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Abstract. We establish sufficient conditions insuring the existence of mild solutions for a class of initial
boundary value problem of time homogeneous evolution system of parabolic type defined on a Banach
space. A concrete real-world example is provided to illustrate the result. A first application of the obtained
results deals with a system of Volterra integro-differential equations. A second one concerns a class of
elliptic second order differential equations.

1. Introduction and Preliminaries

Let X be a Banach space andL(X) the algebra of bounded linear operators on X. For a given initial value
u0 ∈ X, we consider the problem of finding a function u : R+ → X, solution of the homogeneous Cauchy
problem

∂u
∂t
= Au(t), t ≥ 0,

u(0) = u0,

(1)

where A : D(A) ⊂ X → X is a linear operator. We assume that the problem (1) is well-posed. This means
the existence of a unique solution to (1) for a large class of initial values u0 and the continuous dependence
upon them. Hence, by results of Engel and Nagel in [7], the unbounded operator A should generate a
strongly continuous (one-parameter) semigroup (or C0-semigroup)

(
T(t)
)

t≥0
. Consequently, the system of

equations
T(t + s) = T(t)T(s), t, s ≥ 0,

T(0) = I.
(2)
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holds and the orbit map

ξu0 : t 7→ ξu0 (t) = T(t)u0 (3)

is continuous from R+ into X, for every u0 ∈ D(A).
We recall here the definition of a generator of a strongly continuous semigroup. The interested reader

can consult, for example, the books [1, 9] and [10] and the references therein for more more details about
the subject.

Definition 1.1. The generator A : D(A) ⊂ X→ X of a strongly continuous semigroup
(
T(t)
)

t≥0
on a Banach space

X is the operator

Ax := ξx(0) = lim
h↓0

1
h

(
T(h)x − x

)
, ∀x ∈ D(A),

where
D(A) :=

{
x ∈ X : ξx is differentiable

}
.

One can obtain solutions of (1) by using the following proposition.

Proposition 1.2. [7] Let A be the generator of the strongly continuous semigroup
(
T(t)
)

t≥0
. Then, for every

u0 ∈ D(A), the orbit map

u(t) = T(t)u0, t ≥ 0. (4)

is the unique solution of the associated abstract Cauchy problem (1).

Definition 1.3. Let A be the generator of a strongly continuous semigroup
(
T(t)
)

t≥0
on X and take u0 ∈ X. The

function u(.), defined by (4) is called the mild solution of (1).

It is well known that if A is a bounded operator, then the function u defined by (4) is continuously
differentiable and satisfies (1). It is called a classical solution of (1).

Obviously, every classical solution of (1) is also a mild solution. In particular, this implies the uniqueness
of the classical solution of the problem. Moreover, we can deduce the following,

Remark 1.4. Let A ∈ L(X). We suppose that A generates a strongly continuous semigroup
(
T(t)
)

t≥0
. Then, for

every u0 ∈ X, the orbit map u defined by (4) is the unique classical solution of the associated Cauchy problem (1).

Proposition 1.5. [7] Let X be a Banach space, A be a generator of a strongly continuous semigroup on X and
B ∈ L(X). Then, the operator A + B is the generator of a strongly continuous semigroup on X.

We are especially interested in a class of operators which are relatively bounded with respect to each
other. We recall the following definitions.

Definition 1.6. Let X,Y,Z be Banach spaces and consider the linear operators A : D(A) ⊂ X → Y and B : D(B) ⊂
X → Z. A is called relatively bounded with respect to B (or B-bounded) if D(B) ⊂ D(A) and there exist constants
aA, bA ≥ 0 such that

∥Ax∥ ≤ aA∥x∥ + bA∥Bx∥, ∀x ∈ D(B).

The infimum δA of all bA so that this holds for some aA ≥ 0 is called relative bound of A with respect to B (or
B-bound of A).

