
Filomat 38:26 (2024), 9111–9125
https://doi.org/10.2298/FIL2426111B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

New kernel function with parametrized default step size for linear
complementarity problem

Ayache Benhadida,∗, Fateh Merahib

aDepartment of Mathematics, Faculty of Mathematics and Computer Science, Batna 2 University, Batna, Algeria
bDepartment of Statistics and Data Science, Faculty of Mathematics and Computer Science, Batna 2 University, Batna, Algeria

Abstract. Defining new search directions for the primal-dual interior-point algorithm for solving linear
complementarity problems mainly depends on kernel functions. In this paper, we introduce a new log-
arithmic kernel function with a double barrier term and two parameters. The first parameter is used to
determine the best complexity for the large-update primal-dual IPMs, while the second parameter is used
to control the default step size. These results represent the best-known complexity bound for large-update
with a logarithmic boundary term. Finally, we report some numerical results to demonstrate the practical
performance of the proposed algorithm with different parameters.

1. Introduction

Linear complementarity problems (LCP) are a general class of mathematical problems that have several
important applications in mathematical programming and equilibrium problems. They include linear
optimization (LO) problems, convex quadratic optimization (CQO) problems, Nash equilibrium point
problems, and so on.

Since the path-breaking paper of Karmarkar [10], kernel functions play an important role in the com-
plexity analysis of the interior point methods (IPMs) for linear complementarity problems (LCP).

In 2001, Peng et al. [15] designed a new paradigm of primal-dual algorithms based on the so-called
self-regular proximity functions for LO. The iteration bound was improved by them, and they were able
to achieve the best-known complexity results for both large and small update methods. Subsequently, in
2004, Bai et al. [2] proposed a new kernel function with an exponential barrier term and introduced the
first new kernel function with a trigonometric barrier term. These functions enjoy useful properties and
determine new search directions for primal-dual interior point algorithms. Based on these functions, they
obtained the best known complexity results for large-update methods, namely, O

(√
n log n log n

ε

)
and good

numerical results.
In 2008, El Ghami et al. [9] proposed a parameterized kernel function with a logarithmic barrier term.

This function generalized the kernel functions given in [7, 16].

2020 Mathematics Subject Classification. Primary 90C05; Secondary 90C51, 90C31.
Keywords. Linear complementarity, Kernel function, Interior point methods, Complexity bound.
Received: 06 March 2023; Revised: 15 September 2024; Accepted: 26 September 2024
Communicated by Predrag Stanimirović
* Corresponding author: Ayache Benhadid
Email addresses: a.benhadid@univ-batna2.dz (Ayache Benhadid), f.merahi@univ-batna2.dz (Fateh Merahi)

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9112

In 2018, Bouafia et al. [6] proposed a parameterized logarithmic kernel function for primal-dual IPMs
whose barrier term is the mean of both barrier terms of Peng et al. [15] and Elghami et al. [9]. They obtained
the best-known results in terms of complexity for large and small-update methods. The aim of this paper is
to introduce a new kernel function that reduces the number of iterations by involving another parameter β,
which allows us to control the default step size α. For this purpose, we generalize the approach of Bouafia
et al. [6] by taking the barrier term of our kernel function as a convex combination between the barrier
terms of Peng et al. [15] and Elghami et al. [9]. (See Remarkk 3.1, section 3).

The paper is organized as follows. In Section 2, we recall the preliminaries. In Section 3 and 4, we
define a new kernel function and give its properties which are essential for the complexity analysis. The
estimate of the step size and the decrease behavior of the new barrier function are discussed in Section 5. In
section 6 we derive the complexity result for both large-update and small-update methods. In Section 7, we
offer some numerical results to show the practical performance of the proposed algorithm with different
parameters. The last section ends with concluding remarks.

Some of the notations used throughout the paper are as follows: Rn, Rn
+ and Rn

++ denote the set of
vectors with n components, the set of nonnegative vectors, and the set of positive vectors, respectively. xs
denotes the componentwise product of the vector x and s. X = dia1(x) denotes the n × n diagonal matrix
with components of the vector x ∈ Rn as the diagonal entries. e denotes the n-dimensional vector of ones.

For f (x), 1(x) : Rn
++ → R

n
++, f (x) = O(1(x)) if f (x) ≤ C11(x) for some positive constant C1, and f (x) =

Θ(1(x)) if C21(x) ≤ f (x) ≤ C31(x) for some positive constants C2 and C3.

2. Preliminaries

In this paper, we consider the Linear Complementarity Problem (LCP) in the standard form: find vectors
x and s in real space Rn that satisfy the following conditions:{

s =Mx + b, x ≥ 0,
xs = 0, s ≥ 0, (1)

where b is a given vector in Rn and M is a given Rn×n real matrix. In this paper, we deal with the special
case when the LCP is monotone, i.e., the matrix M is positive semidefinite.

