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Abstract. In the first step, we determine some conditions for having a topological complete hypergroup
by defining the geometric space obtained from each strongly regular relation. Then applying set theory, we
introduce the concepts of “soft geometric spaces,” “soft topological hypergroups,” and “(strongly) regular
relations” on soft hypergroups. Finally, to find some conditions for having a soft topological (complete)
hypergroup, using the results of the first step, we determine the soft geometric space obtained from a
strongly regular relation on soft hypergroups.

1. Introduction and preliminaries

The concept of hypergroup as a generalization of algebraic structures was first introduced in 1934 by
Marty [14]. Afterwards, This concept was investigated in some publications such as [2, 3, 7, 15, 16, 24]. Then,
Vougiouklis [26] presented the notation of Hv-structure as a generalization of algebraic hyperstructures in
1990. Davvaz, Spartalis, Dramalidis, Leoreanu-Fotea, S. Hoskova, and others have tried to develop this
concept in different directions. All the results until 2018 were collected by Davvaz and Vougiouklis [6].

Recall from [4, 6] that a hypergroupoid (H, ◦) is a nonempty set H with a map ◦ : H × H → P∗(H) called
(binary) hyperoperation, where P∗(H) is the set of all nonempty subsets of H. The image of pair (x, y) is
denoted by x ◦ y. For every A,B ∈ P∗(H) and x ∈ H, consider

A ◦ B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x}, and x ◦ B = {x} ◦ B.

Let (H, ◦) be a hypergroupoid.

• It is called commutative if x ◦ y = y ◦ x for all x, y ∈ H.

• It is called a semihypergroup if x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H.

• It is called an Hv-semigroup if x ◦ (y ◦ z)
⋂

(x ◦ y) ◦ z , ∅ for all x, y, z ∈ H.

• It is called a quasihypergroup if it has the reproduction axiom (i.e., a ◦H = H ◦ a = H for every a ∈ H).
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Recall that a semihypergroup (H, ◦) is a hypergroup if it is a quasihypergroup. An Hv-semigroup (H, ◦) is
an Hv-group if it has the reproduction axiom.

Let (H, ◦) be a semihypergroup with an equivalence relation ρ. If A and B are nonempty subsets of H,
then

AρB means that for all a ∈ A, there exists b ∈ B such that aρb
and for all b′ ∈ B, there exists a′ ∈ A such that a′ρb′;

AρB means that for all a ∈ A and for all b ∈ B, we have aρb.

The equivalence relation ρ is called

• regular on the right (resp., on the left) if for all x ∈ H, it follows from aρb that (a ◦ x)ρ(b ◦ x) (resp.,
(x ◦ a)ρ(x ◦ b));

• strongly regular on the right (resp., on the left) if for all x ∈ H, it follows from aρb that (a◦ x)ρ(b◦ x) (resp.,
(x ◦ a)ρ(x ◦ b));

• regular (resp., strongly regular) if it is regular (resp., strongly regular) on the right and on the left.

Let (H, ◦) be a hypergroup with an equivalence relation ρ. Then ρ is regular (resp., strongly regular)
if and only if

(
H
ρ ,⊚
)

is a hypergroup (resp., group), where ρ(x) ⊚ ρ(y) = ρ(z) for all x, y ∈ H and z ∈ x ◦ y.
Moreover, ρ(a) is the ρ-class of a ∈ H.

The fundamental equivalence relation β∗ on a hypergroup (Hv-group) (H, ◦) is the smallest equivalence
relation on H such that the quotient H

β∗ is a group.

The notion of topological hypergroup was introduced by Heidari, Davvaz, and Modarres [9]. Then
Singha, Das, and Davvaz [23] defined the concept of topological complete hypergroups and investigated
some of their properties. This concept was also studied in some other papers [1, 10–12, 22]. Also, we [25]
extended the concept of topological hypergroup to the topological Hv-group by the concept of geometric
spaces, which was defined by Freni [8]. By defining the geometric space obtained from the fundamental
relation β∗ on the Hv-group, we determined some conditions for having a topological complete Hv-group.
In this paper, we determine some conditions for having a topological complete hypergroup by defining the
geometric space obtained from each strongly regular relation.

