBB^{\oplus} & 0 \end{pmatrix}, \end{aligned}$$

as asserted. \Box

We are now ready to prove:

Theorem 3.2. If AB = BD, DC = CA, $A^*B = BD^*$, $D^*C = CA^*$, $B(CB)^{\pi} = 0$ and $C(BC)^{\pi} = 0$ and $A^{\oplus}BD^{\oplus}C$ is nilpotent, then M has core inverse.

Proof. Write M = P + Q, where

$$P = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}, Q = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}.$$

Since *A* and *D* have core inverses, so has *P*, and that

$$P^{\oplus} = \left(\begin{array}{cc} A^{\oplus} & 0\\ 0 & D^{\oplus} \end{array}\right).$$

In view of Lemma 3.1, Q has core inverse. We easily check that

$$PQ = \begin{pmatrix} 0 & AB \\ DC & 0 \end{pmatrix} = \begin{pmatrix} 0 & BD \\ CA & 0 \end{pmatrix} = QP.$$

Likewise, we verify that $P^*Q = QP^*$. Moreover, we check that

$$I_{2n} + P^{\oplus}Q = \begin{pmatrix} I_n & A^{\oplus}B \\ D^{\oplus}C & I_n \end{pmatrix}.$$

It is easy to verify that

$$\begin{pmatrix} I_n & A^{\oplus}B \\ D^{\oplus}C & I_n \end{pmatrix} = \begin{pmatrix} I_n - A^{\oplus}BD^{\oplus}C & A^{\oplus}B \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_n & 0 \\ D^{\oplus}C & I_n \end{pmatrix}.$$

Since $A^{\oplus}BD^{\oplus}C$ is nilpotent, we see that $I_n - A^{\oplus}BD^{\oplus}C$ is invertible, and so $\begin{pmatrix} I_n & A^{\oplus}B \\ D^{\oplus}C & I_n \end{pmatrix}$ is invertible. This implies that $I_{2n} + P^{\oplus}Q$ has core inverse. Additionally, $(I_{2n} + P^{\oplus}Q)^{\pi} = 0$. According to Theorem 2.5, *M* has core inverse, as asserted. \Box

Theorem 3.3. If AB = BD, DC = CA, $B^*A = DB^*$, $C^*D = AC^*$, $B(CB)^{\pi} = 0$ and $C(BC)^{\pi} = 0$ and $A^{\oplus}BD^{\oplus}C$ is nilpotent, then M has core inverse.

Proof. Write M = P + Q, where

$$P = \left(\begin{array}{cc} A & 0 \\ 0 & D \end{array}\right), Q = \left(\begin{array}{cc} 0 & B \\ C & 0 \end{array}\right).$$

Then we check that

$$Q^*P = \begin{pmatrix} 0 & C^* \\ B^* & 0 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$$
$$= \begin{pmatrix} 0 & C^*D \\ B^*A & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & AC^* \\ DB^* & 0 \end{pmatrix}$$
$$= \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} 0 & C^* \\ B^* & 0 \end{pmatrix}$$
$$= PQ^*.$$

Similarly, QP = PQ. Further, we verify that

$$I_{2n} + Q^{\oplus}P = I_{2n} + \begin{pmatrix} 0 & (BC)^{\#}BCC^{\oplus} \\ (CB)^{\#}CBB^{\oplus} & 0 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$$
$$= \begin{pmatrix} I_n & (BC)^{\#}BCC^{\oplus}D \\ (CB)^{\#}CBB^{\oplus}A & I_n \end{pmatrix}.$$

Since $A^{\oplus}BD^{\oplus}C$ is nilpotent, we prove that $I_{2n} + Q^{\oplus}P$ is invertible; hence, it has core inverse. Additionally, $(I_{2n} + Q^{\oplus}P)^{\pi} = 0$. In light of Theorem 2.5, *M* has core inverse, as required. \Box

Acknowledgement

The authors would like to thank the referee for his/her careful reading and helpful comments for the improvement of this paper.

References

- [1] O.M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58(2010), 681–697.
- [2] J. Benitez; X. Liu and T. Zhu, Additive results for the group inverse in an algebra with applications to block operators, *Linear Multilinear Algebra*, 59(2011), 279–289.
- [3] A. Bottcher and I.M. Spitkovsky, Core invertibility of operators from the algebra generated by two orthogonal projections, *Acta Sci. Math.*, 89(2023), 257–268.
- [4] H. Chen and H. Zou, On *-DMP inverses in a ring with involution, Comm. Algebra, 49(2021), 5006–5016.
- [5] J. Chen, H. Zhu, P. Patricio and Y. Zhang, Characterizations and representations of core and dual core inverses Canad. Math. Bull., 60(2017), 269–282.
- [6] D.S. Rakić; N.C. Dincić and D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, *Linear Algebra Appl.*, 463(2014), 115–133.
- [7] T. Li and J. Chen, Characterizations of core and dual core inverses in rings with involution, *Linear Multilinear Algebra*, 66(2018), 717–730.
- [8] T. Li, Characterizations of weighted core inverses in rings with involution, J. Algebra Appl., 22(2023), No. 10, Article ID 2350216, 13 p.
- [9] Y. Ke; L. Wang and J. Chen, The core inverse of a product and 2 × 2 matrices, Bull. Malays. Math. Sci. Soc., 42(2019), 51–66.
- [10] H. Kurata, Some theorems on the core inverse of matrices and the core partial ordering, Applied. Math. Comput., 316(2018), 43–51.
- [11] A. Kumar and D. Mishra, On forward-order law for core inverse in rings, Aequationes Math., 97(2023), 537–562.
- [12] N. Mihajlović and D.S. Djordjević, On Group invertibility in rings, Filomat, 33(2019), 6141–6150.
- [13] N. Mihajlović, Group inverse and core inverse in Banach and C*-algebras, Comm. Algebra, 48(2020), 1803–1818.
- [14] D. Mosić; D.S. Djordjević and J.J. Koliha, EP elements in rings, Linear Algebra Appl., 431(2009), 527-535.
- [15] L. Wang; D. Mosić and Y. Gao, New results on EP elements in rings with involution, Algebra Collog., 29(2022), 39–52.
- [16] S. Xu, Core invertibility of triangular matrices over a ring, Indian J. Pure Appl. Math., 50(2019), 837–847.
- [17] S. Xu; J. Chen and J. Benitez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc., 42(2019), 3409–3426.
- [18] S. Xu; J. Chen and X. Zhang, New characterizations for core inverses in rings with involution, *Front. Math. China*, **12**(2017), 231–246.
- [19] H. Zou; J. Chen and P. Patrício, Reverse order law for the core inverse in rings, Mediterr. J. Math., 15(2018), Paper No.145, 17p.
- [20] H. Zou; D. Cvetković-Ilić; J. Chen and K. Zuo, Characterizations for the core invertibility and EP-ness involving projections, Algebra Colloq., 29(2022), 385–404.
- [21] M. Zhou; J. Chen and X. Zhu, The group inverse and core inverse of sum of two elements in a ring, Comm. Algebra, 48(2020), 676–690.
- [22] M. Zhou; J. Chen and D. Wang, The core inverses of linear combinations of two core invertible matrices, *Linear Multilinear Algebra*, 69(2021), 702–718.