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Abstract. The existence of solutions for the problemTu = u
α j(u) = θE, j = 1, 2, . . . , r

is proved, by considering Ćirić-Jotić contraction condition, where T, α j : E→ E ( j = 1, 2, · · · , r) are mappings
and (E, ∥ · ∥) is a Banach space. A set of sufficient conditions on T, α j is used which ensure the existence of,
possibly, non-unique solution to the underlying system. A common fixed point result is derived from the
obtained theorem and some illustrative examples are given in order to justify the established results. An
application to nonlinear matrix equations is also presented.

1. Introduction and preliminaries

Over the past few decades, numerous authors have achieved significant advancements in the field of
fixed point and common fixed point theory. These achievements have been subsequently utilized to derive
solutions for a wide range of equations encountered in various mathematical contexts. Within the existing
body of literature, a majority of fixed point results primarily focus on the existence of a single fixed point.
However, it is worth noting that there are also other fixed point results that specifically address the presence
of non-unique fixed points. It is widely acknowledged that obtaining a unique solution for all types of
systems, such as differential and integral equations, is not feasible. However, in order to identify a shared
fixed point, it is necessary to satisfy a compatibility criterion or a weaker condition. Nevertheless, there are
no assurances that this condition will be met. An alternative method for addressing such a predicament is
the utilization of numerical techniques.

In order to address such instances, it is important to engage in a comprehensive examination of the
notion of non-unique fixed point, so as to effectively manage the given scenario. This study is inspired by
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the research conducted by authors [8, 10], in which they employed a distinct methodology to address a
system of equations. The proposed strategy was validated through many illustrative cases and successfully
determined solutions to a set of matrix equations.

In the paper [10], Rakočević and Samet discussed the solvability of the systemTu = u
α j(u) = θE, j = 1, 2, . . . , r,

(1)

where T, α j : E → E ( j = 1, 2, · · · , r) are mappings, (E, ∥ · ∥) is a Banach space, θE is the null vector of E
and T satisfies Ćirić contraction [2]. Subsequently, Karapınar et al. [8] dealt with the same system by using
Pachpatte contraction [9] in place of Ćirić contraction. Note that the considered Pachpatte contraction [8,
Equation (3)] is not symmetric as mentioned in Remark 1.1 [8].

In the literature, there are several contractions which produce non-unique fixed points and that are more
general than Ćirić and Pachpatte contractions (see, e.g., [1, 5–7]). Thus, it is interesting to see whether the
underlying system of operator equations can be handled with more general contractions. Inspired by these
observations, we wish to continue this study of solvability of a system of operator equations by considering
Ćirić-Jotić contraction [3].

Definition 1.1. A self-map T on a metric space (E, d) is said to be a Ćirić-Jotić contraction if there exist γ ≥ 0,
r ∈ [0, 1) such that for all u, v ∈ E, u , v, the following holds:

min

 d(Tu,Tv), d(u, v), d(u,Tu), d(v,Tv), d(u,Tu)[1+d(v,Tv)]
1+d(u,v) ,

d(v,Tv)[1+d(u,Tu)]
1+d(u,v) ,

min{d2(Tu,Tv),d2(u,Tu),d2(v,Tv)}
d(u,v)


− γ min{d(u,Tv), d(v,Tu)} ≤ r max{d(u, v), d(u,Tu)}.

Under the Ćirić-Jotić contraction, we work on the solvability of the system (1) in a Banach space with a
cone. We verify our obtained results by suitable examples in Banach spaces R and H(n) (the set of all n × n
Hermitian matrices over C with trace norm). In the final section, it is shown how the obtained results can
be applied for proving the existence of solutions for a system of nonlinear matrix equations.

In the rest of the paper, (E, ∥ · ∥) will denote a Banach space.
Recall that a nonempty subset P of E is said to be a cone if the following conditions hold:

(i) P is closed and convex;
(ii) if u ∈ P and µ ≥ 0, then µu ∈ P;

(iii) P ∩ (−P) = {θE}.