A powerful tool for modeling uncertain problems is “soft set theory”, which was initiated in 1999 by
Molodtsov [17]. Many researchers investigated soft set theory and combined it with other objects in mathe-
matics. One of these objects is an algebraic hyperstructure. For example, Yamak, Kazanci, and Davvaz [27]
introduced the notion of “soft hypergroupoids”. Selvachandran and Salleh [21] defined “soft hypergroups”
and “soft hypergroup homomorphism”. Furthermore, they discussed some basic properties and structural
characteristics of these notions. Recently, Oguz and Davvaz [18] combined it with topological spaces and
initiated the concept of “soft topological hypergroupoids”. Ostadhadi-Dehkordi and Shum [19] defined
“(strongly) regular relations” on soft hyperrings (see also [5]). In this paper, we introduce the concepts of
“soft geometric spaces” and “soft topological hypergroups” and state some conditions of soft geometric
spaces. Then, we define the concept of “(strongly) regular relations” on soft hypergroups. To find some
conditions for having a soft topological (complete) hypergroup, we determine the soft geometric space
obtained from a strongly regular relation on a soft hypergroup.

Recall from [8] that a geometric space is a pair (S,B) such that S is a nonempty set in which its elements
are called points and B is a nonempty family of subsets of S, which its elements are called blocks. If C is a
subset of S, then it is called a B-part of S if B ∩ C , ∅ implies B ⊆ C for every B ∈ B. For a subset X ⊆ S,
the intersection of all B-parts of S containing X is denoted by Γ(X). For any subsets X and Y of a geometric
space (S,B), the following properties are true:

(P1) X ⊆ Γ(X),
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(P2) X ⊆ Y⇒ Γ(X) ⊆ Γ(Y),

(P3) Γ
(
Γ(X)
)
= Γ(X),

(P4) Γ(X) =
⋃

x∈X Γ(x), where Γ(x) = Γ({x}).

Corollary 1.1 ([8]). Let (S,B) be a geometric space and let B be an element of B. Then,

1. Γ(x) = Γ(y) for each x, y ∈ B.
2. Γ(B) = Γ(x) for all x ∈ B.

The n-tuple (B1,B2, . . . ,Bn) of blocks of a geometric space (S,B) is called a polygonal if Bi ∩ Bi+1 , ∅ for
each 1 ≤ i < n. Freni [8] defined the relation ≈ as follows:

x ≈ y if and only if x = y or there exists a polygonal (B1,B2, . . . ,Bn) such that x ∈ B1 and y ∈ Bn.

The relation ≈ is an equivalence and coincides with the transitive closure of the following relation:

x ∼ y if and only if x = y or there exists B ∈ B such that {x, y} ⊆ B.

Hence ≈ is equal to
⋃

n≥1 ∼
n, where ∼n= ∼ ◦ ∼ ◦ · · · ◦ ∼︸           ︷︷           ︸

n times

. Freni [8] proved that y ∼n x if and only if y ∈ Γn(x)

and the ≈-class of x in S coincides with Γ(x).
We [25] showed that for the family FB(S) of all B-parts of S, there are two topologies on S; see the

following proposition.

Proposition 1.2 ([25]). Let (S,B) be a geometric space; then the following properties hold:

1. The family FB(S) is the family of open subsets of topology T o
B

(S) (which is called the open topology corre-
sponding to B).

2. The family FB(S) is the family of closed subsets of topology T c
B

(S) on S (which is called the closed topology
corresponding to B).

Open sets of topology T o
B

(S) are closed sets of topology T c
B

(S), and vice versa. Throughout the pa-
per, whenever the type of these topologies is not important or their properties are common, we call it
corresponding topology and denote it by TB(S).

Recall from [25] that a block B ∈ B of a geometric space (S,B) is complete if B is a B-part. In other words,
a block B is complete if and only if Γ(B) = B. A geometric space is complete if each of its block is complete.
A geometric space (S,B) with a topology τ on S is called τ-complete if every open set of S is a B-part. In
other words, a geometric space (S,B) with a topology τ on S is τ-complete if Γ(U) = U for every U ∈ τ. A
geometric space (S,B) is called τ-open (resp., τ-closed) if every block B ∈ B is an open (resp., closed) subset
of (S, τ).

Proposition 1.3 ([25]). If (S,B) is a complete geometric space such that S =
⋃

B∈B B, then B is an open basis of
topology T o

B
(S) and a closed subbasis of topology T c

B
(S). Moreover, (S,B) is transitive.

Proposition 1.4 ([25]). If a geometric space (S,B) is τ-open and τ-complete for a topology τ on S, then it is complete.

