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Abstract. We familiarize in this paper a new family of starlike functions in parabolic domain related to
the Mittag-Leffler function (MLF). By using this family of functions with a negative coefficient, we discuss
coefficient estimates, extreme points, distortion bounds, closure theorem, radii of starlikeness and convexity.
Moreover, the neighborhood, partial sums, and integral means of functions for this new family are studied.

1. Introduction and Preliminaries

Let E ȷ be the function defined by

E ȷ(ζ) :=
∞∑

n=0

ζn

Γ( ȷn + 1)
, ζ ∈ C, ȷ ∈ C with Re ȷ > 0,

that was presented by Mittag-Leffler [24] and are generally known as the Mittag-Leffler function(MLF).
Wiman [40] defined its two-parameter version E ȷ,ℓ which generalizes widely used Mittag-Leffler function
E ȷ as

E ȷ,ℓ(ζ) :=
∞∑

n=0

ζn

Γ( ȷn + ℓ)
, ζ ∈ C, ȷ, ℓ ∈ C, with Re ȷ > 0, Re ℓ > 0.

When ℓ = 1, it is abbreviated as E ȷ(ζ) = E ȷ,1(ζ). Witness that the function E ȷ,ℓ comprises many well-known
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functions as extensions of the exponential, hyperbolic, and trigonometric functions for example,

E1,1(ζ) = eζ, E1,2(ζ) =
eζ − 1
ζ
, E2,1

(
ζ2

)
= cosh ζ,

E2,1

(
−ζ2

)
= cos ζ, E2,2

(
ζ2

)
=

sinh ζ
ζ
, E2,2

(
−ζ2

)
=

sin ζ
ζ
,

E4(ζ) =
1
2

(
cos ζ1/4 + cosh ζ1/4

)
, E3(ζ) =

1
2

[
eζ

1/3
+ 2e−

1
2 ζ

1/3
cos

( √
3

2
ζ1/3

)]
.

It is of curiosity to note that by fixing ȷ = 1/2 and ℓ = 1 we get

E 1
2 ,1

(ζ) = eζ
2
· erfc(−ζ),

that is

E 1
2 ,1

(ζ) = eζ
2

1 +
2
√
π

∞∑
n=0

(−1)n

n!(2n + 1)
ζ2n+1

 .
The MLF have widespread applications in chemistry, physics, biology, engineering, and other applied
sciences. The applications of these functions can be seen in n-fractional differential equations, stochastic
systems, chaotic systems, statistical distributions and dynamical systems.

The MLF rises naturally in the solution of integral and fractional order differential equations, specifically
in the investigations of fractional generalizing of kinetic equation, random walks, Lévy flights, super-
diffusive transport and in the study of complex systems. For a potentially useful further investigation of
generalized MLF, the reader is referred to [1, 2, 5, 6, 8, 11–14, 18–21, 26].

We note that the above generalized Mittag-Leffler function E ȷ,ℓ is not a member of family A, where A
represents the class of functions analytic in the open unit diskU := {ζ ∈ C : |ζ| < 1} whose members are of
the form

f (ζ) = ζ +
∞∑

n=2

anζ
n, ζ ∈ U, (1)

and normalized by the conditions f ′(0) − 1 = 0 = f (0). Let S be the subclass of A whose members are
univalent in U. . Thus, it is natural to consider the following normalization of MLF due to Bansal and
Prajapat [5]:

E ȷ,ℓ(ζ) := ζΓ(ℓ) E ȷ,ℓ(ζ) = ζ +
∞∑

n=2

Γ(ℓ)
Γ( ȷ(n − 1) + ℓ)

ζn, (2)

that holds for the parameters ȷ, ℓ ∈ Cwith Re ℓ > 0, Re ȷ > 0 and ζ ∈ C. Moreover, Srivastava and Tomovski
[33] introduced the function Eτ,κȷ,ℓ (ζ)(ζ ∈ C) in the form

Eτ,κȷ,ℓ (ζ) =
∞∑

n=0

(τ)nκζn

Γ( ȷn + ℓ) n!
,

( ȷ, ℓ, τ ∈ C;ℜ( ȷ) > max{0,ℜ(κ) − 1};ℜ(κ) > 0). Lately, Attiya[2] defined

Mτ,κ
ȷ,ℓ (ζ) =

Γ( ȷ + ℓ)
(τ)κ

(
Eτ,κȷ,ℓ (ζ) −

1
Γ(ℓ)

)
with (ℓ, τ ∈ C;ℜ( ȷ) > max{0,ℜ(κ) − 1};ℜ(κ) > 0;ℜ( ȷ) = 0 whenℜ(κ) = 1 with ℓ , 0) and gave a new linear
operator

I
τ,κ
ȷ,ℓ : A→A
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given by
I
τ,κ
ȷ,ℓ f (ζ) =Mτ,κ

ȷ,ℓ (ζ) ∗ f (ζ)

where (∗) denotes the Hadamard product (or convolution) for functions f , 1 ∈ Awhere f be assumed as in

(1) and 1(ζ) = ζ +
∞∑

n=2
bnζn, then the Hadamard product (or convolution) of f and 1 is given by

( f ∗ 1)(ζ) := ζ +
∞∑

n=2

anbnζ
n, ζ ∈ U.