Definition 1.7. Let δ ≥ 0 and consider the linear operators A : D(A) ⊂ X → X, B : D(B) ⊂ Y → X, C : D(C) ⊂
X→ Y and D : D(D) ⊂ Y→ Y. The block operators matrix A B

C D


is called diagonally dominant of order δ if C is A-bounded with A-bound δC, B is D-bounded with D-bound δB, and
δ = max{δB, δC}.
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2. A System of Parabolic Equations

2.1. Mathematical model and main result
Let X and Y be two Banach spaces. For µ, ν ∈ C, we are looking for mild solutions to the initial value

problem for the time homogeneous evolution system of parabolic type

∂u
∂t
= Au + µBv + f (t), t ≥ 0,

∂v
∂t
= Dv + νCu + 1(t), t ≥ 0,(

u(0), v(0)
)
= (u0, v0),

(5)

where A : D(A) ⊂ X→ X, B : D(B) ⊂ Y→ X, C : D(C) ⊂ X→ Y and D : D(D) ⊂ Y→ Y are linear operators
and (u0, v0) is a given initial value of

(
D(A) ∩D(C)

)
⊕

(
D(D) ∩D(B)

)
.

To this aim, we consider the block operators matricesAµ,ν defined on the space

D(Aµ,ν) =
(
D(A) ∩D(C)

)
⊕

(
D(D) ∩D(B)

)
and having the representation

Aµ,ν =

 A µB

νC D

 . (6)

We enunciate our first main result as follows

Theorem 2.1. IfAµ,ν is the generator of a strongly continuous semigroup on X×Y, then for every (u0, v0) ∈ D(Aµ,ν),
the problem (5) admits a unique mild solution.

Proof. To prove our result, we need to find a new state space Z and a new operator Bµ,ν : D(Bµ,ν) ⊂ X→ X

generating a semigroup
(
Tµ,ν(t)

)
t≥0

on Z, such that the solutions of (5) can be obtained using Proposition
1.5. Here, we denote by Z the Banach space

Z = X × Y ×H1(R+,X) ×H1(R+,Y).

We define on Z the block operators matrices given by

Bµ,ν =

 Aµ,ν K0

0 Dt

 ,
where

K0 =

 δ0 0

0 δ0

 and Dt =

 ∂/∂t 0

0 ∂/∂t

 . (7)

BothK0 andDt are definded on H1(R+,X) ×H1(R+,Y).
We denote by U0 the matrix defined on Z by

U0 =


u0
v0

f (0)
1(0)

 . (8)
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We also consider on Z the matrix

U(t) =


u(t)
v(t)
f (t)
1(t)

 , t ≥ 0. (9)

Then, the system (5) can be rewritten as,
∂U
∂t
= Bµ,νU(t), t ≥ 0,

U(0) = U0.

(10)

Now, since Dt is bounded in H1(R+,X) × H1(R+,Y) and Aµ,ν is the generator of a strongly continuous
semigroup on X × Y, then by Proposition 1.5, it is that the block operators matrices given by

Mµ,ν =

 Aµ,ν 0

0 Dt

 =
 Aµ,ν 0

0 0

 +
 0 0

0 Dt


is also the generator of a strongly continuous semigroup on Z. Again,K0 is bounded in H1(R+,X)×H1(R+,Y).
So, using an other time Proposition 1.5, we deduce that the block operators matrices

Bµ,ν =Mµ,ν +

 0 K0

0 0


generates a strongly continuous semigroup

(
Tµ,ν(t)

)
t≥0

on Z.
Finally, thanks to Proposition 1.2, the orbit map

U(t) = Tµ,ν(t)U0, t ≥ 0. (11)

is the unique mild solution of the associated abstract Cauchy problem (10).
The two first equations ofU(t) give us the unique mild solution (u, v) of the problem (5) on X × Y.

Remark 2.2. If, in addition, Bµ,ν is bounded in Z, then similarly to Remark 1.4, it becomes thatU(t) is the unique
classical solution of problem (10).

