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Abstract. In this paper, we obtain coupled fixed point theorem for (ψ,ϕ)-contractions under some gener-
alized conditions on the real valued functions ψ and ϕ defined on (0,∞). Also, we present a generalized
version of coupled fixed point theorem for the same (ψ,ϕ)-contractions. A new approach to fractal gen-
eration by using the relation between fractals and fixed points is given in the light of these fixed point
theorems. We establish a new type of iterated function system consisting of generalized (ψ,ϕ)-contractions.
We also extend those results to coupled fractals. This article also provides examples to support and validate
the main theorems.

1. Introduction and Preliminaries

Banach contraction principle, proved in 1922 by Banach, is a famous fixed point theorem. Numerous
fields of mathematics, as well as other fields of science and technology, have found use for this theorem.
Many mathematicians generalized Banach contraction principle in different ways. They led to exciting
results in fixed point theory. Boyd and Wong [5] came up with an extension of Banach contraction principle
in 1969.

Theorem 1.1. [5] Given a metric space (X, d), let T be a self-mapping on X that fulfills the following condition:

d
(
T(x),T(y)

)
≤ ϕ

(
d(x, y)

)
for each x, y ∈ X,

where ϕ : R+ → [0,∞) is upper semi-continuous from the right and satisfies the condition 0 ≤ ϕ(t) < t for t > 0. If
(X, d) is complete, then T possesses a fixed point x0 in X, which is unique, and the iterative sequence {Tn(x)} converges
to x0 for any x ∈ X.

Later in 1975, Matkowski [9] proved another variant of Boyd- Wong fixed point theorem. In this variant,
the continuity of the function ϕ is replaced with some more general condition.

Theorem 1.2. [9] Let (X, d) is a metric space. Given a map T : X→ X that satisfies

d
(
T(x),T(y)

)
≤ ϕ

(
d(x, y)

)
for each x, y ∈ X,

where ϕ : (0,∞) → (0,∞) is nondecrasing and satisfies the condition lim
n→∞

ϕn(t) = 0 for t > 0. Then T has one and
only one fixed point x0 in X if (X, d) is complete. Further, the iterative sequence {Tn(x)} converges to x0 for any x ∈ X.
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One of the recent generalizations of Banach contraction principle was given by Proinov [19] for generalized
(ψ,ϕ)- contractions. We will discuss some of the ideas introduced by Proinov.

Definition 1.3. [19] Given a metric space (X, d), let T : X→ X be a map. Then T is said to be (ψ,ϕ)-contraction if
it satisfies the condition

ψ
(
d
(
T(x),T(y)

))
≤ ϕ

(
d
(
x, y

))
, f or all x, y ∈ X with d

(
T(x),T(y)

)
> 0, (1)

provided the functions ψ,ϕ : (0,∞)→ R fulfil the condition ϕ(t) < ψ(t) for t > 0.

The main result given by Proinov is,

Theorem 1.4. [19] On a metric space (X, d) which is complete, let T : X → X be a self-mapping that fulfills the
condition(1), provided the functions ψ,ϕ : (0,∞)→ R satisfies the following requirements:

(i) ψ is nondecreasing;

(ii) ϕ(t) < ψ(t) for every t > 0;

(iii) lim sup
t→ϵ+

ϕ(t) < ψ(ϵ+).

Then T has a fixed point ξ ∈ X which is unique and the iterative sequence {Tn(x)} converges to ξ for any x ∈ X.

In 2021, Popescu [18] proved another generalization by modifying and improving some results proved by
Proinov.

Theorem 1.5. [18] On a metric space (X, d) which is complete, let T : X → X be a self-mapping that fulfills the
condition(1), provided the functions ψ,ϕ : (0,∞)→ R follows the below constraints:

(i) ϕ(t) < ψ(t) for every t > 0;

(ii) inf
t>ϵ
ψ(t) > −∞ for every ϵ > 0;

(iii) if there are two converging sequences {ψ(tn)} and {ϕ(tn)} with the same limit and {ψ(tn)} is strictly decreasing,
then tn → 0 as n→∞;

(iv) lim sup
t→ϵ+

ϕ(t) < lim inf
t→ϵ+

ψ(t) for all ϵ > 0;

(v) the graph of S is closed or lim sup
t→0+

ϕ(t) < min
{
lim inf

t→ϵ
ψ(t), ψ(ϵ)

}
for any ϵ > 0.

Then T possesses a unique fixed point ξ ∈ X and the iterative sequence {Tn(x)} converges to ξ for every x ∈ X.

Coupled and common fixed point results of generalized contractions are also of great importance. They are
very helpful in establishing solutions to a system of integral and differential equations. Some of the recent
developments in this direction can be found in [6, 13–15, 21, 22].

In this paper, we extend the above fixed point theorems by Proinov and Popescu to coupled fixed point
problems which usually discuss about the fixed points of maps of the kind T : X × X → X where X is
a complete metric space. Also, we prove a generalized version of the coupled fixed point theorem by
replacing the product of a complete metric space by a product of two different complete metric spaces, say
X × Y. As a major application of fixed point theory, we extend our work to the theory of fractals too. Here
we present a new method to construct fractals using generalized (ψ,ϕ)-contractions, for which we use the
idea of new iterated function system consisting of generalized (ψ,ϕ)-contractions. This is different from the
classical way of generating fractals given by Hutchinson and Barnsley [4], which uses Banach contraction
principle. Towards the end of the paper, inspired from the coupled fixed point results, we demonstrate the
existence of a unique coupled self-similar set for generalized (ψ,ϕ)-contraction mappings.
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2. Coupled fixed point theorem for (ψ, ϕ)-contraction

In this section, we give our main results which extend fixed point theorems by Proinov and Popescu to
coupled fixed point problems.

Definition 2.1. Let (X, d) be a metric space and ψ,ϕ : (0,∞)→ R be two maps. A map T : X×X→ X is said to be
jointly (ψ,ϕ)-contraction if for z = (x, y),w = (u, v) ∈ X×X, with max{d

(
T
(
x, y

)
,T (u, v)

)
, d

(
T
(
y, x

)
,T (v,u)

)
} >

0, then

ψ (d (Tz,Tw)) ≤ ϕ
(
max{d(x,u), d(y, v)}

)
(2)

For a complete metric space (X, d) we define X∗ = X×X. Define d∗ : X∗ ×X∗ → R such that d∗
(
(x, y), (u, v)

)
=

max{d(x,u), d(y, v)}. It can easily be seen that, completeness of the metric space (X∗, d∗) follows from the
completeness of (X, d).

For the map T : X∗ → X, we can define the iterative sequence as follows:
T2(x, y) = T

(
T(x, y),T(y, x)

)
T3(x, y) = T

(
T2(x, y),T2(y, x)

)
...

Tn(x, y) = T
(
Tn−1(x, y),Tn−1(y, x)

)
Theorem 2.2. Let (X, d) be a complete metric space and T : X∗ → X satisfies condition(2) providedψ,ϕ : (0,∞)→ R
follows the constraints:

(i) ψ is nondecreasing;

(ii) ϕ(t) < ψ(t) for every t > 0;

(iii) lim sup
t→ϵ+

ϕ(t) < ψ(ϵ+) for every ϵ > 0.

