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Abstract. This study aims to establish Wintgen and Chen-type inequalities for submanifolds of golden
Lorentzian manifolds endowed with generalized symmetric metric U-connection (gsmc). Isometric im-
mersion of warped product manifold into the same ambient space form has also been studied. Moreover,
equality cases have been discussed.

1. Background

In 1970, the notion of the polynomial structure was brought to light by [18, 19] and this development
inspired the geometers to study golden structure on the Riemannian manifold in [13]. Some applications
of golden mean have been taken into consideration in [21] and integrability results are clubbed in [17]. For
more literature, see [1, 10, 22] etc.

On the other side, Wintgen inequality credited to P. Wintgen [30] is a sharp geometrical inequality
producing a relationship between intrinsic and extrinsic invariants. The famous DDVV conjecture was
represented in [15]. A lot of work has been done on this so far. For more details, see [4, 8, 16, 26].

In 1993, Chen considered submanifolds of real space form [5] and introduced the basic idea for the sharp
relationships between intrinsic invariants and extrinsic invariants. Later on, Chen-like inequalities were
also studied in many other ambient spaces [7, 14, 23, 25] and the references therein.

While constructing an example of Riemannian manifolds with negative sectional curvature, warped
product manifolds were introduced in [2]. It is known that warped products have applications in different
branches of Mathematics as well as in Physics. For example, generalized Robertson-Walker space-time is a
Lorentzian warped product (see [12, 28, 29] for more literature).

Let F1 and F2 be Riemannian manifolds of positive dimensions endowed by Riemannian metrices 1F1

and 1F2 , resp. and denote by f any positive function on F1. Assume F1×F2 with its projectionπ : F1×F2 → F1
and η : F1×F2 → F2. The warped product N = F1× f F2 is the manifold F1×F2 equipped with the Riemannian
structure such that

||X||2 = ||π∗(X)||2 + f 2(π(x))||η∗(X)||2,X ∈ TxN.

Hence, one obtains
1 = 1F1 + f 21F2 ,

f represents a warping function of the warped product.
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The present study aims to establish generalized Wintgen and Chen-type inequalities for submanifolds
immersed in golden Lorentzian manifolds endowed with g.s.m. U-connection. Isometric immersion of
warped product submanifolds in the same ambient space form has also been studied. Moreover, equality
cases have been discussed.

2. Preliminaries

2.1.
Assume (Mm, 1) stands for m-dimensional Riemannian manifold and φ be (1, 1)-tensor field holding

[10, 20, 22]

φ2 = φ + I,

then φ introduces a golden structure on M. Suppose (M, 1) represents a Riemannian manifold and φ is a
golden structure on M. When

1(φl1, l2) = 1(l1, φl2), ∀l1, l2 ∈ Γ(TM), (1)

holds, then (M, 1, φ) becomes a golden Riemannian manifold. One should also note that

1(φl1, φl2) = 1(φ2l1, l2) = 1(φl1, l2) + 1(l1, l2).

Assume L to be an almost product structure on M. In this case [20]

φ =
1
2

(
√

5L + I)

produces a golden structure on M. On other side, when φ induces a golden structure on M, then [20]

L =
1
√

5
(2φ − I)

becomes an almost product structure on M.
Express the Riemannian curvature tensor of locally golden product space form M as [10]

R(l1, l2)l3 =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2

10
[1(l2, l3)l1 − 1(l1, l3)l2]

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2

10
[1(φl2, l3)l1 − 1(φl1, l3)l2

+ 1(l2, l3)φl1 − 1(l1, l3)φl2] (2)

+
c1 + c2

5
[1(φl2, l3)φl1 − 1(φl1, l3)φl2].

Definition 2.1. [11] Let (Mm, 1) be semi-Riemannian manifold with 1 having signature (−,+,+, ...,+(m− 1 times))
and satisfying (1). In addition to this, if M is equipped with a golden structure φ, then it is known as a golden
Lorentzian manifold.

[11] The torsion tensor T for any golden Lorentzian manifold (M, 1, φ) is expressed as

T(l1, l2) = −α{u(l1)l2 − u(l2)l1} − β{u(l1)φl2 − u(l2)φl1}, (3)

in above case α, β indicate smooth functions on M and ∇ is used for generalized symmetric connection
(g.s.c.). For any 1-form u and unitary vector field U, we have

u(l1) = 1(U, l1).