To solve LCP one needs to find a solution of the above system of equations (1) and where xs in the last
equation represents the componentwise (Hadamard) product of the vectors x and s.

The general idea is to solve (1) using Newton’s method. However, Newton’s method can ``get stuck” at
the complementarity equation xs = 0. Therefore, the main idea of primal-dual interior-point methods is to
replace the last equation in (1), the so-called complementarity equation, with the parameterized equation
xs = µe, with parameter µ > 0. So we consider the following system{

s =Mx + b, x ≥ 0,
xs = µe, s ≥ 0, (2)

e is defined as a vector that contains ones of size n. By the last equation, any solution (x, s) of (2) will satisfy
x > 0 and s > 0. Suppose, there exists a point (x0, s0) > 0 such that

Mx0 + b − s0 = 0, (3)

which means that the interior of the feasible region of (1) is not empty. This assumption is called the
interior-point condition (IPC) of the LCP. If the IPC is not satisfied, the modified LCP can be constructed so
that it satisfies the IPC. From the solution of the modified LCP, the solution of the original LCP can easily
be found. See chapter five in Kojima et al. [11]. Thus, we can, and in this paper, we will always assume
that the IPC is satisfied.

It can be shown that for certain classes of matrices, if M has full rank, i.e., rank(M) = n, and IPC holds,
then the parameterized system (2) has a unique solution for each µ > 0 (see Lemma 4.3 in [11]). This is

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9113

particularly true for positive semi-definite matrices that we are considering in this work. This solution
is denoted as (x(µ), s(µ)), and we call (x(µ), s(µ)) the µ-center of (1). The set of µ-centers (with µ running
through all positive real numbers) gives a homotopy path, which is called the central path of (1). The
importance of the central path for the LP was discovered first by Sonnevend [17] and Megiddo [12] and
later generalized to LCP by Kojima et al. [11]. The main property of the central path is that if µ → 0, then
the limit of the central path exists and since the limit points satisfy the complementarity condition, the limit
yields the optimal solutions for (1).

This limiting property of the central path leads to the main idea of the iterative methods for solving
(1): Trace the central path while reducing µ at each iteration. Theoretically, an exact trace is wanted, but
practically it is too inefficient. However, it has been shown that it is only necessary to trace the central path
approximately in order to maintain favorable convergence properties of the given algorithms.

We assume that a point (x, s) is ”close” to the µ-center, (x(µ), s(µ)) for some parameter µ > 0. Then, µ
is decreased to µ+ := (1 − θ)µ, for some θ ∈ (0, 1). Next, we redefine µ = µ+, then we solve the following
Newton system{

−M∆x + ∆s = 0,
s∆x + x∆s = µe − xs. (4)

Since M has full row rank, the system (4) has a unique solution for any (x, s) > 0. The solution (∆x,∆s) is
known as the Newton direction. By taking a step along this search direction, we construct a new ordered
pair (x+, s+) with

x+ = x + α∆x, s+ = s + α∆s, (5)

where the step size α satisfies 0 < α ≤ 1, which must be chosen carefully. If needed, we repeat the procedure
until we find iterates that are in a certain neighborhood of the µ-center (x(µ), s(µ)). Then, again, µ is reduced
by the factor 1− θ and Newton’s method is applied again targeting the new µ-center, and so on. We repeat
this process until µ is small enough, i.e. nµ ≤ ϵ, where ϵ is a small positive number. At this stage in the
algorithm, we have found ϵ-approximate solutions of (1).

The scaled vector v and the scaled search directions dx and ds are now introduced as follows:

v =
√

xs
µ

, dx =
v∆x

x
, ds =

v∆s
s

, (6)

where each of the operations is a component-wise product and division. Note that the pair (x, s) coincides
with the µ-center (x(µ), s(µ)) if and only if v = e. Note that, if v and the search directions dx, ds are defined
as in (6), then the Newton system from (4) can be transformed into the following system:{

−M̃dx + ds = 0,
dx + ds = v−1

− v,
(7)

where M̃ := DMD, D := X
1
2 S−

1
2 , S := diag(s), and X := diag(x).

One may easily verify that if matrix M is positive semi-definite, then M̃ is also positive semi-definite.

dx = ds = 0⇔ v−1
− v = 0⇔ v = e. (8)

Therefore, we see that dx = ds = 0 if and only if the pair (x, s) coincides with the µ-center (x(µ), s(µ)).
Unfortunately, dx and ds are not, in general, orthogonal vectors, as in the LP case, which will complicate the
analysis of the algorithm.

A very important observation is that the right hand side v−1
− v in the last equation of (7) equals the

negative gradient of the function

Φ(v) = Φ(x, s;µ) =
n∑

i=1

ψ(vi), (9)

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9114

where

ψ(vi) =

v2
i − 1

2
− log vi

 , (10)

which can be written as

{
−M̃dx + ds = 0,
dx + ds = −∇Φ(v).