2.2. A real-world illustrative example
A concrete real-world example that can be modeled by the type of systems described by (5) and strongly

continuous semigroup theory is the heat diffusion in a composite material, consisting of two different
substances with varying thermal properties, for instance, a combination of a metal and an insulating
material. In such scenario, the temperature distribution within the composite material can be accurately
represented using (5). In such model,

1. u(t, x) and v(t, x) are the respective temperatures in the metal part and the insulating part of the
material at time t and position x.

2. The operators A and D represent the thermal conductivities respectively in the metal and the insula-
tion. They describe how heat diffuses within the metal and the insulation.

3. B and C represent the heat transfer operators between the metal and the insulating part.
4. The parameter µ is the rate of heat transfer between the metal and the insulation.
5. The parameter ν is the rate of heat transfer between the insulation and the metal.
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6. f (t) and 1(t) can model any external heat sources or sinks in the system, such as heat lamps, cooling
systems or chemical reactions.

7. The initial conditions (u0, v0) could represent the initial temperature distribution in the composite
material.

Finding mild solutions to the system (5) is essential for understanding how heat propagates and is
exchanged within the composite material. The concept of a strongly continuous semigroup is used to
ensure the well-posedness of the mathematical model, guaranteeing that solutions exist and are unique for
a given set of initial conditions and external inputs.

2.3. Some consequences and related results
We consider the block operators matrices

M =

 A 0

0 D

 and Nµ,ν =

 0 µB

νC 0

 . (12)

Then, we have the following result,

Corollary 2.3. Suppose that Aµ,ν is diagonally dominant of order δ, for some δ ≥ 0 and that the block operators
matrixM is a generator of a C0-semigroup. Then, for every (u0, v0) ∈ D(Aµ,ν), the problem (5) admits a unique mild
solution.

Proof. Under these hypotheses on Aµ,ν andM, we have by [7] that Nµ,ν isM-bounded withM-bound δ.
SinceM is the generator of a C0-semigroup, then using Proposition 1.5, we deduce that the operator Aµ,ν
is the generator of a strongly continuous semigroup on X × Y. The result follows from Theorem 2.1.

Corollary 2.4. Suppose that X = Y,Aµ,ν is diagonally dominant of order δ, for some δ ≥ 0, and that the following
situation holds:

either (A is a generator of a C0-semigroup and D is bounded)
or (D is a generator of a C0-semigroup and A is bounded).

Then, for every (u0, v0) ∈ D(Aµ,ν), the problem (5) admits a unique mild solution.

Proof. In this situation, the block operators matricesM is a generator of a C0-semigroup. Since, in addition,
Aµ,ν is diagonally dominant of order δ, for some δ ≥ 0, then we obtain the result by Corollary 2.3.

Theorem 2.5. Let 0 ≤ min{µ, ν} ≤ max{µ, ν} < 1 and suppose that

1. M is the generator of a strongly continuous semigroup on the Banach space X × Y andNµ,ν isM-bounded.
2. There exists α > 0, such that for any λ > 0 and for all (x, y) ∈ D(Aµ,ν),

min
{
∥(λ − A)x∥2 + ∥(λ −D)y∥2, ∥(λx − µBy∥2 + ∥(λy − νCx∥2

}
≥ α
(
∥x∥2 + ∥y∥2

)
. (13)

Then, for every (u0, v0) ∈ D(Aµ,ν), the problem (5) admits a unique mild solution.

Proof. Suppose that both operatorsM and Nµ,ν are dissipative. Then, by Theorem 2.7 in [7], we have that
for every 0 ≤ µ, ν < 1, the operatorAµ,ν is a generator of a strongly continuous semigroup on X × Y.

Now, thanks to Theorem 2.1, for every (u0, v0) ∈ X × Y, the problem (5) admits a unique mild solution.
The proof is achieved.

In the next, for a given r > 0, we denote by B(0, r) the ball of C centered et the origin and with radius r,
i.e.,

B(0, r) = {x ∈ C, |x| < r}.