As usual, when the cone P in E is given, we will consider the induced partial order ⊑P on E defined by
u ⊑P v if and only if v − u ∈ P.

Definition 1.2. (see [10]). A mapping f : E → E is said to be θE-level closed from the left (resp. from the right) if
the set

lev- f⊒P = {u ∈ E : f (u) ⊒P θE} , ∅

(resp. lev- f⊑P = {u ∈ E : f (u) ⊑P θE} , ∅)

is closed.

2. Main results

Let T, α j : E → E ( j = 1, 2, · · · , r) be mappings. Consider the system (1) where θE is the null vector of E
and T satisfies the following Ćirić-Jotić-type contraction, with a family of control functions.
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Definition 2.1. The operator T is a Ćirić-Jotić-type contraction with respect to {α j}
r
j=1 if there exist γ ≥ 0, λ ∈ [0, 1)

such that

M(u, v) − γN(u, v) ≤ λmax {∥u − v∥, ∥u − Tu∥} (2)

holds for all u, v ∈ E, u , v, such that α j(u) ⊑P θE and α j(v) ⊒P θE, where

M(u, v) = min


∥Tu − Tv∥, ∥u − v∥, ∥u − Tu∥, ∥v − Tv∥,

∥u−Tu∥[1+∥v−Tv∥]
1+∥u−v∥ , ∥v−Tv∥[1+∥u−Tu∥]

1+∥u−v∥ ,
min{∥Tu−Tv∥2,∥u−Tu∥2,∥v−Tv∥2}

∥u−v∥


and

N(u, v) = min{∥u − Tv∥, ∥v − Tu∥}.

Note that, by interchanging places of u and v, we get that also the condition

M(u, v) − γN(u, v) ≤ λmax {∥u − v∥, ∥v − Tv∥} (3)

has to be fulfilled.
Sufficient conditions for the solvability of system (1) are presented in the following theorem.

Theorem 2.2. Let (E, ∥ · ∥) be a Banach space with a cone P and let T, α j : E→ E ( j = 1, 2, · · · , r). Assume that:

(i) T is orbitally continuous on
⋂r

j=1 lev-α j⊑P
;

(ii) T is a Ćirić-Jotić-type contraction with respect to {α j}
r
j=1;

(iii) α j is θE-level closed from the left for j = 1, 2, · · · , r;
(iv) there exists u0 ∈ E such that α j(u0) ⊑P θE for j = 1, 2, · · · , r;
(v) for u ∈ E, α j(u) ⊑P θE, j = 1, 2, · · · , r, implies α j(Tu) ⊒P θE, j = 1, 2, · · · , r, and α j(u) ⊒P θE, j = 1, 2, · · · , r,

implies α j(Tu) ⊑P θE, j = 1, 2, · · · , r.

Then the sequence {Tnu0} converges to a solution of the system (1).

Proof. Start with defining a sequence {un} in E, where un = Tnu0 for all n ∈ N. By the conditions (iv) and
(v), we have α j(un) ⊑P θE if n is even and α j(un) ⊒P θE if n is odd for all j = 1, 2, · · · , r.

We can assume, WLOG, that un , un+1 for all n ∈N. Since T is a Ćirić-Jotić-type contraction with respect
to {α j}

r
j=1, for any n ∈N, putting u = un−1 and v = un in (2) we have

M(un−1,un) − γN(un−1,un) ≤ λmax {∥un−1 − un∥, ∥un−1 − Tun−1∥} ,

that is,

M(un−1,un) − γN(un−1,un) ≤ λ ∥un−1 − un∥, (4)

where

M(un−1,un)