(11)

This equation is known as the scaled centering equation. The scaled centering equation basically defines the
search directions. An easy verification is that ∇2Φ(v) = dia1(e + v−2). Since this matrix is positive definite,
Φ(v) is strictly convex. We can see that ∇Φ(v) = 0, hence Φ(v) attains its minimal value at v = e, with
Φ(v) = 0. So, it follows thatΦ(v) is non-negative everywhere and vanishes at v = e, which means it vanishes
at the µ-center (x(µ), s(µ)). Therefore, we can conclude that the µ-center (x(µ), s(µ)) can be characterized as
the minimizer of the function Φ(v). Thus, Φ(v) serves as a measure of how close (x, s) is to the µ-center.

We use Φ(v) as the proximity function to measure the distance between the current iterate and the
µ-center for a given τ > 0. We also define the norm-based proximity measure, δ(v) : Rn

++ → R+, as follows

δ(v) =
1
2
||∇Φ(v)|| =

1
2
||dx + ds||. (12)

We call ψ(t) the kernel function of the logarithmic barrier function Φ(v). In this paper, we replace ψ(t) by a
new kernel function ψβ(t) and Φ(v) by a new barrier function Φβ(v), which will be defined in Sect. 3.

The generic primal-dual algorithm can now be formally described. As mentioned, this algorithm
follows the central path approximately. Suppose we start with (x, s) close to the µ-center, then µ is reduced
to µ+ = (1 − θ)µ. Therefore, the new v becomes v+ = v√

(1−θ)
. As a consequence, Φβ(v) changes to Φβ(v+).

The inequality Φβ(v) ≤ τ means that (x, s) is in a τ-neighborhood of the µ-center (x(µ), s(µ)), where τ > 0
represents a certain threshold value. Recall that we measure the closeness of (x, s) to the µ-center (x(µ), s(µ))
by the value of Φβ(v). However, after the θ-update, the updated Φβ(v+) may be greater than τ. If this is the
case, we need to perform further steps to reduce Φβ(v+) and get closer to the new µ-center. In other words,
we need to get back to the τ-neighborhood of the new µ-center.

After finding dx and ds from (11), we can find the original directions ∆x and ∆s from (4). Alternatively,
∆x and ∆s can be found directly from the following system

{
−M∆x + ∆s = 0,
s∆x + x∆s = −µv∇Φ(v). (13)

To accomplish this, we need to first find the direction ∆x and ∆s by solving the Newton system (13). We
update x and s using a chosen step size α and the recently found search directions ∆x and ∆s, respectively.
This process is repeated until Φβ(v) ≤ τ, upon which the process begins again. We begin again by reducing
µ and updating v, and so on until we have a µ-center that is ϵ-close to the actual solution. The generic form
of the algorithm is shown in Fig.1. In the sequel, we will refer to it as simply the Generic Algorithm.

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9115

Generic Primal-Dual Algorithm for LCP
Input:
Determine input parameters:
a threshold parameter τ > 0,
an accuracy parameter ϵ > 0,
a fixed barrier update parameter θ, 0 < θ < 1,
begin
Set (x0, s0, µ0) > 0 so that the IPC is satisfied, while nµ ≥ ϵ do
µ = (1 − θ)µ,

v =
√

xs
µ begin (outer iteration)

while Φβ(v)(x, s;µ) > τ do
begin (inner iteration)
solve the system (13) , Φ(v) replaced by Φβ(v) to obtain (∆x,∆s),
choose a suitable step size α,
Update x = x + α∆x, s = s + α∆s
Update v =

√
xs
µ

end (inner iteration)
end (outer iteration)
end .
Fig.1 Generic Primal-Dual Algorithm for LCP.

We want to optimize the algorithm by minimizing the number of iterates in the algorithm. To do this we
must carefully choose the parameters τ, θ, and the step size α. Choosing the barrier update parameter θ is
very important in application and theory. If θ is a constant number which is independent of the dimension
n of the problem, i.e., θ = Θ(1), then the algorithm is called a large update method. If θ depends on the
dimension n of the problem, then we call the algorithm a small update method. In this case, θ is usually

chosen to be the following: θ = Θ
(

1
√

n

)
.

Choosing the step size, α > 0, is another key step in obtaining good convergence properties of the
algorithm. It must be set in such a way that the closeness of the iterates to the current µ-center improves
by a sufficient amount.

In this paper, we define a new logarithmic kernel function with two parameters for LCP and prove that

for all β, the corresponding algorithm has O
(
qn

q+1
2q log

(
n
ϵ

))
complexity bound for the large-update method

and O
(
q2√n log

(
n
ϵ

))
for the small-update method. Another interesting choice is q and β, which minimizes

the iteration complexity bound. In fact, if we take q = log n
2 and β in the neighborhood of 0, we obtain good

convergence properties of the algorithm with the best known complexity bound for large-update methods,
namely O

(√
n log n log n

ε

)
.