Then there exists an element ξ∗ = (x∗, y∗) ∈ X∗, which is unique, such thatx∗ = T(x∗, y∗)
y∗ = T(y∗, x∗)

and the iterative sequences xn = Tn(x, y) and yn = Tn(y, x) converge to x∗ and y∗ respectively, for any (x, y) ∈ X∗.

Proof. Since (X, d) is a complete metric space, from the earlier discussion, we have (X∗, d∗) is also com-
plete. Now we define a map T∗ : X∗ → X∗ such that T∗(x, y) =

(
T(x, y),T(y, x)

)
for (x, y) ∈ X∗. Let

z = (x, y), w = (u, v) ∈ X∗ with d∗(T∗z,T∗w) > 0. If d∗(T∗z,T∗w) = max{d(T(x, y),T(u, v)), d
(
T(y, x),T(v,u)

)
} =

d
(
T(x, y),T(u, v)

)
, then from condition(2) we get,

ψ (d∗ (T∗z,T∗w)) = ψ
(
d
(
T(x, y),T(u, v)

))
≤ ϕ

(
max{d(x,u), d(y, v)}

)
= ϕ (d∗(z,w)) .

On the other hand, assume d∗(T∗z,T∗w) = max{d(T(x, y),T(u, v)), d(T(y, x),T(v,u))} = d(T(y, x),T(v,u)).
Proceeding as above, we get ψ (d∗ (T∗z,T∗w)) ≤ ϕ (d∗(z,w)) . Thus it follows that, for any z, w ∈ X∗

with d∗(T∗z,T∗w) > 0, we have ψ (d∗ (T∗z,T∗w)) ≤ ϕ (d∗(z,w)), which means the self-mapping T∗ satisfies
condition(1) in the complete metric space (X∗, d∗). Then, from condition (i)- (iii) in the hypothesis and
Theorem 1.4, we can conclude that there exists a unique ξ∗ = (x∗, y∗) ∈ X∗ such that T∗ξ∗ = ξ∗. That is,(
T(x∗, y∗),T(y∗, x∗)

)
= (x∗, y∗), which implies that x∗ = T(x∗, y∗), y∗ = T(y∗, x∗). Also for any z = (x, y) ∈ X∗, the

iterative sequence {T∗n(z)} converges to ξ∗. That is, the iterative sequences xn = Tn(x, y) and yn = Tn(y, x)
converge to x∗ and y∗ respectively for any (x, y) ∈ X∗. This completes the proof.
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In the same way, we can have an extension of Theorem 1.5 for coupled fixed points.

Theorem 2.3. Given a complete metric space (X, d), T : X∗ → X be a map satisfying the condition(2) where
ψ,ϕ : (0,∞)→ R satisfying the conditions:

(i) ϕ(t) < ψ(t) for any t > 0;

(ii) inf
t>ϵ
ψ(t) > −∞ for any ϵ > 0;

(iii) if {ψ(tn)} and {ϕ(tn)} are sequences that converge to the same limit and {ψ(tn)} is strictly decreasing, then tn → 0
as n→∞;

(iv) lim sup
t→ϵ+

ϕ(t) < lim inf
t→ϵ+

ψ(t) for any ϵ > 0;

(v) graph of T is closed or lim sup
t→0+

ϕ(t) < min
{
lim inf

t→ϵ
ψ(t), ψ(ϵ)

}
for any ϵ > 0.

Then there exists a unique point ξ∗ = (x∗, y∗) ∈ X∗ such thatx∗ = T(x∗, y∗)
y∗ = T(y∗, x∗)

and the iterative sequences xn = Tn(x, y) and yn = Tn(y, x) converge to x∗ and y∗ respectively, for any (x, y) ∈ X∗.

Proof. Define a map T∗ : X∗ → X∗ such that T∗(x, y) =
(
T(x, y),T(y, x)

)
for (x, y) ∈ X∗. Then from the proof

of Theorem 2.2, it is clear that T∗ satisfies condition(1). Suppose that T has a closed graph. Then for any
sequences {xn}, {yn} in X such that xn → x, yn → y, T(xn, yn) → α and T(yn, xn) → β as n → ∞, it will be
true that T(x, y) = α and T(y, x) = β. From this, we can conclude that for any sequence {(xn, yn)} ⊂ X∗ with
(xn, yn)→ (x, y) and T∗(xn, yn)→ (α, β) we get, T∗(x, y) = (α, β), which means T∗ has a closed graph. Thus if
the graph of T is closed then graph of T∗ is also closed. Hence the result follows from the conditions (i)- (v)
in the hypothesis and Theorem 1.5.

Example 2.4. Let M =
{

1
2n : n ∈ Z+ ∪ {0}

}
and X = M ∪ {0}. Define d : X × X → R by d(x, y) = |x − y|. It

can be easily verified that (X, d) is a complete metric space. Also, consider the complete metric space X × X with the
maximum metric given by

d∗
(
(x, y), (u, v)

)
= max

{
|x − u| ,

∣∣∣y − v
∣∣∣ } for any (x, y), (u, v) ∈ X × X.

Define a map T : X × X→ X such that

T(x, y) =


1

2min{m,n}+1 if (x, y) ∈M ×M
1

2n+1 if (x, y) ∈ (M × {0}) ∪ ({0} ×M)
0 if (x, y) = (0, 0)

Also, define ψ,ϕ : (0,∞)→ R as follows:

ψ(t) =


t
2 if t ∈ (0, 1

2 )
3t
2 if t ∈ [ 1

2 , 1)
3t if t ≥ 1

and ϕ(t) =


t
4 if t ∈ (0, 1

2 )
t if t ∈ [ 1

2 , 1)
2t if t ≥ 1

Here the functions ψ and ϕ satisfy the conditions (i)- (v) of Theorem 2.3.
Case 1: For m,n, p, q ≥ 0 with min{m,n} , min{p, q}, we have

ψ
(
d
(
T
( 1

2m ,
1
2n

)
,T

( 1
2p ,

1
2q

)))
= ψ

(∣∣∣∣∣ 1
2min{m,n}+1

−
1

2min{p,q}+1

∣∣∣∣∣)
=

1
4

∣∣∣∣∣ 1
2min{m,n}

−
1

2min{p,q}

∣∣∣∣∣
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and

ϕ
(
d∗

(( 1
2m ,

1
2n

)
,
( 1

2p ,
1
2q

)))
= ϕ

(
max

{∣∣∣∣∣ 1
2m −

1
2p

∣∣∣∣∣ , ∣∣∣∣∣ 1
2n −

1
2q

∣∣∣∣∣})
=

 1
4 max

{∣∣∣ 1
2m −

1
2p

∣∣∣ , ∣∣∣ 1
2n −

1
2q

∣∣∣} if m,n, p, q > 0
max

{∣∣∣ 1
2m −

1
2p

∣∣∣ , ∣∣∣ 1
2n −

1
2q

∣∣∣} otherwise.