Proposition 1.5 ([25]). Let (Si,Bi) be geometric spaces with topologyτi on Si for i = 1, 2, . . . ,n. Then,
(∏n

i=1 Si,
∏n

i=1Bi
)

is a geometric space and the following properties hold:

1. If (Si,Bi) is (strongly) transitive for i = 1, 2, . . . ,n, then
(∏n

i=1 Si,
∏n

i=1Bi
)

is (strongly) transitive.
2. If (Si,Bi) is τi-open (resp., τi-closed) for i = 1, 2, . . . ,n, then

(∏n
i=1 Si,

∏n
i=1Bi

)
is
(∏n

i=1 τi
)
-open (resp.,(∏n

i=1 τi
)
-closed).

3. If (Si,Bi) is τi-complete (resp., complete) for i = 1, 2, . . . ,n, then
(∏n

i=1 Si,
∏n

i=1Bi
)

is
(∏n

i=1 τi
)
-complete (resp.,

complete).
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Let (S, τ) be a topological space. Then, the familyU consisting of all sets

SU = {V ∈ P∗(S)
∣∣∣ V ⊆ U}, where U ∈ τ,

is a base for a topology on P∗(S); see [11]. This topology is denoted by τ∗.
Recall from [25] that for the geometric space (S,B), the induced geometric space on P∗(S) is

(
P
∗(S),B∗

)
if

B
∗ =
{
B∗
∣∣∣ B ∈ B} , where B∗ =

{
V ∈ P∗(S)

∣∣∣ V ⊆ B
}
.

Proposition 1.6 ([25]). Let (S,B) be a geometric space with topology τ on S and let
(
P
∗(S),B∗

)
be the induced

geometric space with topology τ∗ on P∗(S). Then,

1. (S,B) is complete if and only if
(
P
∗(S),B∗

)
is complete;

2. (S,B) is τ-open implies that
(
P
∗(S),B∗

)
is τ∗-open;

3. (S,B) is τ-complete implies that
(
P
∗(S),B∗

)
is τ∗-complete.

A map f : (S1,B1) → (S2,B2) between the geometric spaces, is called a good morphism if x ∼ y implies
f (x) ∼ f (y) for all x, y ∈ S1 (see [25]).

Proposition 1.7 ([25]). Let f : (S1,B1)→ (S2,B2) be a map between the geometric spaces. If f is a good morphism,
then

1. x ≈ y implies f (x) ≈ f (y) for all x, y ∈ S1.
2. f :

(
S1,TB1 (S1)

)
→
(
S2,TB2 (S2)

)
is continuous.

Proposition 1.8 ([25]). Let (Si,Bi) be a geometric space with topology τi on Si for i = 1, 2 and let f : (S1,B1) →
(S2,B2) be a good morphism. If (S1,B1) is τ1-open such that S1 =

⋃
B∈B1

B and (S2,B2) is τ2-complete, then
f : (S1, τ1)→ (S2, τ2) is continuous.

2. Topological hypergroups

n this section, we introduce the induced geometric space from a hypergroup with respect to an arbitrary
strongly regular relation ρ such that the relation “∼” in geometric spaces coincides with the relation ρ in
the hypergroup. Then, we state some conditions for having a topological (complete) hypergroup. First,
we remind some concepts of hypergroups in algebras and some relative properties of them; for more
information, see [4, 6, 20].

Let (H1, ◦) and (H2, •) be two hypergroups (resp., Hv-groups). A map f : H1 → H2 is called a homomor-
phism or a good (or strong) homomorphism if

f (x ◦ y) = f (x) • f (y) for all x, y ∈ H1.

Proposition 2.1 ([6]). If ρ is a regular equivalence relation on a (semi)hypergroup (H, ◦), then the canonical projection
f : (H, ◦)→

(
H
ρ ,⊚
)

is an onto good homomorphism.

By Proposition 2.1, for a regular equivalence ρ on a (semi)hypergroup (H, ◦), we have ρ(x◦y) = ρ(x)⊚ρ(y)
for every x, y ∈ H.

Proposition 2.2 ([4]). Let αi be a good homomorphism from semihypergroup (H, •) onto semihypergroup (Hi, ◦i) for
i = 1, 2, such that α−1

1 ◦ α1 ⊆ α−1
2 ◦ α2. Then, there exists a unique good homomorphism θ : (H1, ◦1)→ (H2, ◦2) such

that θ ◦ α1 = α2; that is, the following diagram commutes:
H

α1

~~

α2

  

H1 θ
// H2
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Proposition 2.3 ([4]). If ρ1 and ρ2 are strongly regular relations on a semihypergroup H such that ρ1 ⊆ ρ2, then
there exists a good homomorphism from H

ρ1
onto H

ρ2
.