∇ represents a g.m.c. if
∇1 = 0;

otherwise, ∇ is known as non-metric connection.
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Definition 2.2. [11] Let (M, 1, φ) be golden Lorentzian manifold and ∇ denotes the g.s.m. connection ((α, β)-type).
For any parallel vector field U, ∇ is said to be a generalized symmetric metric U-connection on M.

Let (M, 1, φ) stand for locally golden product Lorentzian manifold with generalized symmetric metric
U-connection. Then we write the scalar curvature concerning this connection [11]:

τ =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10
(m − ε)m

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(2mε − 2)traceφ]

+
c1 + c2 − 5β2

5
[(traceφ)2

− traceφ −mε]. (4)

Further, from Theorem 2.7 [11], we have

Connection type Scalar curvature
α semi-symmetric (A − α2)(m − ε)m + B(2mε − 2)traceφ + C((traceφ)2

− traceφ −mε)
β quarter symmetric A(m − ε)m + B(2mε − 2)traceφ + (C − β2)((traceφ)2

− traceφ −mε)
Semi-symmetric (A − 1)(m − ε)m + B(2mε − 2)traceφ + C((traceφ)2

− traceφ −mε)
Quarter symmetric A(m − ε)m + B(2mε − 2)traceφ + (C − 1)((traceφ)2

− traceφ −mε)

in above case A = (∓
√

5+3)c1+(±
√

5+3)c2
10 , B = (±

√
5−1)c1+(∓

√
5−1)c2

10 and C = c1+c2
5 .

Let Nn be the submanifold of the locally golden product Lorentzian manifold Mm with g.s.m. U-
connection and ∇ and ∇ be the Levi-Civita connections on N and M, respectively. Next, denote the shape
operator by Sð and normal connection by ∇⊥. Then, we have

∇l1 l2 = ∇l1 l2 + h(l1, l2)

and

∇l1ð = −Sðl1 + ∇
⊥

l1
ð, ð ∈ Γ(N),

in this case, h means the second fundamental form. Also

1(Sðl1, l2) = 1(h(l1, l2), ð).

We have Gauss equation as [3]

R(l1, l2, l3, l4) = R(l1, l2, l3, l4) − 1(h(l1, l4), h(l2, l3)) (5)
+1(h(l1, l3), h(l2, l4)),

here l1, l2, l3, l4 ∈ Γ(TN), R and R mean curvature tensor of M and N, resp. Next, we recall [8]

1(R(l1, l2)ξ1, ξ2) = 1(R⊥(l1, l2)ξ1, ξ2) + 1([Sξ1 , Sξ2 ]l1, l2), (6)

where ξ1 and ξ2 are normal vector fields satisfying

[Sξ1 , Sξ2 ] = Sξ1Sξ2 − Sξ2Sξ1 .

Assume that {u1, . . . ,un} and {un+1, . . . ,um} be orthonormal basis of TpN and T⊥p N, resp. Then

H =

n∑
i=1

1
n

h(ui,ui), (7)

and

||h||2 =
∑

1≤i, j≤n

1
(
h(ui,u j), h(ui,u j)

)
. (8)
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Next, for any plane section π ⊂ TpN, denote the sectional curvature of N byK (π). Therefore,

τ(p) =
∑

1≤i< j≤n

K (ui ∧ u j) (9)

and

ρ(p) =
2

n(n − 1)

∑
1≤i< j≤n

K (ui ∧ u j). (10)

Represent the normalized normal scalar curvature of N by [27]

ρ⊥ =
2τ⊥

n(n − 1)

=
2

n(n − 1)

√ ∑
1≤i< j≤n

∑
n+1≤r<s≤m

(R⊥(ui,u j, ξr, ξs))2. (11)

Similarly [8],

KN =
1
4

m∑
r,s=n+1

(trace[Sr, Ss])2, (12)

in this case, St means the shape operator of N in the direction of ξt, t = n + 1, ...,m. We also have [27]

ρN =
2

n(n − 1)

√
KN. (13)

That implies

KN =
1
2

∑
n+1≤r<s≤m

(trace[Sr, Ss])2

=
∑

n+1≤r<s≤m

∑
1≤i< j≤n

1([Sr, Ss]ui,u j)2.