= min


∥Tun−1 − Tun∥, ∥un−1 − un∥, ∥un−1 − Tun−1∥, ∥un − Tun∥,

∥un−1−Tun−1∥[1+∥un−Tun∥]
1+∥un−1−un∥

, ∥un−Tun∥[1+∥un−1−Tun−1∥]
1+∥un−1−un∥

,
min{∥Tun−1−Tun∥

2,∥un−1−Tun−1∥
2,∥un−Tun∥

2}
∥un−1−un∥


= min

 ∥un − un+1∥, ∥un−1 − un∥,
∥un−1−un∥[1+∥un−un+1∥]

1+∥un−1−un∥
,

min{∥un−un+1∥
2,∥un−1−un∥

2}
∥un−1−un∥


= min

{
∥un − un+1∥, ∥un−1 − un∥,

∥un−1−un∥[1+∥un−un+1∥]
1+∥un−1−un∥

, ∥un−un+1∥
2

∥un−1−un∥

}
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and

N(un−1,un) = min{∥un−1 − un+1∥, ∥un − un∥} = 0.

Now the following four cases arise:

• If M(un−1,un) = ∥un − un+1∥, then from (4), we get

∥un − un+1∥ ≤ λ∥un−1 − un∥.

• If M(un−1,un) = ∥un−1 − un∥, then from (4), we get

∥un−1 − un∥ ≤ λ∥un−1 − un∥,

which is impossible, since λ < 1 and un−1 , un.

• If M(un−1,un) = ∥un−1−un∥[1+∥un−un+1∥]
1+∥un−1−un∥

, then from (4), we get

∥un−1 − un∥[1 + ∥un − un+1∥]
1 + ∥un−1 − un∥

≤ λ ∥un−1 − un∥,

implying that

∥un − un+1∥ ≤ λ∥un−1 − un∥.

• If M(un−1,un) = ∥un−un+1∥
2

∥un−1−un∥
, then from (4), we get

∥un − un+1∥
2

∥un−1 − un∥
≤ λ ∥un−1 − un∥,

implying that

∥un − un+1∥ ≤ λ
1/2
∥un−1 − un∥.

Since, in all possible cases, the above relations are true for all n ∈N, the sequence {un} is a Cauchy sequence
in E and hence there exists u ∈ E such that limn→∞ un = u. By the assumption (i), we have limn→∞ un+1 = Tu.
So we have Tu = u.

Now, since u2n+1 ∈
⋂r

j=1 lev-α j⊒P
for all n ∈N and α j is θE-level closed from the left, we have α j(u) ⊒P θE.

Therefore by the assumption (v), we get α j(Tu) ⊑P θE, that is, α j(u) ⊑P θE. Since P is a cone, we have
α j(u) = θE. This fact is true for all j = 1, 2, · · · , r. This completes the proof.

From the above theorem, we now deduce a common fixed point result for a family of mappings.

Theorem 2.3. Let (E, ∥ · ∥) be a Banach space and let P be a cone in E. Suppose that T,F j : E → E ( j = 1, 2, · · · , r)
be a family of mappings such that there exist γ ≥ 0, λ ∈ (0, 1) satisfying

M(u, v) − γN(u, v) ≤ λmax {∥u − v∥, ∥u − Tu∥}

for all u, v ∈ E, u , v, for which F j(u) ⊑P u and F j(v) ⊒P v, where

M(u, v)

= min

 ∥Tu − Tv∥, ∥u − v∥, ∥u − Tu∥, ∥v − Tv∥, ∥u−Tu∥[1+∥v−Tv∥]
1+∥u−v∥ ,

∥v−Tv∥[1+∥u−Tu∥]
1+∥u−v∥ ,

min{∥Tu−Tv∥2,∥u−Tu∥2,∥v−Tv∥2}
∥u−v∥


and

N(u, v) = min{∥u − Tv∥, ∥v − Tu∥}.

Further, assume that
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(i) T is orbitally continuous on {u ∈ E : F ju ⊑P u,∀ j = 1, 2, · · · , r};
(ii) {u ∈ E : F ju ⊑P u} is closed for all j = 1, 2, · · · , r;

(iii) there exists u0 ∈ E such that F j(u0) ⊑P u0 for j = 1, 2, · · · , r;
(iv) for u ∈ E, F j(u) ⊑P u, j = 1, 2, · · · , r, implies F j(Tu) ⊒P Tu, j = 1, 2, · · · , r, and F j(u) ⊒P u, j = 1, 2, · · · , r

implies F j(Tu) j ⊑P Tu, j = 1, 2, · · · , r.