Proposition 2.4. Let f : (H1, ◦)→ (H2, •) be a good homomorphism between hypergroups and let ρ be an equivalence
relation on H1. Let fρ be a relation on f (H1) such that f (x) fρ f (y) if and only if f (x) = f (y) or xρy. Then, fρ is a
regular (resp., strongly regular) relation on f (H1) if ρ is a regular (resp., strongly regular) relation on H1.

Proof. Let a, b, x ∈ H1 such that f (a) fρ f (b). There are two cases: Case 1: If f (a) = f (b), then f (a) • f (x) =
f (b) • f (x). Case 2: If f (a) , f (b), then aρb. So (a ◦ x)ρ(b ◦ x) (resp.,(a ◦ x)ρ(b ◦ x)). Since ρ is regular

(resp., strongly regular), f (a ◦ x) fρ f (b ◦ x) (resp., f (a ◦ x) fρ f (b ◦ x)). Since f is a good homomorphism,(
f (a) • f (x)

)
fρ
(

f (b) • f (x)
)

(resp.,
(

f (a) • f (x)
)

fρ
(

f (b) • f (x)
)
). Therefore, fρ is regular (resp., strongly regular)

on the right. By similar argument, fρ is regular (resp., strongly regular) on the left. Hence fρ is regular (resp.,
strongly regular).

Theorem 2.5. Let f : (H1, ◦)→ (H2, •) be a good homomorphism between hypergroups and let ρi be an equivalence
relation on Hi for i = 1, 2, such that fρ1 ⊆ ρ2.

1. f preserves the relation ρ1 (i.e., xρ1y yields f (x)ρ2 f (y) for all x, y ∈ H1).
2. If ρ1 is a strongly regular relation, then the induced map F :

(
H1
ρ1
,⊚
)
→

(
H2
ρ2
,⊙
)

is a group homomorphism.

Proof. 1. Clearly, f
(
ρ1(x)

)
⊆

fρ1

(
f (x)
)

for all x ∈ H1. Since fρ1 ⊆ ρ2, then f
(
ρ1(x)

)
⊆ ρ2

(
f (x)
)

for all x ∈ H1.
Thus f preserves the relation ρ1.

2. Let α1 : H1 →
H1
ρ1

and α2 : f (H1) → f (H1)
fρ1

be the canonical maps. For every x ∈ H1, we have

α−1
1 ◦ α1(x) = ρ1(x) ⊆ fρ1

(
f (x)
)
= (α2 ◦ f )−1

◦ (α2 ◦ f )(x). Therefore, by Proposition 2.2, there exists
a unique good homomorphism F1 such that F1 ◦ α1 = α2 ◦ f . Consider the following commutative
diagram:

H1

α1

��

f

""

f (H1)
α2

""

H1
ρ1 F1

// f (H1)
fρ1

By Proposition 2.4, the relation fρ1 is strongly regular on f (H1). Hence f (H1)
fρ1

is a group. Since ρ1 is a

strongly regular relation, H1
ρ1

is a group. Therefore, F1 is a group homomorphism since it is a good

homomorphism and H1
ρ1

and f (H1)
fρ1

are groups.

Let α3 : H2 →
H2
ρ2

be the canonical map. Since α−1
2 ◦ α2( f (x)) = fρ1

(
f (x)
)
⊆ ρ2

(
f (x)
)
= (α3 ◦ j)−1

◦

(α3 ◦ j)( f (x)) for all x ∈ H1, by Proposition 2.2, there exists a unique good homomorphism J such that
J ◦ α2 = α3 ◦ j. Consider the following commutative diagram:

f (H1)

α2

��

� q

j

""

H2

α3

��
f (H1)

fρ1 J
// H2
ρ2

Since f (H1)
fρ1

and H2
ρ2

are groups and J is a good homomorphism, J is a group homomorphism. Now,
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consider the following commutative diagram:

H1
f
//

α1

��

f (H1) �
� j

//

α2

��

H2

α3

��
H1
ρ1 F1

// f (H1)
fρ1 J

// H2
ρ2

(1)

Obviously, F = J ◦ F1. Thus F is a group homomorphism.