One can also establishes [27]

KN =
∑

n+1≤r<s≤m

∑
1≤i< j≤n

[ n∑
k=1

(hr
jkhs

ik − hr
ikhs

jk)
]2
. (14)

Finally, recall the following results.

Theorem 2.3. [16, 26] Let us suppose that p ≥ 2 and n be two integers and A1, ...,Ap be n × n real symmetric
matrices. Further, assume that [., .] means the commutator of two matrices and ||.|| indicates the Hilbert-Schmidt
norm of a matrix. Then we have the following inequality

p∑
α,β=1

||[Aα,Aβ]||2 ≤
( p∑
α=1

||Aα||2
)
.

In addition to this, equality holds if and only if, under some rotations, A1, ...,Ap are null matrices, except only two of
them which can be written as

B



0 a 0 . . . 0
a 0 0 . . . 0
0 0 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . 0


Bt,B



a 0 0 . . . 0
0 −a 0 . . . 0
0 0 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . 0


Bt,

in this case a is real number and B is an n × n orthogonal matrix.
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Lemma 2.4. [5] When one represents by c1, . . . , ct, d the (t + 1), t ≥ 2 real numbers provided

( t∑
k=1

ck

)2
= (t − 1)

( t∑
k=1

c2
k + d

)
,

then, 2c1c2 ≥ d and equality holds if and only if

c1 + c2 = c3 = · · · = ct.

3. Generalized Wintgen Inequality

From now on, fix Mm for the locally golden product Lorentzian manifold endowed with generalized
symmetric metric U-connection.

Theorem 3.1. For submanifold Nn isometrically immersed in Mm. We have

||H||
2
≥ ρ + ρ⊥ −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10(n − 1)
(n − ε)

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
5(n2 − n)

[(nε − 1)traceφ] (15)

−
c1 + c2 − 5β2

5(n2 − n)
[(traceφ)2

− traceφ − nε].

Moreover, (15) satisfies equality case if and only if given some orthonormal frames {u1, . . . ,un} and {un+1, . . . ,um}, S
reduces to

Sn+1 =



ð1 ⅁ 0 . . . 0 0
⅁ ð1 0 . . . 0 0
0 0 ð1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð1 0
0 0 0 . . . 0 ð1


, (16)

Sn+2 =



ð2 +⅁ 0 0 . . . 0 0
0 ð2 −⅁ 0 . . . 0 0
0 0 ð2 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . ð2 0
0 0 0 . . . 0 ð2


, (17)

Sn+3 =



ð3 0 0 . . . 0 0
0 ð3 0 . . . 0 0
0 0 ð3 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð3 0
0 0 0 . . . 0 ð3


, Sn+4 = · · · = Sm = 0, (18)

where ð1, ð2, ð3 and ⅁ are real functions on N.
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Proof. In the light of (5), we have∑
1≤i< j≤n

R(ui,u j,u j,ui) =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10
(n − ε)n

+nε.
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
5

traceφ (19)

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
5

traceφ

+
c1 + c2 − 5β2

5
[(traceφ)2

− traceφ − nε]

+n2
||H||

2
− ||h||2.

We also know that

2τ =
∑

1≤i< j≤n

R(ui,u j,u j,ui), (20)

that produces

2τ =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10
(n − ε)n

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(2nε − 2)traceφ] (21)

+
c1 + c2 − 5β2

5
[(traceφ)2

− traceφ − nε] + n2
||H||

2
− ||h||2.

Taking view of (10), obtained equation is

ρ =
1

n(n − 1)
[n2
||H||

2
− ||h||2]

+
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10(n − 1)
(n − ε)

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
5(n2 − n)

[(nε − 1)traceφ] (22)

+
c1 + c2 − 5β2

5(n2 − n)
[(traceφ)2

− traceφ − nε].

Now, use µ for traceless part of h, i.e.
µ = h −H1,

then it implies
||µ||2 = ||h||2 − n||H||2.