Case 2: For m,n, p ≥ 0 with min{m,n} , p, we get

ψ
(
d
(
T
( 1

2m ,
1
2n

)
,T

( 1
2p , 0

)))
= ψ

(∣∣∣∣∣ 1
2min{m,n}+1

−
1

2p+1

∣∣∣∣∣) = 1
4

∣∣∣∣∣ 1
2min{m,n}

−
1
2p

∣∣∣∣∣
and

ϕ
(
d∗

(( 1
2m ,

1
2n

)
,
( 1

2p , 0
)))
= ϕ

(
max

{∣∣∣∣∣ 1
2m −

1
2p

∣∣∣∣∣ , 1
2n

})

=


1
4 max

{∣∣∣ 1
2m −

1
2p

∣∣∣ , 1
2n

}
if max

{∣∣∣ 1
2m −

1
2p

∣∣∣ , 1
2n

}
< 1

2

max
{∣∣∣ 1

2m −
1
2p

∣∣∣ , 1
2n

}
if max

{∣∣∣ 1
2m −

1
2p

∣∣∣ , 1
2n

}
≥

1
2

2 if n = 0.

Case 3: If m, p ≥ 0 and m , p, we get

ψ
(
d
(
T
( 1

2m , 0
)
,T

( 1
2p , 0

)))
= ψ

(∣∣∣∣∣ 1
2m+1 −

1
2p+1

∣∣∣∣∣) = 1
4

∣∣∣∣∣ 1
2m −

1
2p

∣∣∣∣∣
and

ϕ
(
d∗

(( 1
2m , 0

)
,
( 1

2p , 0
)))
= ϕ

(
max

{∣∣∣∣∣ 1
2m −

1
2p

∣∣∣∣∣ , 0})
=

 1
4

∣∣∣ 1
2m −

1
2p

∣∣∣ if
∣∣∣ 1

2m −
1
2p

∣∣∣ < 1
2∣∣∣ 1

2m −
1
2p

∣∣∣ if
∣∣∣ 1

2m −
1
2p

∣∣∣ ≥ 1
2 .

On the other hand

ψ
(
d
(
T
( 1

2m , 0
)
,T

(
0,

1
2p

)))
= ψ

(∣∣∣∣∣ 1
2m+1 −

1
2p+1

∣∣∣∣∣) = 1
4

∣∣∣∣∣ 1
2m −

1
2p

∣∣∣∣∣
and

ϕ
(
d∗

(( 1
2m , 0

)
,
(
0,

1
2p

)))
= ϕ

(
max

{ 1
2m ,

1
2p

})

=


1
4 max

{
1

2m , 1
2p

}
if max

{
1

2m , 1
2p

}
< 1

2
1
2 if max

{
1

2m , 1
2p

}
= 1

2

2 if max
{

1
2m , 1

2p

}
= 1.

Case 4: For m,n > 0, we have

ψ
(
d
(
T
( 1

2m ,
1
2n

)
,T(0, 0)

))
= ψ

( 1
2min{m,n}+1

)
=

1
4

( 1
2min{m,n}

)
and

ϕ
(
d∗

(( 1
2m ,

1
2n

)
, (0, 0)

))
= ϕ

(
max

{ 1
2m ,

1
2n

})
=

 1
4 max

{
1

2m , 1
2n

}
if max

{
1

2m , 1
2n

}
< 1

2
1
2 if max

{
1

2m , 1
2n

}
= 1

2 .
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Case 5: For m > 0, we get

ψ
(
d
(
T
(
1,

1
2m

)
,T(0, 0)

))
= ψ

( 1
2min{0,m}+1

)
= ψ

(1
2

)
=

3
4

and

ϕ
(
d∗

((
1,

1
2m

)
, (0, 0)

))
= ϕ

(
max

{
1,

1
2m

})
= ϕ(1) = 2

Also,

ψ
(
d
(
T
( 1

2m , 0
)
,T(0, 0)

))
= ψ

( 1
2m+1

)
=

1
4

( 1
2m

)
and

ϕ
(
d∗

(( 1
2m , 0

)
, (0, 0)

))
= ϕ

( 1
2m

)
=

 1
4

(
1

2m

)
if m > 1

1
2 if m = 1.

Case 6:

ψ (d (T(1, 0),T(0, 0))) = ψ
(
d
(
T(

1
20 , 0),T(0, 0)

))
= ψ

(1
2

)
=

3
4

and

ϕ (d∗ ((1, 0), (0, 0))) = ϕ(1) = 2.

From all the above discussed cases, we can observe that, for any (x, y), (u, v) ∈ X∗, we have

ψ
(
d
(
T(x, y),T(u, v)

))
≤ ϕ

(
d∗

(
(x, y), (u, v)

))
Hence T satisfies condition(2) and all the hypotheses of Theorem 2.3. It is evident that (x, y) = (0, 0) a coupled fixed
point of T. Moreover, one can observe that it is the only coupled fixed point of T.

3. Extended coupled fixed points of (ψ, ϕ)-contractions

In this section we will consider more general problem in coupled fixed points. Here, instead of having
a product of same complete metric space, we will deal with a product of two different complete metric
spaces.

Given two complete metric spaces (X, d) and (Y, ρ), we define Z = X × Y and a function µ : Z→ R such
that

µ(z,w) = µ
(
(x, y), (u, v)

)
= max{d(x,u), ρ(y, v)} for any z = (x, y), w = (u, v) ∈ Z. (3)

We can easily observe that, since (X, d) and (Y, ρ) are complete metric spaces, the metric space (Z, µ) is also
complete.

Definition 3.1. Given two complete metric spaces (X, d) and (Y, ρ), let T : X × Y → X and S : X × Y → Y be
two maps. T and S are said to be extended jointly (ψ,ϕ)-contractions if for z = (x, y), w = (u, v) ∈ X × Y with
max{d

(
T(x, y),T(u, v)

)
, ρ

(
S(x, y),S(u, v)

)
} > 0, we have

ψ(d(Tz,Tw)) ≤ ϕ(max{d(x,u), ρ(y, v)})
ψ(ρ(Sz,Sw)) ≤ ϕ(max{d(x,u), ρ(y, v)})

(4)

where ψ,ϕ : (0,∞)→ R satisfy ϕ(t) < ψ(t) for every t > 0.
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Lemma 3.2. Given two complete metric spaces (X, d) and (Y, ρ), let T : X × Y → X and S : X × Y → Y
be extended jointly (ψ,ϕ)-contractions, where ψ,ϕ : (0,∞) → R. Let FTS : X × Y → X × Y be defined by
FTS(x, y) =

(
T(x, y),S(x, y)

)
for (x, y) ∈ X × Y. Then FTS is a (ψ,ϕ)-contraction.