Remark 2.6. Let (H, ◦) be a hypergroup and let ρ be a strongly regular relation on H. Then
(
H, ρ(H)

)
is a geometric

space, where ρ(H) = {ρ(x)|x ∈ H}. Clearly, the relation “∼” coincides with the relation ρ.

Theorem 2.7. Let f : (H1, ◦)→ (H2, •) be a good homomorphism between hypergroups and let ρi be an equivalence
relation on Hi for i = 1, 2, such that fρ1 ⊆ ρ2. Then the induced map f :

(
H1, ρ1(H1)

)
→

(
H2, ρ2(H2)

)
is a good

morphism between geometric spaces. Thus f :
(
H1,Tρ1(H1)(H1)

)
→

(
H2,Tρ2(H2)(H2)

)
is continuous. If f is an

isomorphism on hypergroups, then f is a homeomorphism on the corresponding topological spaces.

Proof. Since fρ1 ⊆ ρ2, by Theorem 2.5, f preserves the relation ρ1. By Remark 2.6, the relation ∼ in geometric
space

(
H1, ρ1(H1)

)
coincides with ρ1. Therefore, f preserves the relation ∼ in geometric spaces. So f is a

good morphism between geometric spaces. Thus by Theorem 1.7, f is continuous. If f is isomorphism,
then there is a good homomorphism 1 : H2 → H1, such that 1 ◦ f and f ◦ 1 are identities on H1 and H2,
respectively, which completes the proof.

Proposition 2.8. Let (H, ◦) be a hypergroup and let ρ be a strongly regular relation on H. Then the canonical map
q : H→ H

ρ is a quotient map with respect to corresponding topology.

Proof. By Proposition 2.1, q is an onto good homomorphism. So by Theorem 2.7, q is continuous. It is
remained to show that it is an open (resp., closed) map. Let U be an open (resp., closed) subset of H in open
(resp., closed) corresponding topology. Then, by Proposition 1.2, U = Γ(U). Therefore, q

(
Γ(U)

)
= Γ
(
q(U)
)
,

and hence q is open (resp., closed).

Recall from [9] that for a hypergroup (H, ◦) with topology τ on H, the system (H, ◦, τ) is called a topological
hypergroup if the following conditions hold:

1. The mapping (x, y) 7→ x ◦ y from H ×H to P∗(H) is continuous.
2. The mapping (x, y) 7→ x

y from H ×H to P∗(H) is continuous, where x
y = {z ∈ H | x ∈ z ◦ y}.

Here, H ×H is equipped with the product topology and P∗(H) is equipped with the topology τ∗. If the first
condition holds, then (H, ◦, τ) is called a paratopological hypergroup.

Lemma 2.9. Let (H, ◦) be a hypergroup and let ρ be a strongly regular relation on H. Then, the hyperoperation
◦ : H × H → P

∗(H) that maps (x, y) to x ◦ y, is continuous on the topological space
(
H,Tρ(H)(H)

)
. Hence(

H, ◦,Tρ(H)(H)
)

is a paratopological hypergroup.

Proof. If we show that ◦ :
(
H, ρ(H)

)
×

(
H, ρ(H)

)
→

(
P
∗(H),

(
ρ(H)

)∗)
preserves the relation ∼, then by The-

orem 2.7, it is continuous in the topological space
(
H,Tρ(H)(H)

)
. Let (x1, y1) ∼ (x2, y2), that is, x1 ∼ x2 and

y1 ∼ y2. Therefore, Γ(x1) = Γ(x2) and Γ(y1) = Γ(y2). Note that ρ coincides with the relation ∼ and that H
ρ is a

group by the operation ρ(x1) ⊙ ρ(y1) = ρ(z1), where z1 ∈ x1 ◦ y1. Hence Γ(x1) ⊙ Γ(y1) = Γ(z1), so

Γ(z1) = Γ(x1) ⊙ Γ(y1) = Γ(x2) ⊙ Γ(y2) = Γ(z2),
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where z2 ∈ x2◦y2. However, it follows from (P1) thatΓ(zi) ⊆ Γ(xi◦yi), for i = 1, 2. ThusΓ(x1◦y1)∩Γ(x2◦y2) , ∅.
Therefore, (x1 ◦ y1) ≈ (x2 ◦ y2) in the geometric space

(
P
∗(H),

(
ρ(H)

)∗)
. Since ρ(H) is a cover for H,

(
ρ(H)

)∗
is a cover for P∗(H), so by Proposition 1.3,

(
P
∗(H),

(
ρ(H)

)∗)
is a transitive geometric space. Therefore,

(x1 ◦ y1) ∼ (x2 ◦ y2), which implies that ◦ is a good morphism.