This way, one obtains

ρ = ||H||
2 +

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10(n − 1)
(n − ε)

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
5(n2 − n)

[(nε − 1)traceφ] (23)

+
c1 + c2 − 5β2

5(n2 − n)
[(traceφ)2

− traceφ − nε] −
1

n(n − 1)
||µ||2.
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On the other side, for α = 1, . . . ,m, define Aα : TN→ TN as

1(AαX,Y) = 1(µ(X,Y), ξα).

That indicates
Aα = Sα − 1(H , ξα)I

implying
m∑
α,β=1

||[Aα,Aβ]||2 =
m∑
α,β=1

||[Sα, Sβ]||2 (24)

and
m∑
α=1

||Aα||2 = ||µ||2. (25)

Next, taking into use (6) and (11), one obtains

ρ⊥ =
1

n(n − 1)

√√√ m∑
α,β=1

||[Sα, Sβ]||2. (26)

Thus, (24) and (26) produce
m∑
α,β=1

||[Aα,Aβ]||2 = n2(n − 1)2(ρ⊥)2. (27)

Therefore, using Theorem 2.3 for A1, . . . ,Am, one obtains

ρ⊥ ≤
1

n(n − 1)
||µ||2, (28)

where (25) and (27) have been employed.
Also, in view of (23), one writes

1
n(n − 1)

||µ||2 = ||H||
2 +

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10(n − 1)
(n − ε)

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
5(n2 − n)

[(nε − 1)traceφ] (29)

+
c1 + c2 − 5β2

5(n2 − n)
[(traceφ)2

− traceφ − nε] − ρ,

thereby establishing inequality (15) with the help of (28).
Finally, one concludes on the same lines as in [Corollary 1.2, [16]] that equality holds in (15) if and only

if S takes the form of (16), (17) and (18) to some suitable orthonormal frames.

Corollary 3.2. For Riemannian manifold Nn isometrically immersed in Mm, we have these relations

(a) Mm equips α-s.s.m. U-connection

||H||
2
≥ ρ + ρ⊥ −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10(n − 1)
(n − ε)

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2

5(n2 − n)
[(nε − 1)traceφ]

−
c1 + c2

5(n2 − n)
[(traceφ)2

− traceφ − nε].
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(b) Mm endows β-q.s.m. U-connection

||H||
2
≥ ρ + ρ⊥ −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2

10(n − 1)
(n − ε)

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2

5(n2 − n)
[(nε − 1)traceφ]

−
c1 + c2 − 5β2

5(n2 − n)
[(traceφ)2

− traceφ − nε].

(c) Mm equips s.s.m. U-connection

||H||
2
≥ ρ + ρ⊥ −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10
10(n − 1)

(n − ε)

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2

5(n2 − n)
[(nε − 1)traceφ]

−
c1 + c2

5(n2 − n)
[(traceφ)2

− traceφ − nε].

(d) Mm endows q.s.m. U-connection

||H||
2
≥ ρ + ρ⊥ −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2

10(n − 1)
(n − ε)

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2

5(n2 − n)
[(nε − 1)traceφ]

−
c1 + c2 − 5
5(n2 − n)

[(traceφ)2
− traceφ − nε].

Additionally, equality holds in the above case if and only if with some orthonormal frame {u1, . . . ,un,un+1, . . . ,um},
operator S reduces to

Sn+1 =



ð1 ⅁ 0 . . . 0 0
⅁ ð1 0 . . . 0 0
0 0 ð1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð1 0
0 0 0 . . . 0 ð1


, (30)

Sn+2 =



ð2 +⅁ 0 0 . . . 0 0
0 ð2 −⅁ 0 . . . 0 0
0 0 ð2 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . ð2 0
0 0 0 . . . 0 ð2


, (31)
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Sn+3 =



ð3 0 0 . . . 0 0
0 ð3 0 . . . 0 0
0 0 ð3 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . ð3 0
0 0 0 . . . 0 ð3


, Sn+4 = · · · = Sm = 0, (32)

where ð1, ð2, ð3 and ⅁ are real functions on N.

Remark 1. The main theorem of this section is the generalization of some Wintgen-type inequalities
for submanifolds in golden product space forms equipped with different connections, including semi-
symmetric, quarter-symmetric, α-semi-symmetric, etc. It also generalizes results of [8]. Some examples
that can verify the equality case of Wintgen type inequality are given in [1, 8].