Thus,

I
τ,κ
ȷ,ℓ f (ζ) = ζ +

∞∑
n=2

Γ(τ + nκ)Γ( ȷ + ℓ)
Γ(τ + κ)Γ(n ȷ + ℓ) n!

anζ
n, ζ ∈ U. (3)

Shortly ,we let

I
τ,κ
ȷ,ℓ f (ζ) := ζ +

∞∑
n=2

Λnanζ
n (4)

where

Λn =
Γ(τ + nκ)Γ( ȷ + ℓ)
Γ(τ + κ)Γ(n ȷ + ℓ) n!

(5)

unless otherwise stated. Throughout our study we assume ȷ, ℓ, are real-valued parameters and ζ ∈ U.

1.1. Subclasses of S :

Robertson [27] defined and studied the two well- known subclasses namely starlike functions of order ξ
(0 ≤ ξ < 1), and convex functions of order ξ (0 ≤ ξ < 1) as below :

S
∗(ξ) = { f ∈ A : Re

(
ζ f ′(ζ)

f (ζ)

)
> ξ, ζ ∈ U, }

K (ξ) = { f ∈ A : Re
(

(ζ f ′(ζ))′

f ′(ζ)

)
> ξ, ζ ∈ U}

respectively. We also write S∗(0) =: S∗, where S∗ represents the class of functions f ∈ A such that f (D) is
starlike domain with respect to the origin. Further, K := K (0) signifies the well-known standard class of
convex functions. By Alexander’s duality relation (see [10]), it is a known fact that

f ∈ K ⇔ ζ f ′(ζ) ∈ S∗.

In1975, Silverman [30] promote a new direction of study by defining a subclassT of A, comprising of
functions of the form

f (ζ) = ζ −
∞∑

n=2

anζ
n, an ≥ 0, ζ ∈ U (6)

and discussed extensively for the classes T ∗(ξ) = S∗(ξ) ∩ T and C(ξ) = K (ξ) ∩ T the class of starlike and
convex functions of order ξwith negative coefficients. In the year 1993, Goodman [17] hosted the theory of
uniform convexity and uniform starlikeness for functions inA.
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Definition 1.1. A function f (ζ) is uniformly convex (uniformly starlike) inU if f (ζ) is inK S∗ and has the property
that for every circular arc υ contained inU, with center ξ also inU, the arc f (ζ) is convex (starlike) with respect to
f (ξ).

For −1 ≤ ξ < 1 and ζ ∈ U a function f ∈ S is said to be in
(i) the class Sp(ξ) ξ− parabolic starlike functions if it satisfies the condition

f ∈ Sp ⇔

∣∣∣∣∣ζ f ′(ζ)
f (ζ)

− 1
∣∣∣∣∣ ≤ Re

(
ζ f ′(ζ)

f (ζ)
− ξ

)
(ii) the class Sp(ξ, k) k−starlike functions if it satisfies the condition

Re
(
ζ f ′(ζ)

f (ζ)
− γ

)
> k

∣∣∣∣∣ζ f ′(ζ)
f (ζ)

− 1
∣∣∣∣∣ , k ≥ 0

and
(iii) the classUCV(k, ξ), uniformly k−convex functions if it satisfies the condition

Re
(

(ζ f ′(ζ))′

f ′(ζ)
− γ

)
> k

∣∣∣∣∣ζ f ′′(ζ)
f ′(ζ)

∣∣∣∣∣ , k ≥ 0.

Ronning [28] familiarized the class Sp = {F ∈ S
∗ : F(ζ) = ζF′(ζ), f ∈ UCV}. Geometrically SP is the class of

functionsF for which ζF′(ζ)/F(ζ) has values in the interior of the parabola in the right half-plane symmetric
almost the real axis with vertex at (1/2, 0). Inspired by the earlier works of Goodman[16, 17] and Sokol et
al.,[34] and the techniques followed in [3, 7, 30, 38]), in this article we present a new subclass of k− starlike
functions of order ξ based on generalized Mittag-Leffler function.