In the following lemma, we investigate the continuity of inversion of hypergroups.

Lemma 2.10. Let (H, ◦) be a hypergroup and let ρ be a strongly regular relation on H. Then, the map f : H ×H→
P
∗(H) that maps (x, y) to x

y = {z ∈ H | x ∈ z ◦ y} is continuous in the topological space
(
H,Tρ(H)(H)

)
.

Proof. By Theorem 2.7, it is enough to show that f preserves the relation ∼. Let (x1, y1) ∼ (x2, y2). Then
x1 ∼ x2 and y1 ∼ y2. Indeed, for each z1 ∈

x1
y1

and z2 ∈
x2
y2

, we have x1 ∈ z1 ◦ y1 and x2 ∈ z2 ◦ y2. Since(
H
ρ ,⊙
)

is a group and ρ coincides with the relation ∼, we have ρ(z1)⊙ ρ(y1) = ρ(x1), where x1 ∈ z1 ◦ y1 yields
Γ(z1) ⊙ Γ(y1) = Γ(x1). Indeed Γ(x1) = Γ(x2) and Γ(y1) = Γ(y2), so

Γ(z1) ⊙ Γ(y2) = Γ(z1) ⊙ Γ(y1) = Γ(x1) = Γ(x2) = Γ(z2) ⊙ Γ(y2).

By the properties of the group
(

H
ρ ,⊙
)
,

Γ(z1) ⊙ Γ(y2) = Γ(z2) ⊙ Γ(y2)⇒ Γ(z1) = Γ(z2).

Similar the proof of Lemma 2.9, we have Γ(z1) = Γ(z2) in the transitive geometric space
(
P
∗(H),

(
ρ(H)

)∗)
, so

z1 ∼ z2.

The two above lemmas yield the following theorem.

Theorem 2.11. Let (H, ◦) be a hypergroup and ρ be a strongly regular relation on H. Then,
(
H, ◦,Tρ(H)(H)

)
is a

topological hypergroup.

Theorem 2.12. Let (H, ◦) be a hypergroup with topology τ on H. If
(
H, ρ(H)

)
is τ-complete and τ-open for some

strongly regular relation ρ on H, then (H, ◦, τ) is a topological complete hypergroup.

Proof. Similar the proof of Lemma 2.9, we have ◦ : H × H → P∗(H) is a good morphism. Therefore, by
Propositions 1.5, 1.6, and 1.8, it is continuous. Similar to the proof of Lemma 2.10, the map f : H×H→ P∗(H)
that maps (x, y) to x

y = {z ∈ H | x ∈ z ◦ y} is a good morphism. So by Propositions 1.5, 1.6, and 1.8, f is
continuous. Proposition 1.4 completes the proof.

3. Soft topological hypergroups

In this section, we introduce the concept of soft geometric space over a geometric space. Then we define
the induced soft geometric space from a soft hypergroup with respect to an arbitrary strongly regular
relation ρ such that the relation “∼” in geometric spaces coincides with the relation ρ in the hypergroup.
Then, we introduce the concept of soft topological hypergroup and state some conditions for having a soft
topological (complete) hypergroup. First, we recall concepts of soft sets, soft hypergroups, soft topological
hypergroupoids, and some relative properties of them; for more information, see [13, 17, 18, 21, 27].

Recall form [17] that a pair (F,A) is called a soft set over an initial universe X, where F : A → P(X) is a
mapping, E is a set of parameters, and A ⊆ E. In other words, a soft set over X is a parametrization of P(X).
Recall from [13] that the support of (F,A) is defined as follows:

Supp(F,A) =
{
a ∈ A

∣∣∣ F(a) , ∅
}
.

If (F,A) is defined by F(a) = ∅, for each a ∈ A, then (F,A) is called a null soft set over X, and it is denoted by
ϕ̃A.



A. Pourhaghani, H. Torabi / Filomat 38:27 (2024), 9557–9566 9564

Definition 3.1. Let (S,B) be a geometric space with ∅ , K ⊆ S; then the geometric space (K,C) is called
geometric subspace if ∅ , C ⊆ B. The induced geometric subspace of K, denoted by K ⩽ S, is a geometric
subspace

(
K,B(K)

)
, where B(K) = {B ∈ B | B ⊆ K}. If there is no ambiguity, we delete the expression

“geometric”. The subspace (∅, ∅) is the induced subspace of ∅, and we call it trivial subspace.