It is known that submanifold that attains equality in generalized Wintgen type inequality is termed as
Wintgen ideal submanifold investigated in [4, 14, 24]. One knows that totally umbilical submanifolds and
super-minimal surfaces provide basic examples of Wintgen ideal submanifolds in S4 and S6, respectively.
It is a difficult task to classify these submanifolds completely. In Riemannian space forms, these have been
classified to [31]: the reducible ones, the irreducible minimal ones (up to Mobius transformations), and the
generic (irreducible) ones. This one is an open problem to obtain a classification for these submanifolds in
locally golden product space forms equipped with several connections.

4. Chen type optimal inequality

Let Nn be Riemannian manifold isometrically immersed in Mm (locally golden product Lorentzian
manifold endowed with gsm U-connection). Consider some local orthonormal frame field
{u1, . . . ,un,un+1, . . . ,um} and let π = Span{u1,u2} for any p ∈ M, un+1 is parallel to H(p). Then, we can
write

2τ =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10
(n − ε)n

+
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(2nε − 2)traceφ] (33)

+
2(c1 + c2 − 5β2)

5
[(traceφ)2

− traceφ − nε] + n2
||H||

2
− ||h||2

where we have used (4) and (5).
Further, fix

ℶ = 2τ(p) − ||H||2
1

n − 1
(n3
− 2n2)

−
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10
(n − ε)n

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(2nε − 2)traceφ]

−
2(c1 + c2 − 5β2)

5
[(traceφ)2

− traceφ − nε]. (34)

Above two equations (33) and (34) produce

ℶ + ||h||2 =
n2
||H||

2

n − 1
(35)
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simplifying to

( n∑
j=1

hn+1
j j

)2
= (n − 1)ℶ + (n − 1)

{ n∑
j=1

(hn+1
j j )2 +

∑
i, j

(hn+1
i j )2 +

m∑
s=n+2

n∑
i, j=1

(hs
i j)

2
}
. (36)

Taking
a1 = hn+1

11 , a2 = hn+1
22 , . . . , an = hn+1

nn ,

b = ℶ +
∑
i, j

(hn+1
i j )2 +

m∑
s=n+2

n∑
i, j=1

(hs
i j)

2,

implying

hn+1
11 hn+1

22 ≥
1
2

[ℶ +
∑
i, j

(hn+1
i j )2 +

m∑
s=n+2

n∑
i, j=1

(hs
i j)

2], (37)

where Lemma 2.4 has been applied.
Next, let ⊓(πφ) = 1(φu1,u2), where ⊓2(πφ) ∈ [0, 1], independent of the choice of u1,u2. Then, one writes

the sectional curvature K(π) of Nn associated with πwith the help of (5) as follows

K(π) = ||φe1||
2[ε{(B − αβ) − (

c1 + c2

5
− β2)} + β2] + A

+ε||φe2||
2[(B − αβ) − (

c1 + c2

5
− β2)] − (

c1 + c2

5
)⊓2(πφ)

−2ε2(B − αβ) + (||φe1||
2
||φe2||

2 + 1)(
c1 + c2

5
− β2), (38)

where A = (∓
√

5+3)c1+(±
√

5+3)c2
5 ,B = (±

√
5−1)c1+(∓

√
5−1)c2

5 .
Equations (37) and (38) result

K(π) ≥ ||φe1||
2[ε{(B − αβ) − (

c1 + c2

5
− β2)} + β2] + A

+ε||φe2||
2[(B − αβ) − (

c1 + c2

5
− β2)] − (

c1 + c2

5
)⊓2(πφ)

−2ε2(B − αβ) + (||φe1||
2
||φe2||

2 + 1)(
c1 + c2

5
− β2) +

1
2
ℶ

+
1
2

∑
i, j

(hn+1
i j )2 +

m∑
s=n+2

hs
11hs

22 −

m∑
s=n+1

(hs
12)2 +

1
2

m∑
s=n+2

n∑
i, j=1

(hs
i j)

2

= ||φe1||
2[ε{(B − αβ) − (

c1 + c2

5
− β2)} + β2] + A

+ε||φe2||
2[(B − αβ) − (

c1 + c2

5
− β2)] − (

c1 + c2

5
)⊓2(πφ)