Definition 1.2. For 0 ≤ ϑ ≤ 1, 0 ≤ ξ < 1 and k ≥ 0, we letMG∗k(ξ, ϑ) be the subclass of T consisting of functions
of the form (6) and satisfying the analytic criterion

Re {Gϑ(ζ) − ξ} > k |Gϑ(ζ) − 1| (7)

where

Gϑ(ζ) =
ζ(Iτ,κȷ,ℓ f (ζ))′

(1 − ϑ)ζ + ϑζ(Iτ,κȷ,ℓ f (ζ))′
(8)

ζ ∈ U, and Iτ,κȷ,ℓ f (ζ) is given by (4).

By fixing ϑ suitably, we present few following (new) subclasses of starlike and convex functions based on
MLF:

Definition 1.3. If ϑ = 0, then

USD(ξ, k) :=
{

f ∈ T : Re
(
ζ(Iτ,κȷ,ℓ f (ζ))′ − ξ

)
> k

∣∣∣∣ζ(Iτ,κȷ,ℓ f (ζ))′ − 1
∣∣∣∣ , ζ ∈ U}

(9)

Definition 1.4. If ϑ = 1, then

USP(ξ, k) :=

 f ∈ T : Re

ζ(Iτ,κȷ,ℓ f (ζ))′

I
τ,κ
ȷ,ℓ f (ζ)

− ξ

 > k

∣∣∣∣∣∣∣ζ(I
τ,κ
ȷ,ℓ f (ζ))′

I
τ,κ
ȷ,ℓ f (ζ)

− 1

∣∣∣∣∣∣∣ , ζ ∈ U
 . (10)

Definition 1.5. If ϑ = 0, k = 0 then

SGp(ξ) :=

 f ∈ T : Re

ζ(Iτ,κȷ,ℓ f (ζ))′

I
τ,κ
ȷ,ℓ f (ζ)

 > ξ, ζ ∈ U
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Definition 1.6. If ϑ = 1, k = 0 then

R(ξ) :=
{

f ∈ T : Re
(
ζ(Iτ,κȷ,ℓ f (ζ))′

)
> ξ, ζ ∈ U

}
.

In this paper we discuss certain characterization properties like results on coefficient bounds, closure
property and extreme points for f ∈ MG∗k(ξ, ϑ). Besides for f ∈ MG∗k(ξ, ϑ) we discuss , radii properties
under integral transforms, neighborhood results and integral means inequalities. results on subordination
theorem.

2. Characterization Properties

For brevity we let
0 ≤ ϑ ≤ 1, 0 ≤ ξ < 1, k ≥ 0,

unless otherwise stated.

Theorem 2.1. Let f be assumed as in (1) and if f ∈ MG∗k(ξ, ϑ) then

∞∑
n=2

[n(1 + k) − ϑ(ξ + k)]Λn |an| ≤ 1 − ξ, (11)

where Λn is given by (5).

Proof. Since f ∈ MG∗k(ξ, ϑ) it is enough show that

k
∣∣∣∣∣ ζ(Iτ,κȷ,ℓ f (ζ))′

(1−ϑ)z+ϑIτ,κȷ,ℓ f (ζ) − 1
∣∣∣∣∣ − Re

(
ζ(Iτ,κȷ,ℓ f (ζ))′

(1−ϑ)ζ+ϑIτ,κȷ,ℓ f (ζ) − 1
)

≤ 1 − ξ.

We have

k

∣∣∣∣∣∣∣ ζ(Iτ,κȷ,ℓ f (ζ))′

(1 − ϑ)ζ + ϑIτ,κȷ,ℓ f (ζ)
− 1

∣∣∣∣∣∣∣ − Re

 ζ(Iτ,κȷ,ℓ f (ζ))′

(1 − ϑ)ζ + ϑIτ,κȷ,ℓ f (ζ)
− 1


≤ (1 + k)

∣∣∣∣∣∣∣ ζ(Iτ,κȷ,ℓ f (ζ))′

(1 − ϑ)ζ + ϑIτ,κȷ,ℓ f (ζ)
− 1

∣∣∣∣∣∣∣
=

(1 + k)
∞∑

n=2
(n − ϑ)Λn|an||ζ|n−1

1 −
∞∑

n=2
ϑΛn|an||ζ|n−1

=

(1 + k)
∞∑

n=2
(n − ϑ)Λn|an|

1 −
∞∑

n=2
ϑΛn|an|

.

The previous expression is constrained above by 1 − ξ if

∞∑
n=2

[n(1 + k) − ϑ(ξ + k)]Λn|an| ≤ 1 − ξ

and the proof is complete.

In next theorem, we give necessary and sufficient conditions for f ∈ MG∗k(ξ, ϑ).
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Theorem 2.2. Let f ∈ T be of the form (6) and f ∈ MG∗k(ξ, ϑ) if and only if
∞∑

n=2

[n(1 + k) − ϑ(ξ + k)]Λn |an| ≤ 1 − ξ, (12)

where Λn are given by (5).