Obviously, if
(
H, ρ(H)

)
and
(
K, ρ(K)

)
are the corresponding geometric spaces of a hypergroup (H, ◦) and

subhypergroup K ⩽ H, with respect to a strongly regular relation ρ, respectively, then
(
K, ρ(K)

)
is an induced

geometric subspace of
(
H, ρ(H)

)
.

Definition 3.2. A soft set (F,A) over a geometric space (S,B) is called a soft geometric space if F(a) is an
induced geometric subspace of S, for all a ∈ A.

Proposition 3.3. Let (S,B) be a geometric space. Then
(
Γ(x),B[x]

)
is an induced geometric subspace for each x ∈ S,

where B[x] =
{
B ∈ B

∣∣∣ B ⊆ Γ(x)
}
.

Proof. Let x ∈ S; then Γ(x) ⊆ S. If B ∈ B such that B ⊆ Γ(x), then by the construction of Γ(x), we have
B ∈ B[x]. Hence (Γ(x),B[x]) is an induced geometric space of (S,B).

Immediately, we have the following corollary.

Corollary 3.4. Let (S,B) be a geometric space. Then (Γ,S) is a soft geometric space over (S,B).

Definition 3.5. Let (F,A) , ϕ̃A be a soft geometric space over a geometric space (S,B) with topology τ on S.
Then, the soft geometric space (F,A) is called τ-open (resp., τ-closed, τ-complete, or complete) if the geometric
space

(
F(a),B

(
F(a)
))

is τa-open (resp., τa-closed, τa-complete, or complete), for all a ∈ Supp(F,A), where τa

is the subspace topology on F(a).

Proposition 3.6. Let (F,A) , ϕ̃A be a soft geometric space over a geometric space (S,B) with topology τ on S. If
the geometric space (S,B) is τ-open (resp., τ-closed, τ-complete, or complete), then the soft geometric space (F,A) is
τ-open (resp., τ-closed, τ-complete, or complete).

Proof. Let a ∈ Supp(F,A) and let B ∈ B
(
F(a)
)
⊆ B. Then B is an open (resp., closed) subset of topological

space (S, τ), since (S,B) is a τ-open (resp., τ-closed) geometric space. Indeed B ⊆ F(a), so B is an open (resp.,
closed) subset of subspace topology τa. Therefore,

(
F(a),B

(
F(a)
))

is a τa-open (resp., τa-closed) geometric
space.

Assume that U ∈ τa. There exists an open subset V ∈ τ such that U = V∩F(a). Since (S,B) is τ-complete,
SΓ(V) = V (where SΓ(V) is Γ(V) in the geometric space (S,B)). Let B ∈ B

(
F(a)
)

such that B ⊆ F(a)Γ(U). By (P2),
we have B ⊆ SΓ(U) ⊆ SΓ(V) = V, so B ⊆ V ∩ F(a) = U. Thus F(a)Γ(U) ⊆ U. Hence by (P1), F(a)Γ(U) = U, which
completes the proof. Let B ∈ B

(
F(a)
)
. Since (S,B) is complete, then SΓ(B) = B, so F(a)Γ(B) = B. Therefore,(

F(a),B
(
F(a)
))

is complete.

Clearly, the inverse of above proposition is not necessarily true, unless F(a) = S for some a ∈ Supp(F,A).

Recall from [27] that a nonnull soft set (F,A) over a hypergroupoid (H, ◦) is called a soft hypergroupoid
over H if F(a) is a subhypergroupoid of H for all a ∈ Supp(F,A). If (H, ◦) is a hypergroup and F(a) is a
subhypergroup of H for all a ∈ Supp(F,A), then (F,A) is called soft hypergroup(see [21]).

Let (H, ◦) be a hypergroupoid with topology τ on H. Assume that P◦(H) is the set of all subhyper-
groupoids of H and A that is the set of parameters. Recall from [18] that if F : A → P◦(H) is a map, then
the pair (F,A) is called a soft topological hypergroupoid over H with the topology τ whenever the following
conditions are satisfied:
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1. F(a) is a subhypergroupoid of H for all a ∈ Supp(F,A),

2. The hyperoperation ◦ : F(a) × F(a)→ P∗
(
F(a)
)

is continuous, for all a ∈ Supp(F,A),

Here F(a) × F(a) is equipped with the product topology, and P∗
(
F(a)
)

is equipped with the topology τ∗.
In other words, (F,A) is a soft topological hypergroupoid over H with the topology τ if (F,A) is a soft

hypergroupoid and the hyperoperation ◦ : F(a) × F(a)→ P∗
(
F(a)
)

is continuous, for all a ∈ Supp(F,A), with

respect to the product topology on F(a) × F(a) and the topology τ∗ on P∗
(
F(a)
)
.