Proof. Let Z = X × Y and µ be the metric defined as in equation(3). Note that (Z, µ) is a complete metric
space. Let z = (x, y), w = (u, v) ∈ Z. Then

ψ
(
µ (FTS(z),FTS(w))

)
= ψ

(
µ
((

T(x, y),S(x, y)
)
, (T(u, v),S(u, v))

))
= ψ

(
max{d

(
T(x, y),T(u, v)

)
, ρ

(
S(x, y),S(u, v)

)
}
) (5)

Suppose that µ (FTS(z),FTS(w)) = d
(
T(x, y),T(u, v)

)
. Then by condition(4), equation(5) becomes:

ψ
(
µ (FTS(z),FTS(w))

)
= ψ

(
d
(
T(x, y),T(u, v)

))
≤ ϕ

(
max{d(x,u), ρ(y, v)}

)
= ϕ

(
µ(z,w)

)
.

On the other hand, if µ (FTS(z),FTS(w)) = ρ
(
S(x, y),S(u, v)

)
, then by a similar argument as above we get,

µ (FTS(z),FTS(w)) ≤ ϕ
(
µ(z,w)

)
.

Hence the map FTS is a (ψ,ϕ)-contraction.

We define iterative sequences for the maps T and S as follows:

T2(x, y) = T
(
T(x, y),S(x, y)

)
S2(x, y) = S

(
T(x, y),S(x, y)

)
T3(x, y) = T

(
T2(x, y),S2(x, y)

)
S3(x, y) = S

(
T2(x, y),S2(x, y)

)
...

Tn(x, y) = T
(
Tn−1(x, y),Sn−1(x, y)

)
Sn(x, y) = S

(
Tn−1(x, y),Sn−1(x, y)

)
where (x, y) ∈ X × Y.
Now we can extend Theorem 1.4 to extended jointly (ψ,ϕ)-contractions to get a more generalized coupled
fixed points.

Theorem 3.3. Given two complete metric spaces (X, d) and (Y, ρ), let T : X×Y→ X and S : X×Y→ Y be extended
jointly (ψ,ϕ)-contractions. If the functions ψ,ϕ satisfy the conditions:

(i) ψ is nondecreasing;

(ii) ϕ(t) < ψ(t) for every t > 0;

(iii) lim sup
t→ϵ+

ϕ(t) < ψ(ϵ+) for every ϵ > 0,

then there exists a unique element ξ∗ = (x∗, y∗) ∈ X × Y such that, x∗ = T(x∗, y∗) and y∗ = S(x∗, y∗). Moreover, the
sequences xn = Tn(x, y) and yn = Sn(x, y) converge to x∗ and y∗ respectively for any (x, y) ∈ X × Y.

Proof. Define a map FTS : X × Y → X × Y by FTS(x, y) =
(
T(x, y),S(x, y)

)
for (x, y) ∈ X × Y. Then by Lemma

3.2, we have FTS is a (ψ,ϕ)-contraction. Hence the conditions (i)-(iii) in the hypotheses and Theorem 1.4
establish the result.

Theorem 3.4. Given two complete metric spaces (X, d) and (Y, ρ), let T : X×Y→ X and S : X×Y→ Y be extended
jointly (ψ,ϕ)-contractions. Suppose that the functions ψ,ϕ satisfy the constraints:
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(i) ϕ(t) < ψ(t) for every t > 0;

(ii) inf
t>ϵ
ψ(t) > −∞ for all ϵ > 0;

(iii) if there are two sequences {ψ(tn)} and {ϕ(tn)} having the same limit and {ψ(tn)} is strictly decreasing, then
tn → 0 as n→∞;

(iv) lim sup
t→ϵ+

ϕ(t) < lim inf
t→ϵ+

ψ(t) for any ϵ > 0;

(v) either the graphs of T and S are closed or lim sup
t→0+

ϕ(t) < min
{
lim inf

t→ϵ
ψ(t), ψ(ϵ)

}
for any ϵ > 0.

Then there exists a unique point ξ∗ = (x∗, y∗) ∈ X × Y such that, x∗ = T(x∗, y∗) and y∗ = S(x∗, y∗). Moreover, the
sequences xn = Tn(x, y) and yn = Sn(x, y) converge to x∗ and y∗ respectively for any (x, y) ∈ X × Y.

Proof. Define a map FTS : X×Y→ X×Y by FTS(x, y) =
(
T(x, y),S(x, y)

)
for (x, y) ∈ X×Y. Then by Lemma 3.2,

we have FTS is a (ψ,ϕ)-contraction. Suppose that the graphs of T and S are closed. Then for any sequence
{(xn, yn)} in X × Y with (xn, yn)→ (x, y), T(xn, yn)→ α and S(xn, yn)→ β, we have T(x, y) = α and S(x, y) = β.
Since T(xn, yn) → α and S(xn, yn) → β, we get FTS(xn, yn) = (T(xn, yn),S(xn, yn)) → (α, β). Also, T(x, y) = α
and S(x, y) = β implies FTS(x, y) = (α, β). Hence we are able to conclude that if {(xn, yn)} is a sequence in
X×Y with (xn, yn)→ (x, y) and FTS(xn, yn) =

(
T(xn, yn),S(xn, yn)

)
→ (α, β) then FTS(x, y) = (α, β). This implies

that FTS has a closed graph if T and S have closed graphs. With this fact along with conditions (i)- (v) in the
hypotheses and Theorem 1.5 we can complete the proof.

Even more generally, suppose the maps T and S defined above satisfy the following contractive conditions:

ψ(d(Tz,Tw)) ≤ ϕ1(max{d(x,u), ρ(y, v)})
ψ(ρ(Sz,Sw)) ≤ ϕ2(max{d(x,u), ρ(y, v)})

(6)

for z = (x, y), w = (u, v) ∈ X × Y with max{d
(
T(x, y),T(u, v)

)
, ρ

(
S(x, y),S(u, v)

)
} > 0, where the functions

ψ,ϕ1, ϕ2 : (0,∞) → R are such that ϕi(t) < ψ(t) for i = 1, 2 and for every t > 0. Let us define a function
ϕ : (0,∞)→ R as ϕ(t) = max{ϕ1(t), ϕ2(t)} for t > 0. Since ϕi(t) < ψ(t) for i = 1, 2 and for every t > 0, we get
ϕ(t) < ψ(t) for every t > 0. Then we can have the following Lemma.

Lemma 3.5. Given two complete metric spaces (X, d) and (Y, ρ), let Z = X × Y. Let T : Z → X and S : Z → Y
satisfy condition(6). Define a map FTS : Z → Z by FTS(x, y) =

(
T(x, y),S(x, y)

)
for (x, y) ∈ Z. Then FTS is a

(ψ,ϕ)-contraction.

Proof. Note that (Z, µ) is a complete metric space. Let z = (x, y), w = (u, v) ∈ Z. Then,

ψ
(
µ (FTS(z),FTS(w))

)
= ψ

(
µ
((

T(x, y),S(x, y)
)
, (T(u, v),S(u, v))

))
= ψ

(
max{d

(
T(x, y),T(u, v)

)
, ρ

(
S(x, y),S(u, v)

)
}
) (7)

Suppose µ (FTS(z),FTS(w)) = d
(
T(x, y),T(u, v)

)
, then by condition(6), equation(7) becomes:

ψ
(
µ (FTS(z),FTS(w))

)
= ψ

(
d
(
T(x, y),T(u, v)

))
≤ ϕ1

(
max{d(x,u), ρ(y, v)}

)
= ϕ1

(
µ(z,w)

)
≤ ϕ

(
µ(z,w)

)
.