Proof. In interpretation of Theorem 2.1, we require only to show only the necessity. If f ∈ MG∗k(ξ, ϑ) and ζ
is real then

Re


1 −

∞∑
n=2

nΛn anζn−1

1 −
∞∑

n=2
ϑΛn anζn−1

− ξ

 > k

∣∣∣∣∣∣∣∣∣∣∣
∞∑

n=2
(n − ϑ)Λn anζn−1

1 −
∞∑

n=2
ϑΛn anζn−1

∣∣∣∣∣∣∣∣∣∣∣ .
Allowing ζ→ 1 along the real axis, we get the desired inequality 12.

In our current discussions for brevity we let

ℵ(ϑ, ξ, k,n) = [n(1 + k) − ϑ(ξ + k)]Λ(n), (13)
ℵ(ϑ, ξ, k, 2) = [2(1 + k) − ϑ(ξ + k)]Λ(2), (14)

Λ(2) =
Γ(τ + 2κ)Γ( ȷ + ℓ)

2Γ(τ + κ)Γ(2 ȷ + ℓ)
(15)

unless otherwise stated.

Corollary 2.3. If f ∈ MG∗k(ξ, ϑ), then

|an| ≤
1 − ξ

ℵ(ϑ, ξ, k,n)
, 0 ≤ ϑ ≤ 1, 0 ≤ ξ < 1, k ≥ 0.

Equality holds for the function f (ζ) = ζ − 1−ξ
ℵ(ϑ,ξ,k,n)ζ

n.

Employing the techniques given in([9, 30] for f ∈ MG∗k(ξ, ϑ) one can straightforwardly prove the
following results so we state the results without proof.

Theorem 2.4. (Distortion Bounds) Let f be as assumed in (6)and f ∈ MG∗k(ξ, ϑ), then

r −
1 − ξ

ℵ(ϑ, ξ, k, 2)
r2
≤ | f (ζ)| ≤ r +

1 − ξ
ℵ(ϑ, ξ, k, 2)

r2, |ζ| = r (16)

and

1 −
2(1 − ξ)
ℵ(ϑ, ξ, k, 2)

r ≤ | f ′(ζ)| ≤ 1 +
2(1 − ξ)
ℵ(ϑ, ξ, k, 2)

r, |ζ| = r. (17)

Equalities are sharp for f (ζ) = ζ − 1−ξ
ℵ(ϑ,ξ,k,2)ζ

2, where ℵ(ϑ, ξ, k, 2) is as in (14)

Theorem 2.5. ( Extreme Points):Let

f1(ζ) = ζ and fn(ζ) = ζ −
1 − ξ

ℵ(ϑ, ξ, k,n)
ζn, for n = 2, 3, 4, . . . . (18)

where ℵ(k, ϑ, ξ, n) is as given in (13) are the extreme points ofMG∗k(ξ, ϑ). Then f ∈ MG∗k(ξ, ϑ) if and only if it can
be stated as

f (ζ) =
∞∑

n=1

ωn fn(ζ), ωn ≥ 0,
∞∑

n=1

ωn = 1. (19)
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Theorem 2.6. (Closure theorem) Let fi(ζ) (i = 1, 2, . . .m) be defined by

fi(ζ) = ζ −
∞∑

n=2

an,i ζ
n for an, i ≥ 0, ζ ∈ U. (20)

and fi ∈ MG
∗

k(ϑ, ξi) (i = 1, 2, . . .m) respectively. Then given h(ζ) = ζ − 1
m

∞∑
n=2

(
m∑

i=1
an,i

)
ζn is inMG∗k(ξ, ϑ), where

ξ = min
1≤i≤m

{ξi} and −1 ≤ ξi < 1.

Proof. Since fi(ζ) ∈ MG
∗

k(ϑ, ξi) (i = 1, 2, 3, . . .m) and by using Theorem 2.2, we get

∞∑
n=2

ℵ(k, ϑ, ξ, n)

 1
m

m∑
i=1

an,i


=

1
m

m∑
i=1

 ∞∑
n=2

ℵ(k, ϑ, ξ, n)an, j


≤

1
m

m∑
i=1

(1 − ξi) ≤ 1 − ξ

where ℵ(k, ϑ, ξ, n) is defined in (13) and again by Theorem 2.2, we have h(ζ) ∈ MG∗k(ξ, ϑ) , which completes
the proof.