As above, we can define the concept of soft topological hypergroup.

Definition 3.7. Let (H, ◦) be a hypergroup with topology τ on H, and let (F,A) , ϕ̃A be a soft hypergroup
over H. Then, the triple (F,A, τ) is called a soft topological hypergroup over H if the following conditions hold:

1. The mapping (x, y) 7→ x ◦ y from F(a) × F(a) to P∗
(
F(a)
)

is continuous, for all a ∈ Supp(F,A).

2. The mapping (x, y) 7→ x
y , from F(a) × F(a) to P∗

(
F(a)
)

is continuous, for all a ∈ Supp(F,A), where
x
y = {z ∈ H | x ∈ z ◦ y}.

Moreover, the product topology on F(a) × F(a) and the topology τ∗ on P∗
(
F(a)
)

are considered.

In other words, (F,A, τ) is a soft topological hypergroup if
(
F(a), ◦, τa

)
is a topological hypergroup, for

all a ∈ Supp(F,A), where τa is the subspace topology on F(a).

Clearly, if (H, ◦, τ) is a topological hypergroup and (F,A) is a soft hypergroup over H, then the triple
(F,A, τ) is a soft topological hypergroup over H. In other words, the soft topological hypergroup (F,A, τ) is
a parametrization of subhypergroups of topological hypergroup (H, ◦, τ).

To find the conditions that a soft hypergroup is a soft topological hypergroup, we need some concepts
and propositions, which are discussed below.

Definition 3.8. Let (F,A) , ϕ̃A be a soft hypergroup over a hypergroup (H, ◦). A relation ρ on H is called
equivalence relation on (F,A) if ρ is an equivalence relation on F(a), for all a ∈ Supp(F,A). An equivalence
relation ρ on (F,A) is called (strongly) regular on soft hypergroup (F,A) if it is (strongly) regular on the
subhypergroup F(a), for all a ∈ Supp(F,A).

Proposition 3.9. Let (F,A) , ϕ̃A be a soft hypergroup over a hypergroup (H, ◦) and let ρ be a relation on H. If ρ is
an equivalence relation (resp., (strongly) regular relation) on the hypergroup (H, ◦). Then ρ is an equivalence relation
(resp., (strongly) regular relation) on the soft hypergroup (F,A).

Proof. It is straightforward.

Clearly, the inverse of above proposition is not necessarily true, unless F(a) = H for some a ∈ A.

Theorem 3.10. Let (F,A) , ϕ̃A be a soft hypergroup over a hypergroup (H, ◦) and let ρ be an equivalence relation on
(F,A). Then

(
F
ρ ,A
)

defined by F
ρ (a) = F(a)

ρ , for all a ∈ Supp(F,A) is a soft hypergroup (resp., soft group) over
(

H
ρ ,⊙
)

if and only if ρ is a regular (resp., strongly regular) relation on H.

Proof. Since ρ is regular (resp., strongly regular) if and only if
(

H
ρ ,⊙
)

is a hypergroup (resp., group), so
Proposition 3.9 completes the proof.

Example 3.11. Let (F,A) , ϕ̃A be a soft hypergroup over a hypergroup (H, ◦) and let ρ be a strongly regular
relation on H. Then (F,A) is a soft geometric space over the geometric space

(
H, ρ(H)

)
. Clearly, the relation

“∼” coincides with the relation ρ.
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Theorem 3.12. Let (F,A) , ϕ̃A be a soft hypergroup over a hypergroup (H, ◦) with topology τ on H. If the soft
geometric space (F,A) over

(
H, ρ(H)

)
is τ-complete and τ-open for some strongly regular relation ρ on H, then (F,A, τ)

is a soft topological complete hypergroup.

Proof. Let a ∈ Supp(F,A). Since the soft geometric space (F,A) over
(
H, ρ(H)

)
is τ-complete and τ-open, the

geometric space
(
F(a), ρ

(
F(a)
))

is τa-open and τa-complete, respectively. Hence by Theorem 2.12,
(
F(a), ◦, τa

)
is a topological complete hypergroup, which completes the proof.
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