On the other hand, if µ (FTS(z),FTS(w)) = ρ
(
S(x, y),S(u, v)

)
, then again by condition(6), equation(7) becomes:

ψ
(
µ (FTS(z),FTS(w))

)
= ψ

(
µ
(
S(x, y),S(u, v)

))
≤ ϕ2

(
max{d(x,u), ρ(y, v)}

)
= ϕ2

(
µ(z,w)

)
≤ ϕ

(
µ(z,w)

)
.

Thus in both cases we have µ (FTS(z),FTS(w)) ≤ ϕ
(
µ(z,w)

)
. Hence the map FTS is a (ψ,ϕ)-contraction.
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Our aim is to produce a fixed point theorem for maps T and S satisfying the contractive condition(6). Prior
to that, we must demonstrate the following Lemma.

Lemma 3.6. Let ϕ1, ϕ2 : (0,∞) → R be two functions such that for t0 > 0, lim sup
t→t0

ϕi(t) exists for i = 1, 2. If we

define ϕ(t) = max{ϕ1(t), ϕ2(t)}, then lim sup
t→t0

ϕ(t) ≤ max
{

lim sup
t→t0

ϕ1(t), lim sup
t→t0

ϕ2(t)
}

.

Proof. By the definition and properties of limit supremum of functions, since t0 > 0 and lim sup
t→t0

ϕi(t) exists,

the set
Ai =

{
l ∈ R : ∃{tn}, tn > 0, tn → t0, tn , t0 for all n > 0, such that ϕi(tn)→ l

}
is non empty, and also lim sup

t→t0

ϕi(t) = max Ai for i = 1, 2.

Since lim sup
t→t0

ϕi(t) exists, we have lim sup
t→t0

ϕ(t) also exists. Now we define

A =
{
l ∈ R : ∃{tn}, tn > 0, tn → t0, tn , t0 for all n > 0, such that ϕ(tn)→ l

}
.

Then we have A is nonempty and lim sup
t→t0

ϕ(t) = max A.

Let l ∈ A. Then by definition, there exists a sequence {tn} in (0,∞) with tn → t0, tn , t0 for all n such that
ϕ(tn) → l. Thus for ϵ > 0 one can find an N ∈ N such that

∣∣∣ϕ(tn) − l
∣∣∣ < ϵ whenever n ≥ N. That is,∣∣∣∣max

{
ϕ1(tn), ϕ2(tn)

}
− l

∣∣∣∣ < ϵ whenever n ≥ N. For k ∈N, define Nk(ϕi) =
{
n ∈N :

∣∣∣ϕi(tn) − l
∣∣∣ < 1

k

}
for i = 1, 2.

For each k, either Nk(ϕ1) or Nk(ϕ2) is nonempty. Also, Nk+1(ϕi) ⊆ Nk(ϕi) for each k and i = 1, 2. Thus for at
least one i = 1, 2, we get Nk(ϕi) , ∅ for all k . Without loss of generality, assume that Nk(ϕ1) , ∅ for all k.
Then by picking nk ∈ Nk(ϕ1), we get a subsequence {tnk } of {tn} such that

∣∣∣ϕ1(tnk ) − l
∣∣∣ < 1

m for all k ≥ m. This
implies that ϕ1(tnk )→ l. Hence l ∈ A1. By this, we can conclude that, if l ∈ A then l ∈ A1 ∪ A2, which yields
that lim sup

t→t0

ϕ(t) = max A ≤ max{max A1,max A2} = max{lim sup
t→t0

ϕ1(t), lim sup
t→t0

ϕ2(t)}

This leads us to the following conclusion in light of these Lemmas.

Theorem 3.7. Given two complete metric spaces (X, d) and (Y, ρ), let T : X × Y → X and S : X × Y → Y be two
maps satisfying condition(6). If the functions ψ,ϕ1 and ϕ2 follow the constraints:

(i) ψ is nondecreasing;

(ii) ϕi(t) < ψ(t) for every t > 0 and i = 1, 2;

(iii) lim sup
t→ϵ+

ϕi(t) < ψ(ϵ+) for every ϵ > 0.

Then there exists a unique point ξ∗ = (x∗, y∗) ∈ X × Y such that,x∗ = T(x∗, y∗)
y∗ = S(x∗, y∗)

and the sequences xn = Tn(x, y) and yn = Sn(x, y) converge to x∗ and y∗ respectively for any (x, y) ∈ X × Y.

Proof. We define a map FTS : X×Y→ X×Y by FTS(x, y) =
(
T(x, y),S(x, y)

)
for (x, y) ∈ X×Y. Then by Lemma

3.2, we have FTS is a (ψ,ϕ)-contraction where ϕ(t) = max{ϕ1(t), ϕ2(t)} for t > 0. Since ϕi(t) < ψ(t) for all t > 0
and i = 1, 2, we get ϕ(t) < ψ(t) for every t > 0. Now, from condition (ii) in the hypothesis and Lemma 3.6,
we get lim sup

t→ϵ+
ϕ(t) < ψ(ϵ+) for every ϵ > 0. Hence the functions ψ and ϕ satisfy conditions (i)-(iii) in the

hypothesis of Theorem 1.4. Then the result follows from the Theorem 1.4 and Lemma 3.5.
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4. Iterated Function Systems with (ψ, ϕ)-contractions

According to Barnsley [4], fractals can be mathematically identified as the fixed points of some set maps.
For the rest of this article,H(X) represents the collection of all nonempty compact subsets of the complete
metric space (X, d).

For any A,B ∈ H(X), we define distance between the sets A and B as

D(A,B) = max{d(x,B) : x ∈ A}
= max

x∈A
min
y∈B

d(x, y).

Now we define the Hausdorff distance inH(X) as hd(A,B) = max{D(A,B),D(B,A)}. The fact that hd defines
a metric onH(X) can be verified easily. Additionally, we possess the following Lemma:

Lemma 4.1. [4] (H(X), hd) is a complete metric space if (X, d) is a complete metric space. Moreover, for any Cauchy
sequence {An} inH(X) the limit is given by,

A = lim
n→∞

An =
{
x ∈ X : ∃ a Cauchy sequence {xn} in X such that xn ∈ An and lim

n→∞
xn = x

}
.

The space (H(X), hd) is usually called as the space of fractals.

Lemma 4.2. [23, 24] If {Ai : i = 1, 2, . . .n}, {Bi : i = 1, 2, . . .n} be two finite collections inH(X), then hd

(
n⋃

i=1
Ai,

n⋃
i=1

Bi

)
≤

max{hd(Ai,Bi) : i = 1, 2, . . .n}.