−2ε2(B − αβ) + (||φe1||
2
||φe2||

2 + 1)(
c1 + c2

5
− β2)

+
1
2
ℶ +

1
2

∑
i, j>2

(hn+1
i j )2 +

1
2

m∑
s=n+2

∑
i, j>2

(hs
i j)

2

+

m∑
s=n+1

∑
i>2

[(hs
1i)

2 + (hs
2i)

2] +
1
2

m∑
s=n+2

(hs
11 + hs

22)2, (39)
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i.e., we have

K(π) ≥ ||φe1||
2[ε{(B − αβ) − (

c1 + c2

5
− β2)} + β2] + A

+ε||φe2||
2[(B − αβ) − (

c1 + c2

5
− β2)] − (

c1 + c2

5
)⊓2(πφ)

−2ε2(B − αβ) + (||φe1||
2
||φe2||

2 + 1)(
c1 + c2

5
− β2) +

1
2
ℶ. (40)

Next, we define the Riemannian invariant by

⨿M(p) = τ(p) − inf{K(π)|π ⊂ TpM,dim π = 2}. (41)

Hence, (34) and (40) will conclude

⨿M(p) ≤ n2
||H||

2(
n − 2

2(n − 1)
) +

n(n − ε)
2

[A(
1
2
+

1
(n2 − nε)

) − α2]

+
1
2

(B − 2αβ)[(nε − 1)traceφ − ε{||φe1||
2 + ||φe2||

2
− 2ε}]

+(
c1 + c2

5
− β2)[(traceφ − 1)traceφ + ε(||φe1||

2 + ||φe2||
2)]

−(
c1 + c2

5
− β2)[nε + ||φe1||

2
||φe2||

2 + 1]

−β[α(nε − 1)traceφ + β||φe1||
2] + (

c1 + c2

5
)⊓2(πφ). (42)

Furthermore, the equality is satisfied in (42) if and only if equality sign holds in all the previous
inequalities along with Lemma 2.4:

hn+1
i j = 0, i , j > 2,

hs
1i = hs

2i = hs
i j = 0, s ≥ n + 2, i, j > 2,

hn+1
1i = hn+1

2i = 0, i > 2,
hs

11 + hs
22 = 0, s ≥ n + 2,

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

nn .

One can fix {e1, e2} fulfilling hn+1
12 = 0 and denote by c = hs

11, d = hs
22, c + d = hs

33 = ... = hs
nn. Hence one can

express the shape operators Ss, s ∈ {n + 1, . . . ,m} in the following shapes:

Sn+1 =



c 0 0 . . . 0
0 d 0 . . . 0
0 0 c + d . . . 0
...
...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . c + d


, (43)

and

Ss =



hs
11 hs

12 0 . . . 0
hs

12 −hs
11 0 . . . 0

0 0 0 . . . 0
...

...
...
. . .

...
0 0 0 . . . 0
0 0 0 . . . 0


, n + 1 ≤ s ≤ m. (44)
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Above discussion can be summarized as:

Theorem 4.1. Let Nn be Riemannian manifold isometrically immersed in Mm. Then

⨿M(p) ≤ n2
||H||

2(
n − 2

2(n − 1)
) +

n(n − ε)
2

[A(
1
2
+

1
(n2 − nε)

) − α2]

+
1
2

(B − 2αβ)[(nε − 1)traceφ − ε{||φe1||
2 + ||φe2||

2
− 2ε}]

+(
c1 + c2

5
− β2)[(traceφ − 1)traceφ + ε(||φe1||

2 + ||φe2||
2)]

−(
c1 + c2

5
− β2)[nε + ||φe1||

2
||φe2||

2 + 1]

−β[α(nε − 1)traceφ + β||φe1||
2] + (

c1 + c2

5
)⊓2(πφ).

Further, equality holds in above equation if and only if for {u1, . . . ,un,un+1, . . . ,um}, S reduces to (43) and (44).