Then the family of mappings considered here, has a common fixed point.

Proof. Start with defining r mappings α j : E→ E ( j = 1, 2, · · · , r) by

α j(u) = F ju − u

for all u ∈ E. Then for u ∈ E, α j(u) ⊑P θE if any only if F j(u) ⊑P u. Hence from the contraction condition
satisfied by T, we see that T is a Ćirić-Jotić-type contraction with respect to {α j}

r
j=1. Further, we have

{u ∈ E : F ju ⊑P u,∀ j = 1, 2, · · · , r} =
⋂r

j=1 lev-α j⊑P
, so T is orbitally continuous on

⋂r
j=1 lev-α j⊑P

. Since
{u ∈ E : F ju ⊑P u} is nonempty and closed, it follows that {u ∈ E : α j(u) ⊑P θE} is nonempty and closed. So
α j is θE-level closed from the left for all j = 1, 2, · · · , r. Further, from the assumptions (iii) and (iv), we have
α j(u0) ⊑P θE for some u0 ∈ E, and α j(u) ⊑P θE implies α j(Tu) ⊒P θE and α j(u) ⊒P θE implies α j(Tu) ⊑P θE for
j = 1, 2, · · · , r.

This implies that all conditions of Theorem 2.2 hold here. Hence, there exists u ∈ E such that Tu = u and
α j(u) = θE for j = 1, 2, · · · , r, that is, the family of mappings T,F j has a common fixed point.

Example 2.4. Let us consider the Banach space (R, ∥ · ∥), where ∥u∥ = |u|, and take the cone P = [0,∞) in R. Next,
we define three mappings T, α j : R→ R ( j = 1, 2) by

Tu =


−1, if u ≥ 1 or u = −1;
−u3, if 0 ≤ u < 1;
0, otherwise;

α1(u) =

0, if u = −1;
−u, otherwise;

α2(u) =


u2, if u < 0,u , −1,
0, if u = −1;
−u/2, if u ≥ 0.

Then we have lev-α1⊑P ∩ lev-α2⊑P = [0,+∞) ∪ {−1}. Therefore, T is orbitally continuous on lev-α1⊑P ∩ lev-α2⊑P .
Also it is clear that the mappings α j are θE-level closed from the left.

Note that if α j(u) ⊑P θE for j = 1, 2, then u ≥ 0 or u = −1 and, in both cases, Tu ≤ 0, hence α j(Tu) ⊒ θE,
j = 1, 2. Also, if α j(u) ⊒ θE for j = 1, 2, then u ≤ 0, implying that Tu = 0 (for u , −1) or Tu = −1 (for u = −1); in
both cases α j(Tu) = 0 ⊑P θE, j = 1, 2.

Next, let u, v ∈ R be such that α j(u) ⊑P θE and α j(v) ⊒P θE, j = 1, 2. Then u ∈ [0,+∞)∪ {−1} and v ∈ (−∞, 0].
We are going to check that condition (2) is fulfilled for γ = 0 and λ = 1/2 by considering all possible cases. Suppose
u , v.