The technique, of Barnsley [4], of generating an IFS can not be employed on every generalized contractions.
Some of the problems occurring while proving the results on IFS consisting of Kannan, Chaterjea and Reich
type contractions has been discussed by Van Dung et al.[27]. But at the same time, many generalized
contractions has been extended to the fractal space. More results on generation of IFSs consisting of variety
of contraction maps can be found in [8, 10, 15, 16, 25, 26]. Motivated from all these literature, we will
generate the IFS consisting of generalized (ψ,ϕ)-contractions in this section. Also, we prove the existence
of attractors of these IFSs.

We first establish the extension of a continuous generalized (ψ,ϕ)-contraction to the fractal space.

Lemma 4.3. Let (X, d) be a complete metric space and w : X → X be a continuous map satisfying the condition(1)
with the nondecreasing control functions ψ,ϕ. Then ŵ : H(X) → H(X) defined by ŵ(A) = w(A) =

⋃
x∈A
{w(x)} for

A ∈ H(X) also satisfies condition(1) in (H(X), hd).

Proof. Let A,B ∈ H(X) such that hd(ŵ(A), ŵ(B)) > 0. Suppose that hd (ŵ(A), ŵ(B)) = D (ŵ(A), ŵ(B)) =
sup
x∈A

inf
y∈B

d
(
w(x),w(y)

)
> 0. Since w and d are continuous and A is compact, there exist a ∈ A for which

D (ŵ(A), ŵ(B)) = inf
y∈B

d
(
w(a),w(y)

)
> 0, which implies that d

(
w(a),w(y)

)
> 0 for every y ∈ B. Thus for any

y ∈ B,

ψ (D (ŵ(A), ŵ(B))) = ψ
(
inf
y∈B

d
(
w(a),w(y)

))
≤ ψ

(
d
(
w(a),w(y)

))
≤ ϕ

(
d(a, y)

)
.
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Let b ∈ B be such that d(a, b) = inf
y∈B

d(a, y). Since ϕ is nondecreasing,

ψ (hd (ŵ(A), ŵ(B))) = ψ (D (ŵ(A), ŵ(B)))
≤ ϕ (d(a, b))

= ϕ

(
inf
y∈B

d(a, y)
)

≤ ϕ

(
sup
x∈A

inf
y∈B

d(x, y)
)

≤ ϕ (hd(A,B)) .

On the other hand, if we assume
hd(ŵ(A), ŵ(B)) = D(ŵ(B), ŵ(A)) = sup

y∈B
inf
x∈A

d
(
w(y),w(x)

)
> 0, we can proceed as above and get

ψ (hd(ŵ(A), ŵ(B))) ≤ ϕ (hd(A,B)). This completes the proof.

Remark 4.4. The map ŵ in Lemma 4.3 is called the fractal operator generated by w. Continuity of the map w is
required to make sure that ŵ maps H(X) to itself. A fixed point A∗ ∈ H(X) of the map ŵ, if it exists, is called an
attractor or a self-similar set of w.

Theorem 4.5. Let (X, d) be a complete metric space and w : X → X be a continuous map. If the map w satisfies
condition(1), where ψ,ϕ : (0,∞)→ R follows the constraints:

(i) ψ,ϕ are nondecreasing;

(ii) ϕ(t) < ψ(t) for all t > 0;

(iii) lim sup
t→ϵ+

ϕ(t) < ψ(ϵ+),

then there exists a unique attractor, say A∗ ∈ H(X), for w. Moreover, for any A ∈ H(X) the sequence {An} inH(X),
given by An = wn(A), converges to A∗.

Proof. Let ŵ be the fractal operator generated by w. By Lemma 4.3 it is clear that ŵ satisfies condition(1).
Then, conditions (i)- (iii) in the hypothesis and Theorem 1.4 guarantee a fixed point for ŵ, say A∗ ∈ H(X),
which is unique. Moreover, for any A ∈ H(X), the sequence {An}, where An = ŵn(A), converges to A∗.
This proves the theorem.

Next lemma will prove a result on the property of graph of the function ŵ.

Lemma 4.6. Given a continuous map w : X → X on a complete metric space (X, d). If ŵ is the fractal operator
generated by w, then ŵ has a closed graph.

Proof. Consider an arbitrary sequence (An) inH(X) such that An → A and ŵ(An)→ B. The proof is complete
if we prove B = ŵ(A). By Lemma 4.1, we have

A = lim
n→∞

An =
{
x ∈ X : ∃ a Cauchy sequence {xn} in X such that xn ∈ An, lim

n→∞
xn = x

}
and

B = lim
n→∞

ŵ(An) =
{
x ∈ X : ∃ a Cauchy sequence {xn} such that xn ∈ ŵ(An), lim

n→∞
xn = x

}
.

Let x ∈ A, then a Cauchy sequence {xn} in X, with xn ∈ An exists, such that xn → x. Since w is continuous, we
get w(xn)→ w(x). In other words, there is a sequence {w(xn)} where w(xn) ∈ ŵ(An) such that w(xn)→ w(x).
Then by definition of B, w(x) ∈ B, which implies that w(A) ⊆ B.

On the other hand, let x ∈ B, then one can find a Cauchy sequence {xn} in X where xn ∈ ŵ(An) such that
xn → x. Then for each n, there exists yn ∈ An such that xn = w(yn) and hence we can write w(yn)→ x. Since



A. Puthusseri, D. R. Kumar / Filomat 38:26 (2024), 9305–9320 9316

(An) is a Cauchy sequence inH(X), for ϵ > 0 there exists an N ∈N such that hd(An,Am) < ϵ
3 for every n,m ≥

N. Then we have both D(An,Am) < ϵ
3 and D(Am,An) < ϵ

3 for all n,m ≥ N. By definition, D(An,Am) < ϵ
3

implies d(yn,Am) < ϵ
3 for every n,m ≥ N. Choose n,m ≥ N. Since d is continuous and Am is compact, there

exist a ∈ Am such that, d(yn, a) = D(yn,Am) < ϵ
3 for every n ≥ N. By a similar argument, for D(Am,An) < ϵ

3
we get a b ∈ An such that d(ym, b) < ϵ

3 for every m ≥ N. From the condition D(An,Am) < ϵ
3 , we get d(a, b) < ϵ

3 .
Therefore, d(yn, ym) ≤ d(yn, a) + d(a, b) + d(b, ym) < ϵ for every n,m ≥ N, which implies that {yn} is a Cauchy
sequence in X. Then we get a y ∈ X such that yn → y as n → ∞. Thus we obtain y ∈ A. Also, by the
continuity of w we get, w(yn) → w(y). This implies that x = w(y). Thus x ∈ ŵ(A), which proves that
B ⊆ ŵ(A). This finishes the proof.

We can establish the following result as an application of Theorem 1.5.

Theorem 4.7. Let w : X→ X be a continuous map on a complete metric space (X, d) that satisfies the condition(1),
provided the nondecreasing maps ψ,ϕ : (0,∞)→ R fulfil the following constraints:

(i) ϕ(t) < ψ(t) for all t > 0;

(ii) inf
t>ϵ
ψ(t) > −∞ for every ϵ > 0;

(iii) if there exist two convergent sequences {ψ(tn)} and {ϕ(tn)} with the same limit and {ψ(tn)} is nonincreasing,
then tn → 0 as n→∞;

(iv) lim sup
t→ϵ+

ϕ(t) < lim inf
t→ϵ+

ψ(t) for any ϵ > 0.