From the above result, we obtain the following immediate consequences:

Corollary 4.2. For Riemannian manifold Nn isometrically immersed in Mm, we have the following inequalities

(a) Mm equips α-ssm U-connection

⨿M(p) ≤ n2
||H||

2(
n − 2

2(n − 1)
) +

n(n − ε)
2

[A(
1
2
+

1
(n2 − nε)

) − α2]

+
1
2

B[(nε − 1)traceφ − ε{||φe1||
2 + ||φe2||

2
− 2ε}]

+(
c1 + c2

5
)[(traceφ − 1)traceφ + ε(||φe1||

2 + ||φe2||
2)]

−(
c1 + c2

5
)[nε + ||φe1||

2
||φe2||

2 + 1] + (
c1 + c2

5
)⊓2(πφ).

(b) Mm endows β-qsm U-connection

⨿M(p) ≤ n2
||H||

2(
n − 2

2(n − 1)
) +

n(n − ε)
2

[A(
1
2
+

1
(n2 − nε)

)]

+
1
2

B[(nε − 1)traceφ − ε{||φe1||
2 + ||φe2||

2
− 2ε}]

+(
c1 + c2

5
− β2)[(traceφ − 1)traceφ + ε(||φe1||

2 + ||φe2||
2)]

−(
c1 + c2

5
− β2)[nε + ||φe1||

2
||φe2||

2 + 1]

−β2
||φe1||

2 + (
c1 + c2

5
)⊓2(πφ).

(c) Mm endows ssm U-connection

⨿M(p) ≤ n2
||H||

2(
n − 2

2(n − 1)
) +

n(n − ε)
2

[A(
1
2
+

1
(n2 − nε)

) − 1]

+
1
2

B[(nε − 1)traceφ − ε{||φe1||
2 + ||φe2||

2
− 2ε}]

+(
c1 + c2

5
)[(traceφ − 1)traceφ + ε(||φe1||

2 + ||φe2||
2)]

−(
c1 + c2

5
)[nε + ||φe1||

2
||φe2||

2 + 1] + (
c1 + c2

5
)⊓2(πφ).
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(d) Mm equips qsm U-connection

⨿M(p) ≤ n2
||H||

2(
n − 2

2(n − 1)
) +

n(n − ε)
2

[A(
1
2
+

1
(n2 − nε)

)]

+
1
2

B[(nε − 1)traceφ − ε{||φe1||
2 + ||φe2||

2
− 2ε}]

+(
c1 + c2

5
− 1)[(traceφ − 1)traceφ + ε(||φe1||

2 + ||φe2||
2)]

−(
c1 + c2

5
− 1)[nε + ||φe1||

2
||φe2||

2 + 1]

−||φe1||
2 + (

c1 + c2

5
)⊓2(πφ).

Moreover, inequalities of the above four cases become equality if and only if for {u1, . . . ,un,un+1, . . . ,um}, operator
S appears like (43) and (44).

Remark 2. For different settings of p and q, one can define some more structures on M, see [20] and our
results can be studied on manifolds equipped with these new structures.

5. Warped Product Submanifolds of Mm

In 2002, Chen [6] investigated isometric minimal immersion of n-dimensional warped product subman-
ifolds N = N1 × f N2 in real space forms Mm(c) and established the following inequality:

△ f
f
≤

n2

4n2
||H||2 + n1c,

here ni = dimNi, n = n1 + n2. Furthermore, equality is valid in this relation if and only if N is mixed totally
geodesic.

Suppose N = N1 × f N2 be a warped product and D1 and D2 be the distributions due to vectors tangent
to leaves and fibres, resp. Then

∇l1 l2 = ∇l2 l1 =
1
f

(l1 f )l2, l1 ∈ D1, l2 ∈ D2.

This way, one can write the sectional curvature for the plane spanned by l1 and l3 as

K(l1 ∧ l3) = 1(∇l3∇l1 l1 − ∇l1∇l3 l1, l3) =
1
f
{(∇l1 l1) f − l12 f }.