3. The New Kernel Function and Its Properties

In this section, a new kernel function and its properties are provided. Let us define the new univariate
function.

ψβ(t) =
1
2

(
t2
− 1

)
− β log(t) + (1 − β)

t1−q
− 1

q − 1
, q > 1, β ∈ [0, 1]. (14)

The parameters β and q are two constants and play an important role in the analysis of proposed methods.
It follows that ψβ(1) = ψ

′

β(1) = 0 and t → 0+ or t → +∞, then ψ(t) → +∞. As we need the first three

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9116

derivatives of ψβ(t) with respect to t frequently, we provide them as follows:

ψ
′

β(t) = t − βt−1
− (1 − β)t−q, (15)

ψ
′′

β (t) = 1 + βt−2 + (1 − β)qt−(q+1), (16)

ψ
′′′

β (t) = −2βt−3
− (1 − β)q(q + 1)t−(q+2). (17)

We will now discuss some special cases.

Speciale cases:

a) If β = 0, then the kernel function ψβ is equivalent to Peng’s kernel ψp(t) = 1
2

(
t2
− 1

)
+ t1−q

−1
q−1 introduced

and studied by Peng et al. [15].

b) If β = 1, then the kernel function ψβ reduces to the classical kernel function ψEL(t) = 1
2

(
t2
− 1

)
− log(t)

introduced and studied by El Ghami et al. [9].
c) If β = 1

2 , then the kernel function ψβ is equivalent to Bouafia’s kernel ψLB introduced and studied by
Bouaafia et al. [6].

d) If β ∈ [0, 1] \
{
0, 1

2 , 1
}
, then the kernel function ψβ appears to be a new one.

Remark 3.1. We can see that the barrier term Barβ of our kernel function ψβ is the convex combination between the
barrier term BarEL(t) = − log(t) of ψEL(t) El Ghami et al. [9] and the barrier term Barp(t) = t1−q

−1
q−1 of ψp(t) Peng et al.

[15], Indeed

Barβ(t) = βBarEL(t) + (1 − β)Barp(t)

= −β log(t) + (1 − β)
t1−q
− 1

q − 1
.

4. Eligibility of the New Kernel Function

The following lemma plays an important role in the analysis of the kernel function and serves to prove
that the new kernel function (14) is efficient.

Lemma 4.1. Let ψβ(t) be as defined in (14) and t > 0. Then,

ψ
′′

β (t) > 1, (18)

ψ
′′′

β (t) < 0, (19)

tψ
′′

β (t) − ψ
′

β(t) > 0, (20)

tψ
′′

β (t) + ψ
′

β(t) > 0. (21)

Proof. From (16) and (17), it is obvious that (18) and (19) are satisfied.
From (15) and (16), we have the following:

tψ
′′

β (t) − ψ
′

β(t) = 2t + (1 − β)(q − 1)t−q > 0,

and

tψ
′′

β (t) + ψ
′

β(t) = 2βt−1 + (1 − β)(q + 1)t−q > 0,

which proves (20) and (21).

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9117

The last property (21) is equivalent to

ψβ(
√

t1t2) ≤
1
2

(
ψβ(t2) + ψβ(t2)

)
, for any t1, t2 ≥ 0, (22)

and it was demonstrated by several researchers (see Bai et al. [2] and Megiddo [12]). Thus ψβ(t) is an
eligible kernel function.

Lemma 4.2. For ψβ(t), we have

1
2

(t − 1)2
≤ ψβ(t) ≤

1
2

[
ψ
′

β(t)
]2

, t > 0. (23)

ψβ(t) ≤ [1 +
1
2

(1 − β)(q − 1)](t − 1)2, t > 1. (24)

Proof. For (23), using (18), we have

ψβ(t) =
∫ t

1

∫ x

1
ψ
′′

β (y)dydx ≥
∫ t

1

∫ x

1
1dydx =

1
2

(t − 1)2.

ψβ(t) =
∫ t

1

∫ x

1
ψ
′′

β (y)dydx ≤
∫ t

1

∫ x

1
ψ
′′

β (y)ψ
′′

β (x)dydx

=

∫ t

1
ψ
′′

β (x)ψ
′

β(x)dx

=

∫ t

1
ψ
′

β(x)dψ
′

β(x) =
1
2

[
ψ
′

β(t)
]2
.

For (24), by using Taylor’s formula, we have

ψβ(t) = ψβ(1) + ψ
′

β(1)(t − 1) +
1
2
ψ
′′

β (1)(t − 1)2 +
1
6
ψ
′′′

β (ξ)(t − 1)3

=
1
2
ψ
′′

β (1)(t − 1)2 +
1
6
ψ
′′′

β (ξ)(t − 1)3

≤
1
2
ψ
′′

β (1)(t − 1)2

= [1 +
1
2

(1 − β)(q − 1)](t − 1)2,

for some ξ, 1 ≤ ξ ≤ t.