Then there exists a unique attractor, say A∗ ∈ H(X), for w. Moreover, for any A ∈ H(X) the sequence {An} inH(X),
given by An = wn(A), converges to A∗.

Proof. Let ŵ be the fractal operator generated by w. By Lemma 4.3, it is clear that ŵ satisfies condition(1).
Then, conditions (i)- (iv) in the hypothesis along with Lemma 4.6 and Theorem 1.5 guarantee a fixed point
for ŵ, say A∗ ∈ H(X), which is unique. Moreover, for any A ∈ H(X), the sequence {An}, where An = ŵn(A),
converges to A∗. This proves the theorem.

Now, instead of a single function w on X, we consider an iterated function system (IFS) {X; w1,w2, · · · ,wN}

where wi : X → X for i = 1, 2, · · · ,N are continuous and satisfies condition(1). The function W : H(X) →

H(X), defined by W(A) =
N⋃

i=1
ŵi(A), is called the fractal operator generated by the IFS {X; w1,w2, · · · ,wN}. A

point A ∈ H(X) such that W(A) =
N⋃

i=1
ŵi(A) = A, a fixed point of W, is called an attractor of the IFS.

Let us consider a more general situation.

Lemma 4.8. Let {X; w1,w2, · · · ,wN} be an IFS on a complete metric space (X, d), where wi : X→ X are continuous
maps satisfy the condition:

ψ(d(wi(x),wi(y))) ≤ ϕi(d(x, y)), (8)

where ψ,ϕi : (0,∞) → R are nondecreasing for i = 1, 2, · · · ,N. If W is the fractal operator generated by the IFS,
then it satisfies the condition(1), where ϕ(t) = max

1≤i≤N
ϕi(t) for t ∈ (0,∞).

Proof. Let A,B ∈ H(X). Then, we have ψ (hd (ŵi(A), ŵi(B))) ≤ ϕi (hd(A,B)) for i = 1, 2, · · · ,N. By Lemma 4.2,
we have

0 ≤ hd (W(A),W(B)) = hd

 N⋃
i=1

ŵi(A),
N⋃

i=1

ŵi(B)


≤ max

1≤i≤N
hd (ŵi(A), ŵi(B))

= hd

(
ŵ j(A), ŵ j(B)

)
,
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for some j ∈ {1, 2, · · ·N}. Since both ψ and ϕ j are nondecreasing, we get

ψ (hd (W(A),W(B))) ≤ ψ
(
hd

(
ŵ j(A), ŵ j(B)

))
≤ ϕ j (hd(A,B))
≤ ϕ (hd(A,B)) .

This completes the proof.

We get the following theorem as a direct consequence of this lemma and Theorem 1.4.

Theorem 4.9. Let {X; w1,w2, · · · ,wN} be an IFS on a complete metric space (X, d), where wi : X→ X are continuous
maps satisfy the condition(8). If the maps ψ,ϕi, for i = 1, 2, · · · ,N, are nondecreasing and satisfy the constraints:

(i) ϕi(t) < ψ(t) for every t > 0;

(ii) lim sup
t→ϵ+

ϕi(t) < ψ(ϵ+) for every ϵ > 0,

then there exists a unique attractor, A∗ ∈ H(X), for the IFS. Moreover, for any A ∈ H(X), the iterated sequence
An =Wn(A) converges to A∗.

Proof. Define a map ϕ : (0,∞) → R such that ϕ(t) = max
1≤i≤N

ϕi(t) for t ∈ (0,∞). Then from condition (i) in the

hypothesis, it is clear that,
ϕ(t) = max

1≤i≤N
ϕi(t) ≤ ψ(t), for every t > 0.

Now, from condition (ii) in the hypothesis and a similar argument in Lemma 3.6 we get, lim sup
t→ϵ+

ϕ(t) < ψ(ϵ+)

for every ϵ > 0. Thus the functions ψ and ϕ satisfies conditions (i)- (iii) of Theorem 1.4. Then the proof
follows immediately from Theorem 1.4 along with Lemma 4.8.

Now we consider an example:

Example 4.10. Consider R with Euclidean metric, which is a complete metric space. We define two maps w1,w2 :
R→ R as:

w1(x) =

 2
3 x if x ≥ 0
−2
3 x if x < 0

and w2(x) =

 1
3 x + 2

3 if x ≥ 0
−1
3 x + 2

3 if x < 0

Define three functions ψ,ϕ1, ϕ2 : (0,∞)→ R as:

ψ(t) =

2t if 0 < t ≤ 1
3t if t > 1

, ϕ1(t) =

 3
2 t if 0 < t ≤ 1
2t if t > 1

and ϕ2(t) =

t if 0 < t ≤ 1
5
2 t if t > 1

It can be easily observed that the maps w1 and w2 are continuous and ψ,ϕ1 and ϕ2 are nondecreasing and satisfy the
conditions (i) and (ii) of Theorem 4.9.
Consider the maps w1, ψ and ϕ1. Let x, y ∈ R
Case 1: For x, y ≥ 0 or x, y < 0, we get

ψ
(
d
(
w1(x),w1(y)

))
= ψ

(∣∣∣∣∣23x −
2
3

y
∣∣∣∣∣) =

 4
3

∣∣∣x − y
∣∣∣ if

∣∣∣x − y
∣∣∣ ≤ 1

2
∣∣∣x − y

∣∣∣ if
∣∣∣x − y

∣∣∣ > 1.

Case 2: If x ≥ 0 and y < 0 we have

ψ
(
d
(
w1(x),w1(y)

))
= ψ

(∣∣∣∣∣23x +
2
3

y
∣∣∣∣∣) =

 4
3

∣∣∣x + y
∣∣∣ if

∣∣∣x + y
∣∣∣ ≤ 1

2
∣∣∣x + y

∣∣∣ if
∣∣∣x + y

∣∣∣ > 1.
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Now, for any x, y ∈ R we have

ϕ1
(
d(x, y)

)
=

 3
2

∣∣∣x − y
∣∣∣ if

∣∣∣x − y
∣∣∣ ≤ 1

2
∣∣∣x − y

∣∣∣ if
∣∣∣x − y

∣∣∣ > 1.

Thus from the above cases it is clear that, for any x, y ∈ R, ψ
(
d
(
w1(x),w2(y)

))
≤ ϕ1

(
d(x, y)

)
. Similarly, if we

consider the maps w2, ψ and ϕ2 we can have the following cases.
Case 1: For x, y ≥ 0 or x, y < 0, we have

ψ
(
d
(
w2(x),w2(y)

))
= ψ

(∣∣∣∣∣13x −
1
3

y
∣∣∣∣∣) =

 2
3

∣∣∣x − y
∣∣∣ if

∣∣∣x − y
∣∣∣ ≤ 1∣∣∣x − y

∣∣∣ if
∣∣∣x − y

∣∣∣ > 1.