3. Integral Transform of the classMG∗k(ξ, ϑ)

Now for f ∈ Awe show that the classMG∗k(ξ, ϑ) is closed under integral transform

Ξη( f )(ζ) =

1∫
0

η(t)
f (tζ)

t
dt,

where v is a real valued, non-negative weight function normalized as
∫ 1

0 η(t)dt = 1. Fixing v(t) = (c + 1)tc,
c > −1, then Ξη is become as the Bernardi operator[4].If we assume

η(t) =
(c + 1)δ

η(δ)
tc

(
log

1
t

)δ−1

, c > −1, δ ≥ 0,

then Ξη is called the Komatu operator( see [22]).

In the following theorem we prove that the classMG∗k(ξ, ϑ) is closed under the transform Ξη( f )(ζ).

Theorem 3.1. Let f (ζ) ∈ MG∗k(ξ, ϑ). Then Ξη( f )(ζ) ∈ MG∗k(ξ, ϑ).

Proof. By definition, we have

Ξη( f )(ζ) =
(c + 1)δ

η(δ)

1∫
0

(−1)δ−1tc(log t)δ−1

ζ − ∞∑
n=2

anζ
ntn−1

 dt

=
(−1)δ−1(1 + c)δ

η(δ)
lim
r→0+


1∫

r

tc(log t)δ−1

ζ − ∞∑
n=2

anζ
ntn−1

 dt

 .
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By simple calculation, we get

Ξη( f )(ζ) = ζ −
∞∑

n=2

( c + 1
c + n

)δ
anζ

n. (21)

We need to prove that
∞∑

n=2

ℵ(k, ϑ, ξ, n)
1 − ξ

(1 + c
c + n

)δ
an ≤ 1. (22)

On the other hand by (12), f ∈ MG∗k(ξ, ϑ) if and only if
∞∑

n=2

ℵ(k, ϑ, ξ, n)
1 − ξ

an ≤ 1,

where ℵ(k, ϑ, ξ, n) is given in (13). Thus 1+c
c+n < 1, so (22) holds and thus we complete the proof.

The above theorem yields the subsequent theorem.

Theorem 3.2. (i) If f ∈ S∗(ξ) then Ξη( f )(ζ) ∈ S∗(ξ).
(ii) If f ∈ K (ξ) is convex of order ξ then Ξη( f ) ∈ K (ξ).

Theorem 3.3. Let f ∈ MG∗k(ξ, ϑ), then Ξη( f )(ζ) is starlike of order 0 ≤ ξ < 1 in |ζ| < R1 where

R1 = inf
n

[(c + n
c + 1

)δ (1 − ξ)ℵ(ϑ, ξ, k,n)
(n − ξ)(1 − ξ)

] 1
n−1

(n ≥ 2),

where ℵ(k, ϑ, ξ, n) as given in (13).

Proof. Since Ξη( f )(ζ) is starlike of order 0 ≤ ξ < 1 it suffices to show∣∣∣∣∣∣ζ(Ξη( f )(ζ))′

Ξη( f )(ζ)
− 1

∣∣∣∣∣∣ < 1 − ξ. (23)

From (21) we have,

∣∣∣∣∣∣ζ(Ξη( f )(ζ))′

Ξη( f )(ζ)
− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣
∞∑

n=2
(1 − n)

(
c+1
c+n

)δ
anζn−1

1 −
∞∑

n=2

(
c+1
c+n

)δ
anζn−1

∣∣∣∣∣∣∣∣∣∣∣
≤

∞∑
n=2

(1 − n)
(

c+1
c+n

)δ
an|ζ|n−1

1 −
∞∑

n=2

(
c+1
c+n

)δ
an|ζ|n−1

.

The above expression is bounded above by 1 − ξ thus ,

|ζ|n−1 <
(c + n

c + 1

)δ (1 − ξ)ℵ(ϑ, ξ, k,n)
(n − ξ)(1 − ξ)

.

Hence, the proof is completed.

By the fact that f ∈ K ⇔ ζ f ′(ζ) ∈ S∗ , we state the following:

Theorem 3.4. Let f ∈ MG∗k(ξ, ϑ), then Ξη( f )(ζ) ∈ K (ξ) in |ζ| < R2 where

R2 = inf
n

[(c + n
c + 1

)δ (1 − ξ)ℵ(ϑ, ξ, k,n)
n(n − ξ)(1 − ξ)

] 1
n−1

(n ≥ 2),

where ℵ(k, ϑ, ξ, n) is given by (13).
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4. Neighbourhood Results

The concept of neighborhoods of analytic functions was first introduced by Goodman [15] later,
Ruscheweyh [29]. We now recall the definition of δ− neighbourhood [15, 29] and determine neighbour-
hood results for certain families of analytic functions.(also see[35–37]).We now extend the familiar concept
of neighborhoods to the analytic functions of the family f ∈ MG∗k(ξ, ϑ) in this section.
First we recall the definition of the δ− neighbourhood of f ∈ T is given by

Nδ( f ) :=

h ∈ T : h(ζ) = ζ −
∞∑

n=2

dnζ
n and

∞∑
n=2

n|an − dn| ≤ δ

 . (24)

Mostly for the identity function e(ζ) = ζ,we have

Nδ(e) :=

h ∈ T : 1(ζ) = ζ −
∞∑

n=2

dnζ
n and

∞∑
n=2

n|dn| ≤ δ

 . (25)

Theorem 4.1. If

δ :=
2(1 − ξ)
ℵ(ϑ, ξ, k, 2)

(26)

thenMG∗k(ξ, ϑ) ⊂ Nδ(e), where ℵ(ϑ, ξ, k, 2) is assumed as (14).