Lemma 4.3. For ψβ(t), we have

1 +

√
2s

2 + (1 − β)(q − 1)
≤ σ(s) ≤ 1 +

√

2s, s ≥ 0. (25)

ρ(s) ≥
[

1 − β
2s + 1

] 1
q

, s > 0, (26)

where σ : [0,∞[→ [1,+∞[is the inverse function of ψβ(t) for t ≥ 1, and ρ : [0,∞[→]0, 1] is the inverse function
of − 1

2ψ
′

β(t) for all t ∈]0, 1].

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9118

Proof. For (25), let s = ψβ(t), t ≥ 1. By (23), we haveψβ(t) ≥ 1
2 (t−1)2, t ≥ 1. This implies that t = σ(s) ≤ 1+

√
2s.

By (24), we have

s = ψβ(t) ≤ [1 +
1
2

(1 − β)(q − 1)](t − 1)2, t ≥ 1, so t = σ(s) ≥ 1 +

√
2s

2 + (1 − β)(q − 1)
.

For (26), let s = − 1
2ψ

′

β(t), t ∈]0, 1]. By the definition of ψ
′

β(t), we have

2s = −t + βt−1 + (1 − β)t−q
≥ −1 + (1 − β)t−q,

which implies that t = ρ(s) ≥
[1−β

2s+1

] 1
q .

Lemma 4.4. Let σ : [0,∞[→ [1,+∞[be the inverse function of ψβ(t) for t ≥ 1. Then we have

Φβ(βv) ≤ nψβ

(
βσ

(
Φβ(v)

n

))
, v ∈ R∗, β ≥ 1.

Proof. Using (19) and (20), and Lemma 2.4 in [2], we can obtain the result.

Lemma 4.5. Let 0 ≤ θ < 1, v+ = v
√

1−θ
. If Φβ(v) ≤ τ, then we have the following upper bounds on the value of

Φβ(v+) after a µ-update: Φβ(v+) ≤ Li, i = 1, 2, where

L1 :=
θn + 2τ + 2

√
2τn

2(1 − θ)
,

L2 :=
q + 1

2(1 − θ)

(
θ
√

n +
√

2τ
)2

.

Proof. For L1, since 1
√

1−θ
≥ 1 and σ

(
Φβ(v)

n

)
≥ 1, then

σ
(
Φβ (v)

n

)
√

1−θ
≥ 1. And for t ≥ 1, we have ψβ(t) ≤

(t2
−1)
2 . Using

Lemma 4.4 with β = 1
√

1−θ
, (25), and Φβ(v) ≤ τ, we have

Φβ(v+) ≤ nψβ

(
1

√
1 − θ

σ

(
Φβ(v)

n

))

≤
n
2

σ

(
Φβ(v)

n

)
√

1 − θ

2

− 1

 = n
2(1 − θ)

[σ (
Φβ(v)

n

)]2

− (1 − θ)

≤

n
2(1 − θ)

1 +

√
2Φβ(v)

n

2

− (1 − θ)

≤

n
2(1 − θ)

2

√
2τ
n
+ 2

τ
n
+ θ

 = θn + 2τ + 2
√

2τn
2(1 − θ)

.

For L2, by (24), with Lemma 4.4, we get the result.

5. Analysis of Algorithm

5.1. Determining a default step size
In the following section, we will compute a proper default step size α and the decrease of the barrier

function during an inner iteration, and provide the complexity results of the algorithm.

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9119

Lemma 5.1. Let δ(v) be as defined in (12). Then we have

δ(v) ≥

√
Φβ(v)

2
. (27)

Proof. Using (23), we have

Φβ(v) =
n∑

i=1

ψβ(vi) ≤
n∑

i=1

1
2

[
ψ
′

β(vi)
]2
=

1
2
||∇Φβ(v)||2 = 2δ(v)2,

so δ(v) ≥
√

1
2Φβ(v).

Throughout the paper, we assume that Φβ(v) ≥ τ ≥ 1, and we have δ(v) ≥
√

1
2 .

Lemma 5.2. [Bai et al.[2]] The largest step size α is given by

α =
ρ(δ) − ρ(2δ)

2δ
≥

1
ψ
′′

β

(
ρ(2δ)

) .

Lemma 5.3. The largest step size α verifies

α ≥
1

1 + [1 + (1 − β)(q − 1)](4δ+1
1−β)

q+1
q

.

Proof. Using Lemma 5.2, (16) and (26), we have

α ≥
1

ψ
′′

β

(
ρ(2δ)

)
=

1
1 + β[ρ(2δ)]−2 + (1 − β)q[ρ(2δ)]−(q+1)

≥
1

1 + β[4δ+1
1−β]

2
q + (1 − β)q[4δ+1

1−β]
q+1

q

≥
1

1 + β[4δ+1
1−β]

2
q + (1 − β)q[4δ+1

1−β]
q+1

q

≥
1

1 + β[4δ+1
1−β]

q+1
q + (1 − β)q[4δ+1

1−β]
q+1

q

≥
1

1 + [1 + (1 − β)(q − 1)](4δ+1
1−β)

q+1
q

.