Case 2: If x ≥ 0 and y < 0, we get

ψ
(
d
(
w2(x),w2(y)

))
= ψ

(∣∣∣∣∣13x +
1
3

y
∣∣∣∣∣) =

 2
3

∣∣∣x + y
∣∣∣ if

∣∣∣x + y
∣∣∣ ≤ 1∣∣∣x + y

∣∣∣ if
∣∣∣x + y

∣∣∣ > 1.

Now, for any x, y ∈ R we have

ϕ2
(
d(x, y)

)
=


∣∣∣x − y

∣∣∣ if
∣∣∣x − y

∣∣∣ ≤ 1
5
2

∣∣∣x − y
∣∣∣ if

∣∣∣x − y
∣∣∣ > 1.

Here also, we can observe that, for any x, y ∈ R, ψ
(
d
(
w2(x),w2(y)

))
≤ ϕ2

(
d
(
x, y

))
. Thus the IFS {R; w1,w2} along

with the maps ψ,ϕ1 and ϕ2 satisfies the condition(8) and the hypothesis of Theorem 4.9. Hence by Theorem 4.9,
the map W : H(R) → H(R) defined by W(A) = w1(A) ∪ w2(A) satisfies condition(1) with the functions ψ and
ϕ = max{ϕ1, ϕ2}. Also we can observe that A = [0, 1] is the unique attractor of this IFS. We have w1([0, 1]) = [0, 2

3 ]
and w2([0, 1]) = [ 2

3 , 1]. Hence, W([0, 1]) = w1([0, 1]) ∪ w2([0, 1]) = [0, 1].

5. Applications to Coupled Fractals

This section is reserved for the discussion about the existence and uniqueness of coupled self- similar
sets for jointly (ψ,ϕ)-contractions.

Theorem 5.1. Let w : X×X→ X be a continuous map on a complete metric space (X, d) that satisfies the condition(2)
where ψ,ϕ : (0,∞)→ R follow the conditions:

(i) ψ,ϕ are nondecreasing;

(ii) ϕ(t) < ψ(t) for every t > 0;

(iii) lim sup
t→ϵ+

ϕ(t) < ψ(ϵ+) for every ϵ > 0.

Then there exists a unique element (A∗,B∗) ∈ H(X) ×H(X) such thatA∗ = w(A∗,B∗)
B∗ = w(B∗,A∗)

Moreover, for any element (A,B) ∈ H(X) ×H(X), the sequencesAn = wn(A,B)
Bn = wn(B,A)

converge to A∗ and B∗ respectively.
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Proof. Let X∗ = X×X. We define the operator w∗ : X∗ → X∗ such that w∗(x, y) =
(
w(x, y),w(y, x)

)
. By Theorem

2.2, it is clear that w∗ satisfies the condition(1) in the complete metric space (X∗, d∗). Let W∗ : H(X∗)→H(X∗)
be the fractal operator generated by w∗. Then Theorem 4.3 tells that the operator W∗ satisfies condition(1)
in the complete metric space (H(X∗), hd∗ ). Hence the result follows from Theorem 4.5.

Our next result deals with existence of coupled self- similar set for an IFS.

Theorem 5.2. Let wi : X∗ → X be continuous and jointly (ψ,ϕi)-contractions for i = 1, 2, · · · ,N and ψ,ϕi satisfy
the following conditions:

(i) ψ,ϕi are nondecreasing for i = 1, 2, · · · ,N;

(ii) ϕi(t) < ψ(t) for every t > 0;

(iii) lim sup
t→ϵ+

ϕi(t) < ψ(ϵ+) for every ϵ > 0.

Then there exists a unique pair (A∗,B∗) ∈ H(X) ×H(X) such that
A∗ =

N⋃
i=1

wi(A∗,B∗)

B∗ =
N⋃

i=1
wi(B∗,A∗).

Moreover, for any (A,B) ∈ H(X) ×H(X), the sequences
An+1 =

N⋃
i=1

wi(An,Bn)

Bn+1 =
N⋃

i=1
wi(Bn,An)

converge to A∗ and B∗ respectively.

Proof. Define w∗i : X∗ → X∗ by w∗i (x, y) = (wi(x, y),wi(y, x)) for i = 1, 2, · · · ,N. Then from the proof of Theorem
2.2 we can say each map w∗i satisfies condition(1) with functions ψ,ϕi for i = 1, 2, · · · ,N. Now we define, the

fractal operator generated by the IFS {X∗; w∗1,w
∗

2, · · · ,w
∗

N}, W∗ : H(X∗) → H(X∗) by W∗(A,B) =
N⋃

i=1
ŵ∗i (A,B).

From Lemma 4.8, it is clear that W∗ satisfies condition(1) with ϕ = max
1≤i≤N

ϕi. Then the proof can be completed

by using Theorem 4.9.
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[1] B. Alqahtani, S. S. Alzaid, A. Fulga and A. F. R. López de Hierro, Proinov type contractions on dislocated b-metric spaces,
Advances in Difference Equations 2021 (1) (2021) 1-16.

[2] I. Altun, N. A. Arifi, M. Jleli, A. Lashin and B. Samet, A new concept of (α,Fd)-contraction on quasi metric space, J. Nonlinear Sci.
Appl. 9 (2016) 3354-3361.

[3] M. F. Barnsley, Super Fractals, Cambridge University Press (2006).
[4] M. F. Barnsley, Fractals everywhere, Academic press (2014).
[5] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proceedings of the American Mathematical Society 20(2) (1969) 458-464.



A. Puthusseri, D. R. Kumar / Filomat 38:26 (2024), 9305–9320 9320

[6] D. Doric, Common fixed point for generalized (ψ,ϕ)-weak contractions, Appl. Math. Lett. 22 (2009) 1896-1900.
[7] M. Imdad, W. M. Alfaqih and I. A. Khan, Weak x-contractions and some fixed point results with applications to fractal theory,

Advances in Difference Equations 2018(1) (2018) 1-18.
[8] E. Llorens-Fuster, A. Petrusel and J. -C. Yao, Iterated function systems and well-posedness, Chaos, Solitons and Fractals, 41 (2009)

1561-1568.
[9] J. Matkowski, Integrable solutions of functional equations, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk (1975).

[10] A. Mihail and I. Savu, ϕ-Contractive parent-child possibly infinite IFSs and orbital ϕ- contractive possibly infinite IFSs Fixed Point
Theory, 25(2024), no.1, 229-248.

[11] S. Moradi and A. Farajzadeh, On the fixed point of (ψ − ϕ)-weak and generalized (ψ − ϕ)-weak contraction mappings, Applied
Mathematics Letters 25(10) (2012) 1257-1262.

[12] M. Nazam, C. Park and M. Arshad, Fixed point problems for generalized contractions with applications. Advances in Difference
Equations 2021(1) (2021) 1-15.

[13] V. Parvaneh, G. G. Branch and G. Gharb, Some common fixed point theorems in complete metric spaces, Int. J. Pure Appl. Math.
76(1) (2012) 1-8.
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