Proof. For f ∈ MG∗k(ξ, ϑ), Theorem 2.2 immediately yields

ℵ(ϑ, ξ, k, 2)
∞∑

n=2

an ≤ 1 − ξ,

so that
∞∑

n=2

an ≤
1 − ξ

ℵ(ϑ, ξ, k, 2)
. (27)

Additionally, from (12) and (27) that

(k + 1)Λ(2)
∞∑

n=2

nan ≤ 1 − ξ + ϑ(ξ + k)Λ(2)
∞∑

n=2

an

= 1 − ξ +
ϑ(ξ + k)(1 − ξ)Λ(2
ℵ(ϑ, ξ, k, 2)

= (1 − ξ)
[
1 +

ϑ(ξ + k)Λ(2
[2(1 + k) − ϑ(ξ + k)]Λ(2)

]
(k + 1)Λ(2)

∞∑
n=2

nan = 2(1 − ξ)
[

1 + k
[2(1 + k) − ϑ(ξ + k)]Λ(2)

]
∞∑

n=2

nan =
2(1 − ξ)

[2(1 + k) − ϑ(ξ + k)]Λ(2)
,

that is
∞∑

n=2

nan ≤
2(1 − ξ)
ℵ(ϑ, ξ, k, 2)

:= δ (28)

which, in sight (25) proves Theorem. 4.1.
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Definition 4.2. Let f ∈ T and we let f ∈ MG∗(ρ, ϑ, ξ, k) if there exists a function h ∈ MG∗(ρ, ϑ, ξ, k) such that∣∣∣∣∣ f (ζ)
h(ζ)

− 1
∣∣∣∣∣ < 1 − ρ, (ζ ∈ U, 0 ≤ ρ < 1). (29)

Theorem 4.3. If h ∈ MG∗(ρ, ϑ, ξ, k) and

ρ = 1 −
δℵ(ϑ, ξ, k, 2)

2[(ℵ(ϑ, ξ, k, 2) − (1 − ξ)]
(30)

then

Nδ(h) ⊂ MG∗(ρ, ϑ, ξ, k) (31)

where ℵ(ϑ, ξ, k, 2) is defined in (14).

Proof. Assume that f ∈ Nδ(h), then from (24) we have

∞∑
n=2

n|an − dn| ≤ δ

which infers that
∞∑

n=2

|an − dn| ≤
δ
2
.

Subsequently h ∈ MG∗k(ξ, ϑ),we have

∞∑
n=2

dn =
1 − ξ

ℵ(ϑ, ξ, k, 2)

so that

∣∣∣∣∣ f (ζ)
h(ζ)

− 1
∣∣∣∣∣ <

∞∑
n=2
|an − dn|

1 −
∞∑

n=2
dn

≤
δ
2
×

ℵ(ϑ, ξ, k, 2)
ℵ(ϑ, ξ, k, 2) − (1 − ξ)

≤
δℵ(ϑ, ξ, k, 2)

2[(ℵ(ϑ, ξ, k, 2) − (1 − ξ)]
= 1 − ρ,

if that ρ is assumed precisely by (31), consequently by Definition 4.2, f ∈ MG∗(ρ, ϑ, ξ, k) which concludes
the proof.

5. Integral Means

In [30], Silverman originate that the extremal over the family T is f2(ζ) = ζ − ζ
2

2 . In[31] he conjectured
the integral means inequality given by ,

2π∫
0

∣∣∣ f (reiθ)
∣∣∣η dθ ≤

2π∫
0

∣∣∣ f2(reiθ)
∣∣∣η dθ,
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for all f ∈ T , η > 0 and 0 < r < 1 and settled in [32] by using the extremal function f2(ζ). In [32], he also
showed his conjecture for the subclasses T ∗(ξ) and C(ξ) .

We recall the subsequent definition and the lemma to show our result on Integral means inequality.