Hence, one writes

△ f
f
=

n1∑
j=1

K(u j ∧ us), s ∈ {n1 + 1, ...,n}. (45)

Theorem 5.1. Let φ stands for an isometric immersion of submanifold N1 × f N2 of dim n into Mm (locally golden
product Lorentzian manifold endowed with gsm U-connection). Then

△ f
f
≤

(n1 + n2)2

4n2
||H||2 + n1c, (46)

here dimNi = ni, i = 1, 2 and △ stands for Laplacian operator of M1.
In addition to the above, (46) identically holds for equality if and only if φ is a mixed totally geodesic immersion.
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Proof. Put

ϱ = 2τ −
n2

2
||H||2 −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

10
(n − ε)n

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(2nε − 2)traceφ] (47)

−
2(c1 + c2 − 5β2)

5
[(traceφ)2

− traceφ − nε],

so that (33) may be expressed as

n2
||H||2 = 2(ϱ + ||h||2). (48)

Consider some local orthonormal frame {u1, . . . ,un} of TpN in such a way that {u1, . . . ,un1 } are tangent to
N1 and {u1, . . . ,un2 } to N2. In this way, (48) produces

( 3∑
t=1

ct

)2
= 2
( 3∑

t=1

c2
t + d

)2
, (49)

here

c1 = hn+1
11 , c2 =

n1∑
t=2

hn+1
tt , c3 =

n∑
t=n1+1

hn+1
tt ,

d = ϱ +
∑

1≤t1,t2≤n

(hn+1
t1t2

)2
−

∑
2≤t2,t3≤n1

hn+1
t2t2

hn+1
t3t3
−

∑
n1+1≤t4,t5≤n

hn+1
t4t4

hn+1
t5t5
.

Using Lemma 2.4, one writes∑
1≤t1<t2≤n1

hn+1
t1t1

hn+1
t2t2
+

∑
n1+1≤t3<t4≤n

hn+1
t3t3

hn+1
t4t4
≥

1
2

[ϱ + 2
∑

1≤t1<t2≤n

(hn+1
t1t2

)2 +

m∑
r=n+2

n∑
t1,t2=1

(hr
t1t2

)2], (50)

and equality holding if and only if

n1∑
t1=1

hn+1
t1t1
=

n∑
t2=n1+1

hn+1
t2t2
. (51)

Further, the Gauss equation produces

n2
△ f
f
= τ −

∑
1≤t1<t2≤n1

K(et1 ∧ et2 ) −
∑

n1+1≤t1<t2≤n

K(et1 ∧ et2 )

− P1 −

∑
1≤t1<t2≤n1

(hn+1
t1t1

hn+1
t2t2
− (hn+1

t1t2
)2)

− P2 −

∑
n1+1≤t3<t4≤n

(hn+1
t3t3

hn+1
t4t4
− (hn+1

t3t4
)2),

where

P1 =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

20
(n1 − ε)n1

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
20

[(2n1ε − 2)traceφ]

−
(c1 + c2 − 5β2)

10
[(traceφ)2

− traceφ − n1ε]
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and

P2 =
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

20
(n2 − ε)n2

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
20

[(2n2ε − 2)traceφ]

−
(c1 + c2 − 5β2)

10
[(traceφ)2

− traceφ − n2ε].

Using (50) and (52), one obtains

n2
△ f
f
≤ τ −

(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

20
(n − ε)n

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(nε − 1)traceφ]

−
(c1 + c2 − 5β2)

10
[(traceφ)2

− traceφ − nε]

+ n1n2c −
1
2
ϱ −

m∑
r=n+1

∑
1≤t1≤n1

∑
n1+1≤t2≤n

(hr
t1t2

)2

−
1
2

m∑
r=n+2

(
∑

1≤t1≤n1

hr
t1t1

)2
−

1
2

m∑
r=n+2

(
∑

n1+1≤t2≤n

hr
t2t2

)2

≤ τ −
(∓
√

5 + 3)c1 + (±
√

5 + 3)c2 − 10α2

20
(n − ε)n

−
(±
√

5 − 1)c1 + (∓
√

5 − 1)c2 − 10αβ
10

[(nε − 1)traceφ]

−
(c1 + c2 − 5β2)

10
[(traceφ)2

− traceφ − nε]

+ n1n2c −
1
2
ϱ

=
1
4

n2
||H||2 + n1n2c (52)

This establishes the required inequality (46).
Additionally, it is clear from the above proof that equality holds in (46) if and only if hn+1

t1t2
= 0, 1 ≤ t1 ≤

n1,n1 + 1 ≤ t2 ≤ n. This is equivalent to the fact that φ is mixed totally geodesic. The converse part is
obvious.
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