Then one can prove the following,
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Theorem 2.6. Suppose that M is the generator of an analytic semigroup on the Banach space X × Y and Nµ,ν is
M-bounded. Then, there exists r > 0, such that for every (u0, v0) ∈ D(Aµ,ν), and for any µ, ν ∈ B(0, r), the problem
(5) admits a unique mild solution.

Proof. IfM generates an analytic semigroup, then thanks to Theorem 2.10 in [7], there exists r > 0 such that
Aµ,ν is a generator of a strongly continuous semigroup on X × Y, for any |µ| < r and |ν| < r.

So, using Theorem 2.1, we deduce that for every (u0, v0) ∈ X × Y, the problem (5) admits a unique mild
solution.

Theorem 2.7. Suppose that for any µ, ν ∈ C, the operatos matix Nµ,ν is bounded and that M is the generator of
a strongly continuous semigroup on the Banach space X × Y. Then, for every (u0, v0) ∈ D(Aµ,ν), the problem (5)
admits a unique mild solution.

Proof. If Nµ,ν is bounded on X × Y, then using Theorem 1.3 in [7], we deduce that for every µ, ν ∈ C, the
operatorAµ,ν generates a strongly continuous semigroup on X × Y.

Again by Theorem 2.1, we have that, for every (u0, v0) ∈ X×Y, the problem (5) admits a unique classical
solution. The proof is achieved.

Remark 2.8. The third case can also be achieved if, in Theorem 2.10 of [7], theM-bound a0 ofNµ,ν satisfies a0 = 0.

3. A system of Volterra integro-differential equations

Volterra integral and integro-differential equations arise in many physical applications such as glass-
forming process, nanohydrodynamics, heat transfer, diffusion process in general, neutron diffusion and
biological species coexisting together with increasing and decreasing rates of generating, and wind ripple
in the desert. The linear equations, in which we are interested, appears in the form

u′(t) = Au(t) + α
∫ t

0
C(t − s)u(s)ds + f (t), t ≥ 0, (14)

where α is a constant parameter, A and C(t) are given linear operators. The operator K(t, s) = C(t − s) is
called the kernel or the nucleus of the integral equation. For a classification and more details about more
general classes of these equations, one can consult, for example [15] and the references therin.

A well known approach to transform (14) into an abstract Cauchy problem of the form (1) has been
established by Miller [13]. This technique was then used by some researchers like Grimmer et al. [2, 3],
Desch and Schappacher [4], Kadiri et al. [5], Engel et al. [6, 7], Nagel and Sinestrari [14]...

In this section, we are looking for mild solutions of systems of Volterra integro-differential equations of
the form

u̇(t) = Dv(t) +
∫ t

0
αC1(t − s)u(s)ds + f (t), t ≥ 0,

v̇(t) = Au(t) +
∫ t

0
βC2(t − s)v(s)ds + 1(t), t ≥ 0,

(u(0), v(0)) = (u0, v0),

(15)

where α, β ∈ C, A and D are linear operators defined as in section 1 on the Banach space X, (u0, v0) is a given
initial value ofD(A)×D(D) ⊂ X×Y , C1 and C2 are functions defined onR+ and such that C1(.)x ∈ H1(R+,X)
for all x ∈ D(A) and C2(.)x ∈ H1(R+,Y) for all x ∈ D(B), f : R+ → X and 1 : R+ → Y are given functions and
u : R+ → X and v : R+ → Y are unknown functions.

Denoting by A0,0 the operators matrices defined by (6), we can state the main result of this section as
follows,
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Theorem 3.1. Suppose that A0,0 is a generator of strongly continuous semigroup on X × Y. Then, for every
(u0, v0) ∈ X × Y, the problem (15) admits a unique mild solution.

Proof. We consider again the space

Z = X × Y ×H1(R+,X) ×H1(R+,Y).