Definition 5.1. (Subordination Principle)[23]: Let f and 1 be functions analytic in D. Then, we say that the
function f is subordinated to 1, if there exists a Schwarz function ϖ, analytic in U with ϖ(0) = 0 and |ϖ(z)| < 1,
ζ ∈ U, such that

f (ζ) = 1(ϖ(ζ)), ζ ∈ U,

and we symbolize this subordination by f (ζ) ≺ 1(ζ). In particular, if the function 1 is univalent in U, the above
subordination is equivalent to

f (0) = 1(0) and f (U) ⊂ 1(U).

Lemma 5.2. [23] If the functions f, g ∈ A with g ≺ f, then for ϱ > 0, and 0 < r < 1,
2π∫

0

∣∣∣g(reiθ)
∣∣∣ϱ dθ ≤

2π∫
0

∣∣∣f(reiθ)
∣∣∣ϱ dθ. (32)

Using Lemma 5.2,Theorem 2.2 and Theorem 2.5, we prove the integral means inequality for f ∈ MG∗k(ξ, ϑ).

Theorem 5.3. Suppose f ∈ MG∗k(ξ, ϑ), ϱ > 0, 0 ≤ ϑ ≤ 1, 0 ≤ ξ < 1, k ≥ 0 and f2(ζ) is defined by

f2(ζ) = ζ −
1 − ξ

ℵ(ϑ, ξ, k, 2)
ζ2,

where ℵ(ϑ, ξ, k, 2) is as in (14). Then for ζ = reiθ, 0 < r < 1, we have
2π∫

0

∣∣∣ f (ζ)
∣∣∣ϱ dθ ≤

2π∫
0

∣∣∣ f2(ζ)
∣∣∣ϱ dθ. (33)

Proof. For f ∈ T , the inequality (33) is equal to showing that
2π∫

0

∣∣∣∣∣∣∣1 −
∞∑

n=2

|an|ζ
n−1

∣∣∣∣∣∣∣
ϱ

dθ ≤

2π∫
0

∣∣∣∣∣1 − 1 − ξ
ℵ(ϑ, ξ, k, 2)

ζ

∣∣∣∣∣ϱ dθ.

By Lemma 5.2, it suffices to prove that

1 −
∞∑

n=2

|an|ζ
n−1
≺ 1 −

1 − ξ
ℵ(ϑ, ξ, k, 2)

ζ.

Setting

1 −
∞∑

n=2

|an|ζ
n−1 = 1 −

1 − ξ
ℵ(ϑ, ξ, k, 2)

ϖ(ζ), (34)

and using (12), we obtain

|ϖ(ζ)| =

∣∣∣∣∣∣∣
∞∑

n=2

ℵ(ϑ, ξ, k,n)
1 − ξ

|an|ζ
n−1

∣∣∣∣∣∣∣
≤ |ζ|

∞∑
n=2

ℵ(ϑ, ξ, k,n)
1 − ξ

|an|

≤ |ζ|,

which completes the proof .
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6. Subordination Results

Now due to Wilf [39], we state subordinating factor sequence which are more essential for our discussion.

Definition 6.1. (Subordinating Factor Sequence)[39]: A sequence {bn}
∞

n=1 of complex numbers is said to be a
subordinating sequence if, f ∈ A given by (1) is holomorphic, univalent and convex inU, then

∞∑
n=1

bnanζ
n
≺ f (ζ), ζ ∈ U. (35)

Lemma 6.2. The sequence {bn}
∞

n=1 is a subordinating factor sequence if and only if

Re

1 + 2
∞∑

n=1

bnζ
n

 > 0, ζ ∈ U. (36)

Theorem 6.3. Let f ∈ MG∗k(ξ, ϑ) and 1(ζ) ∈ K then

ℵ(ϑ, ξ, k, 2)
2[1 − ξ + ℵ(ϑ, ξ, k, 2)]

( f ∗ 1)(ζ) ≺ 1(ζ) (37)

where 0 ≤ ξ < 1; k ≥ 0 and 0 ≤ ϑ ≤ 1, and

Re
{
f (ζ)

}
> −

[1 − ξ + ℵ(ϑ, ξ, k, 2)]
ℵ(ϑ, ξ, k, 2)

, ζ ∈ U. (38)

The constant factor ℵ(ϑ,ξ,k,2)
2[1−ξ+ℵ(ϑ,ξ,k,2)] in (37) cannot be substituted by a greater number.