Denoting

α̃ =
1

1 + [1 + (1 − β)(q − 1)](4δ+1
1−β)

q+1
q

, (28)

we have that α̃ is the default step size and that α̃ ≤ α.

Remark 5.4 (Analysis of the default step size). Note that if we increase the value of β (β <
→ 1), the denominator

value is also increased, which affects α̃ and makes it close to zero, so the number of iterations increases. We conclude
that for small values of β (β in the neighborhood of 0), we get the best approximation of α̃.

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9120

5.2. Decrease in the proximity function during an inner iteration
Lemma 5.5. [Lemma 4.5 in [2]] If the step size α satisfies α ≤ α, then

f (α) ≤ −αδ2,

where f (α) = Φ(v+) − Φ(v), i.e f (α) is the difference of proximities between a new iterate and a current iterate for
fixed µ.

Theorem 5.6. Let α̃ be the default step size as defined in (28). Then, we have

f (α̃) ≤ −
(1 − β)2Φβ(v)

q−1
2q

36
√

2(q + 1)
. (29)

Proof. Since Φβ(v) ≥ 1, then from (27), we have 2δ > 1. Using Lemma 5.5 (Lemma 4.5 in [2]) with α = α̃ and
(28), we have

f (α̃) ≤ −α̃δ2 = −
δ2

1 + [1 + (1 − β)(q − 1)](4δ+1
1−β)

q+1
q

≤ −
δ2

(2δ)
q+1

q + [1 + (1 − β)(q − 1)](6δ
1−β)

q+1
q

≤ −
δ2

(2)2(δ)
q+1

q + [1 + (1 − β)(q − 1)](6
1−β)2(δ)

q+1
q

≤ −
(1 − β)2δ

q−1
q

4(1 − β)2 + [1 + (1 − β)(q − 1)]36

≤ −
(1 − β)2δ

q−1
q

4 + [1 + (1 − β)(q − 1)]36

≤ −
(1 − β)2Φβ(v)

q−1
2q

36
√

2(q + 1)
.

6. Iteration Complexity

6.1. Inner iteration bound
After the update of µ to (1 − θ)µ, we have

Φβ(v+) ≤ Li, i = 1, 2.

We need to count how many inner iterations are required to return to the situation where Φβ(v+) ≤ τ. We
denote the value of Φβ(v) after the µ update as (Li), the subsequent values in the same outer iteration are
denoted by

(
Φβ

)
k

, k = 1, 2, ...,K, where K denotes the total number of inner iterations in the outer iteration.
The decrease in each inner iteration is given by (29). In [2], we can find the appropriate values of κ and
γ ∈]0, 1] which are given respectively by

κ =
(1 − β)2

36
√

2(q + 1)
, γ = 1 −

q − 1
2q
=

q + 1
2q

.

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9121

Lemma 6.1. In the outer iteration, K is the total number of inner iterations. Then we have

K ≤
72
√

2q
(1 − β)2 [Li]

q+1
2q .

Proof. Lemma 1.3.2 in [14] allows us to have

K ≤
[Li]γ

κγ
=

72
√

2q
(1 − β)2 [Li]

q+1
2q .

6.2. Total iteration bound

The number of outer iterations is bounded above by
log(n

ϵ)
θ (see Roos et al. [16] Lemma II.17, page 116).

An upper bound for the total number of iterations is obtained by multiplying the number of outer iterations
by the number of inner iterations, specifically,

72
√

2q
(1 − β)2 [Li]

q+1
2q

log
(

n
ϵ

)
θ

. (30)

For large-update methods, τ = O(n), θ = Θ(1) with upper bounds L1, we have

O
(
qn

q+1
2q log

(n
ϵ

))
iterations complexity.

For small-update methods: τ = O(1) and θ = Θ
(

1
√

n

)
with upper bounds L2 = O

(
q
)
, we get the following

iteration bound

O
(
q2√n log

(n
ϵ

))
iterations complexity.

In the following section, we present some numerical results to demonstrate the efficiency of the proposed
algorithm.