The block operators matrices defined on Z is

Lα,β =

 A0,0 K0

Cα,β Dt

 ,
whereK0 andDt are given by (7) and Cα,β is the operator matrix

Cα,β =

 0 βC2(.)

αC1(.) 0

 .
We also denote by U0 and, for t ≥ 0, by U(t) the matrices defined on Z as in (8). It becomes that the

system (15) can be written,
Ü = Bα,βU(t), t ≥ 0,

U(0) = U0.
(16)

Now, as it was showed in the proof of Theorem 2.1, the block operators matricesB0,0 is also the generator
of a strongly continuous semigroup on Z.

Again, Cα,β is bounded in X ×Y. So, using Proposition 1.5, we deduce that the block operators matrices

Lα,β = B0,0 +

 0 0

Cα,β 0


generates a strongly continuous semigroup

(
S(t)
)

t≥0
on Z.

Finally, thanks to Proposition 1.2, the orbit map

U(t) = S(t)U0, t ≥ 0. (17)

is the unique mild solution of the associated abstract Cauchy problem (16).
The two first coordinates ofU(t) give us the unique mild solution (u, v) of the problem (15) on X×Y.

Corollary 3.2. Suppose that either A is a generator of strongly continuous semigroup on X and D is bounded on Y,
or D is a generator of strongly continuous semigroup on Y and A is bounded on X. Then, for every (u0, v0) ∈ X × Y,
the problem (15) admits a unique mild solution.

Proof. In this case, using Proposition 1.5, we deduce that the operator A0,0 is the generator of a strongly
continuous semigroup on X × Y. Now, for α, β ∈ C, we obtain the result by Theorem 3.1.

4. Second order elliptic equations

We are also interested in giving sufficient conditions for the existence of solutions to the second order
elliptic equation

∂2u
∂t2 = νA

∂u
∂t
+ µBu + f (t), t ≥ 0,

(
u(0),

∂u
∂t

(0)
)
= (u0, v0),

(18)
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where A and B are linear operators defined as in section 1 with X = Y, (u0, v0) is a given initial value of(
D(A) ×D(A)

)
⊂ (X × X) , f : R+ → X is a given function and u : R+ → X is an unknown function.

For (µ, ν) ∈ C × C∗, we consider the block operators matrices Ãµ,ν with the representation

Ãµ,ν =

 νA µB

I 0

 . (19)

Our next result reads as follows

Theorem 4.1. Suppose that Ãµ,ν is the generator of a strongly continuous semigroup on X × X. Then, for every
(u0, v0) ∈

(
D(A) ×D(A)

)
, the problem (18) admits a unique mild solution.

Proof. We will apply Theorem 2.1. To this aim, we transform (18) into a first order elliptic equation, by
setting

∂u
∂t
= v.

It follows that
∂v
∂t
=
∂2u
∂t2 = νAv + µBu + f (t).

Then, for µ, ν ∈ C∗, the system (18) can be rewritten as follows,

∂v
∂t
= νAv + µBu + f (t), t ≥ 0,

∂u
∂t
= v, t ≥ 0,(

v(0),u(0)
)
= (v0,u0).

(20)

On the space Z̃ = X × X ×H1(R+,X), we define the following block operators matrices

B̃µ,ν =


Ãµ,ν K̃0

0
∂
∂t

 ,
where Ãµ,ν is defined by (19) and

K̃0 =

 δ0

0

 .
We denote by U0 the matrix defined on Z̃ by

U0 =

 v0
u0
f (0)

 .
We also consider on Z̃ the matrix

U(t) =

 v(t)
u(t)
f (t)

 , t ≥ 0.
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Then, the system (20) can be written in the following form,
∂U
∂t
= B̃µ,νU(t), t ≥ 0,

U(0) = U0.

(21)

Now, since Ãµ,ν is the generator of a strongly continuous semigroup on Z̃, then by Theorem 2.1, the
problem (21) admits a unique mild solution, and so are equations (20) and (18).
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