Proof. Since f ∈ MG∗k(ξ, ϑ) and assume that 1(ζ) = ζ +
∞∑

n=2
bnζn

∈ K . Then

ℵ(ϑ, ξ, k, 2)
2[1 − ξ + ℵ(ϑ, ξ, k, 2)]

( f ∗ 1)(ζ)

=
ℵ(ϑ, ξ, k, 2)

2[1 − ξ + ℵ(ϑ, ξ, k, 2)]

ζ + ∞∑
n=2

bnanζ
n

 . (39)

Therefore, by Definition 6.1, the subordination result holds if{
ℵ(ϑ, ξ, k, 2)

2[1 − ξ + ℵ(ϑ, ξ, k, 2)]

}∞
n=1

is a subordinating factor sequence, with a1 = 1. In sight of Lemma 6.2, this is equal to the subsequent
inequality

Re

1 +
∞∑

n=1

ℵ(ϑ, ξ, k, 2)
[1 − ξ + ℵ(ϑ, ξ, k, 2)]

anζ
n

 > 0, ζ ∈ U. (40)

For n ≥ 2 we note that ℵ(k,ϑ,ξ,n)
1−ξ is increasing function and in particular

ℵ(ϑ, ξ, k, 2)
1 − ξ

≤
ℵ(k, ϑ, ξ, n)

1 − ξ
, n ≥ 2,
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therefore, for |ζ| = r < 1,we have

Re

1 +
ℵ(ϑ, ξ, k, 2)

[1 − ξ + ℵ(ϑ, ξ, k, 2)]

∞∑
n=1

anζ
n


= Re

1 +
ℵ(ϑ, ξ, k, 2)

[1 − ξ + ℵ(ϑ, ξ, k, 2)]
ζ +

∞∑
n=2
ℵ(ϑ, ξ, k, 2)anζn

[1 − ξ + ℵ(ϑ, ξ, k, 2)]


≥ 1 −

ℵ(ϑ, ξ, k, 2)
[1 − ξ + ℵ(ϑ, ξ, k, 2)]

r −

∞∑
n=2
|ℵ(k, ϑ, ξ, n)an| rn

[1 − ξ + ℵ(ϑ, ξ, k, 2)]

≥ 1 −
ℵ(ϑ, ξ, k, 2)

[1 − ξ + ℵ(ϑ, ξ, k, 2)]
r −

1 − ξ
[1 − ξ + ℵ(ϑ, ξ, k, 2)]

r

> 0, |ζ| = r < 1,

by the assertion (12) of Theorem 2.2 . This clearly proves (40) and hence (37) .
By fixing

1(ζ) =
ζ

1 − ζ
= ζ +

∞∑
n=2

ζn
∈ K ,

thus
f ∗ 1 = F(ζ) := ζ −

1 − ξ
ℵ(ϑ, ξ, k, 2)

ζ2

inequality (38) follows from (37) . Subsequently we consider the function

F(ζ) := ζ −
1 − ξ

ℵ(ϑ, ξ, k, 2)
ζ2
∈ MG

∗

k(ξ, ϑ).

For this function (37) becomes

ℵ(ϑ, ξ, k, 2)
2[1 − ξ + ℵ(ϑ, ξ, k, 2)]

F(ζ) ≺
ζ

1 − ζ
= 1(ζ).

It is easily verified that

min
{

Re
(

ℵ(ϑ, ξ, k, 2)
2[1 − ξ + ℵ(ϑ, ξ, k, 2)]

F(ζ)
)}
= −

1
2
, ζ ∈ U.

This proves that the constant ℵ(ϑ,ξ,k,2)
2[1−ξ+ℵ(ϑ,ξ,k,2)] cannot be substituted by a greater number.

Concluding Remarks: Suitably fixing the parameters ϑ, ξ and k the results discussed in Theorems2.1 - 6.3
would find additional applications for f ∈ T for thefunction classesillustrated in Examples 1.3 to 1.6 which
have not been studied so far. Further by fixing τ = 1;κ = 1; ȷ = 1/2 and ℓ = 1 we get error functions given
by

I1,1
1
2 ,1

(ζ) = eζ
2

1 +
2
√
π

∞∑
n=0

(−1)n

n!(2n + 1)
ζ2n+1

 .
which gives new study on the family of Starlike functions we left this as an exercise to interested read-
ers.Miller and Bertram Ross[25] proposed the special function, which is called the Miller-Ross function
defined as

Eζ(s, ℘) = ζse℘ζΥ∗(s, ℘ζ),
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whereΥ∗ is the incomplete gamma function (p.314, [25]). Using the properties of the incomplete gamma
functions the Miller-Ross function can easily be written as

Eζ(s, ℘) := ζs
∞∑

n=0

(ζ℘)n

Γ(s + n + 1)
, s, ℘ ∈ C, with Re s > 0, Re℘ > 0.

Which can be stated as
Eζ(s, ℘) ≡ ζsE1,1+s(℘ζ)

where in the right hand member E1,1+s(℘ζ) is the Mittag-Leffler of two parameters when ȷ = 1, and
ℓ = s + 1, as a conclusion in future one may consider Miller-Ross function and discuss the above proved
characteristic functions for the subclasses of S or T defined in the unit disc.
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