7. Numerical Results

To illustrate the efficiency of the new kernel function proposed in this article, we will compare the
performance of our proposed kernel function ψβ defined in (14) with both kernel functions ψLB(t) =
1
2

(
t2
− 1

)
−

1
2 log(t) + t1−q

−1
2(q−1) and ψEL(t) = 1

2

(
t2
− 1

)
− log(t) which are introduced by Bouafia et al. [6] and El

Ghami et al. [9] respectively. In this section we present some numerical results. Therefore, we will discuss
the numerical implementation of this algorithm applied to problems related to LCPs in the standard form
given by (1). Our numerical example serves to demonstrate the influence of the parameter β included in
our proposed kernel function on the number of iterations and to prove and evaluate the effectiveness of our
new kernel function ψβ on this influence behavior of the algorithm. To solve the problem we used Matlab
2013b. We have the tolerance ϵ = 10−4, µ0 = 1.5, θ ∈ {0.30, 0.95} and τ = n where n denotes the number
of variables. For the kernel functions, we take the best choice of q, i.e., q = log n

2 . For the default step size
α we choose α̃EL =

1
2(1+4δ)2 according to ψEL as in [9], α̃LB =

2

2+(q+1)(8δ+2)
q+1

q
according to ψLB as in [6], and

α̃β = 1

1+[1+(1−β)(q−1)](4δ+1
1−β)

q+1
q

which is much the same as the previous kernel functions. In the results tables, we

used Inner It to represent the number of inner iterations required to obtain the optimal solution, and we
used Outer It to represent the number of total outer iterations required to obtain the optimal solution.

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9122

Example 7.1.

Consider M =

1 2 2 2 2 2 2 2
0 2 2 2 2 2 2 2
0 0 1 2 2 2 2 2
0 0 0 2 2 2 2 2
0 0 0 0 1 2 2 2
0 0 0 0 0 2 2 2
0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 2

, b = (−14,−13,−10,−9,−5,−4,−1, 0).

The numerical results are shown in Table 1 below.

Kernel functions Large update Small update θ Inner It. Outer It.

ψEL O
(
n log

(
n
ϵ

))
O

(√
n log

(
n
ϵ

))
0.30 7928 34
0.95 1531 5

ψβ, (β = 0.9) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 334280 34

0.95 62534 5

ψβ, (β = 0.7) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 39204 34

0.95 7314 5

ψLB O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 14614 34

0.95 2714 5

ψβ, (β = 0.3) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 7591 34

0.95 1418 5

ψβ, (β = 0.2) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 5905 34

0.95 1097 5

ψβ, (β = 0.1) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 4730 34

0.95 876 5

ψβ, (β = 0.05) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 4275 34

0.95 791 5

ψβ, (β = 0.01) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 3962 34

0.95 732 5
Table 1. Number of iterations with the kernel functions ψEL, ψLB, ψβ for Example 7.1.

When β = 0.3, 0.2, 0.1, 0.05, 0.01, Table 1 shows that the number of iterations to execute the algorithm
based on the kernel function ψβ is smaller than the other kernel functions shown with θ ∈ {0.30, 0.95}. We
conclude that for small values of β near 0, our proposed kernel functions produce better results than the
kernel functions ψLB and ψβ. (See Figure 1).

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9123

Example 7.2.

M =

1 2 2 2 2 2 2 2 2 2 2 2
0 2 2 2 2 2 2 2 2 2 2 2
0 0 1 2 2 2 2 2 2 2 2 2
0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 1 2 2 2 2 2 2 2
0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 1 2 2 2 2 2
0 0 0 0 0 0 0 2 2 2 2 2
0 0 0 0 0 0 0 0 1 2 2 2
0 0 0 0 0 0 0 0 0 2 2 2
0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 2

,

b=(-22,-21,-18,-17,-14,-13,-9,-8,-5,-4,-1,0).

Table 2 below lists the numerical results.

Kernel functions Large update Small update θ Inner It. Outer It.

ψEL O
(
n log

(
n
ϵ

))
O

(√
n log

(
n
ϵ

))
0.30 13802 35
0.95 5091 6

ψβ, (β = 0.9) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 280358 35

0.95 87315 6

ψβ, (β = 0.7) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 41083 35

0.95 12649 6

ψLB O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 17677 35

0.95 5292 6

ψβ, (β = 0.3) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 1001 35

0.95 3030 6

ψβ, (β = 0.2) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 8541 35

0.95 2440 6

ψβ, (β = 0.1) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 6581 35

0.95 2019 6

ψβ, (β = 0.05) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 6552 35

0.95 1855 6

ψβ, (β = 0.01) O
(
qn

q+1
2q log

(
n
ϵ

))
O

(
q2√n log

(
n
ϵ

))
0.30 6403 35

0.95 1737 6
Table 2. Number of iterations with the kernel functions ψEL, ψLB, ψβ for Example 7.2.

As in Example 7.1, the results show that the function ψβ (β = 0.3, 0.2, 0.1, 0.05, 0.01) the number of
iterations is reduced compared to the other kernel functions, as shown in Table 1 for θ ∈ {0.30, 0.95}. It can
be concluded that the new kernel function produces better results than the kernel functions ψEL and ψLB
when the parameter β taken into account. (See Figure 2).

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9124

7.1. Discussion
Based on the obtained results of Tables 1, 2 for Example 7.1 and Example 7.2, the following comments

are concluded:
As the value of β increases to 0, the number of iterations increases due to the increased denominator value,
which affects α̃ and brings it close to zero. This increases the number of iterations.
The algorithm based on the kernel function ψβ provides the best number of iterations when the parameter
β decreases to 0. We conclude that for small values of β (β near 0), we get the best approximation for α̃.
This means that the number of iterations is sensitive to the changes in β involved in the proposed kernel
function ψβ.

The number of inner iterations with respect to the parameter β using the kernel function ψβ for θ ∈
{0.30, 0.95} is shown in Figures 1, 2 corresponding to Examples 7.1 and 7.2, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

1.5

2

2.5

3

3.5
10

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

7
10

4

Figure 1: Number of inner iterations with respect to β according to Example 7.1 for θ = 0.30 (left) and θ = 0.95 (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

1.5

2

2.5

3
10

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

7

8

9
10

4

Figure 2: Number of inner iterations with respect to β according to Examples 7.2 for θ = 0.30 (left) and θ = 0.95 (right).

A. Benhadid, F. Merahi / Filomat 38:26 (2024), 9111–9125 9125

8. Conclusion

In this work, we have proven that for all β in]0, 1[the iteration bound of a large-update interior point

method based on the kernel function considered in this work is O
(
qn

q+1
2q log

(
n
ϵ

))
and O

(
q2√n log

(
n
ϵ

))
for

the small update method. Another interesting choice is q and β, which minimize the iteration complexity
bound. If we assume q = log n

2 and β close to 0, we actually get good convergence properties of the algorithm
with the best-known complexity bound for large-update methods, namely O

(√
n log (n) log

(
n
ε

))
. These

results represent the best-known complexity bound for large-update with a logarithmic barrier term and
are more efficient compared to other logarithmic kernels.

Acknowledgement

The authors are grateful to the handling editor and the anonymous referees for their helpful comments that
improved the quality of the paper.

References

[1] Y. Q. Bai, C. Roos, A primal-dual interior point method based on a new kernel function with linear growth rate, In: Proceedings of the
9th Australian Optimization Day, Perth, 2000, Australia.

[2] Y. Q. Bai, M. El Ghami, C. Roos, A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization,
SIAM J. Optim. 15 (2004) 101–128.

[3] A. Benhadid, K. Saoudi, A new parameterized logarithmic kernel function for linear optimization with a double barrier term yielding the
best known iteration bound, Commun. Math. 28 (2020), 27–41.

[4] A. Benhadid, K. Saoudi, F. Merahi, An interior point approach for linear complementarity problem using new parametrized kernel function,
Optimization. 71 (2022), 4403–4422.

[5] A. Benhadid, F. Merahi, Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel
function with a double barrier term, Numer. Algebra Control Optim, 13(2) (2023), 224–238.

[6] M. Bouaafia, D. Benterki, Y. Adnan, An efficient parameterized logarithmic kernel function for linear optimization, Optim. Lett, 12
(2018), 1079–1097.

[7] M. El Ghami, New Primal-Dual Interior-Point Methods Based on Kernel Functions, PhD Thesis, TU Delft, The Netherlands, 2005.
[8] M. El Ghami, Z. A. Guennoun, S. Bouali, T. Steihaug, Interior point methods for linear optimization based on a kernel function with a

trigonometric barrier term, J. Comput. Appl. Math. 236 (2012), 3613–3623.
[9] M. El Ghami, I. D. Ivanov, C. Roos, T. Steihaug, A polynomial-time algorithm for LO based on generalized logarithmic barrier functions,

Int. J. Appl. Math. 21 (2008), 99–115.
[10] N. K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984) 373–395.
[11] M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems,

(1st edition), Springer Berlin, Heidelberg, 1991.
[12] N. Megiddo, Pathways to the optimal set in linear programming, In: Megiddo, N. (ed.) Progress in Mathematical Programming:

Interior Point and Related Methods, 131–158. Springer, New York (1989).
[13] J. Peng, C. Roos, T. Terlaky, A new class of polynomial primal–dual methods for linear and semidefinite optimization, European J. Oper.

Res. 143 (2002), 234–256.
[14] J. Peng, C. Roos, T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual Interior Point Algorithms, Princeton University Press,

2002.
[15] J. Peng, C. Roos, T. Terlaky, A new and efficient large-update interior point method for linear optimization, J. Comput. Technol. 6 (2001),

61-80.
[16] C. Roos, T. Terlaky, J. P. Vial, Theory and Algorithms for Linear Optimization, An Interior Point Approach, (1st edition), Wiley,

Chichester, 1997.
[17] G. Sonnevend, An ”analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming., In:

Prékopa, A., Szelezsáan, J., Strazicky, B. (eds) System Modelling and Optimization. Lecture Notes in Control and Information
Sciences, 84. Springer, 1986.

[18] Y. Ye, Interior Point Algorithms: Theory and Analysis, (1st edition), Wiley, Chichester, 1997.