(I) When u = −1, condition (2) becomes

min
{

1, |v + 1|, 0, |v|, 0,
|v|

1 + |v + 1|
,

min{1, 0, v2
}

|v + 1|

}
≤

1
2

max{|v + 1|, 0},

which is obviously true.
(II) When u = 0, v , −1, condition (2) becomes

min
{

0, |v|, 0, |v|, 0,
|v|

1 + |v|
,

min{0, 0, v2
}

|v|

}
≤

1
2

max{|v|, 0],

which is true for any v.
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(III) When u = 0, v = −1, condition (2) is trivially fulfilled.
(IV) When 0 < u ≤ 1, v = 0, condition (2) becomes

min
{

u3,u,u + u3, 0,
u + u3

1 + u
, 0,

min{u6, (u + u3)2, 0}
u

}
≤

1
2

max{u,u3
},

which is obviously true.
(V) When 0 < u ≤ 1, v = −1, condition (2) becomes

min
{
| − u3 + 1|,u + 1,u + u3, 0,

u + u3

1 + u
, 0,

min{| − u3 + 1|2, (u + u3)2, 0}
u

}
≤

1
2

max{u + 1,u + u3
},

which is obviously true.
(VI) When 0 < u ≤ 1, v < {−1, 0}, condition (2) becomes

min

 u3, |u − v|,u + u3, |v|, (u+u3)(1+|v|)
1+|u−v| ,

|v|(1+u+u3)
1+|u−v| ,

min{u6,(u+u3)2,v2
}

|u−v|

 ≤ 1
2

max{|u − v|,u + u3
}.

Since the left-hand side of the previous inequality is certainly at most equal u3, and the right-hand side is at
least 1

2 (u + u3), and since, for 0 < u ≤ 1, it is u3
≤

1
2 (u + u3), the condition is fulfilled.

(VII) When u > 1, v , −1, condition (2) becomes

min

 1, |u − v|,u + 1, |v|, (u+1)(1+|v|)
1+|u−v| ,

|v|(1+(u+1))
1+|u−v| ,

min{1,(u+1)2,v2
}

|u−v|

 ≤ 1
2

max{|u − v|,u + 1}.

Since the left-hand side of the previous inequality is at most equal to 1, and the right-hand side is at least
1
2 · 2 = 1, the condition is fulfilled.

(VIII) When u > 1, v = −1, condition (2) becomes

min{0, . . . } ≤
1
2

max{u + 1,u + 1},

and trivially holds true.

By a similar discussion, it can be shown that the condition

M(u, v) − γ N(u, v) ≤
1
2

max{∥u − v∥, ∥v − Tv∥},

is also true for all admissible values of u, v. Hence all the conditions of Theorem 2.2 hold true. So, by this theorem,
it follows that, for each u0 ∈ [0,+∞) ∪ {−1}, the sequence {Tnu0} converges to a solution of the system Tu = u and
α j(u) = 0 ( j = 1, 2). There are two solutions to the given system: u = −1 and u = 0 (the first one is the limit of the
previous sequence if u0 = −1 or u0 ≥ 1, and the second is the limit if 0 ≤ u0 < 1).

Example 2.5. Let H(n) stand for the set of all n × n Hermitian matrices over C, K(n)
(
⊂ H(n)

)
stand for the set of

all n × n positive semi-definite matrices, M(n) stand for the set of all n × n matrices over C.
For a matrix B ∈ H(n), we will denote by ∥B∥tr its trace norm, i.e., the sum of all of its singular values. Then

(H(n), ∥ · ∥tr) is a Banach space and K(n) is a cone in H(n). For C,D ∈ H(n), C ⪰ D (resp. C ≻ D) will mean that the
matrix C−D is positive semi-definite (resp. positive definite). The zero matrix in H(n) will be denoted by On, and the
unit matrix by In.
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Denote E = K(3) ∪ (−K(3)). We define three mappings T, α j : E→ E (j = 1, 2) by

T(X) =


−

1
5 X5, if O3 ⪯ X ⪯ I3,

−I3, if X ≻ I3,

−
1
k I3, if X = − 1

k I3, k ∈N+,
O3, otherwise;

α1(X) =


−

X3

2 , if X ⪰ O3,

O3, if X = − 1
k I3, k ∈N+,

−X, if X ≺ O3,X , − 1
k I3, k ∈N+;

α1(X) =


−

X
7 , if X ⪰ O3,

O3, if X = − 1
k I3, k ∈N+,

−X, if X ≺ O3,X , − 1
k I3, k ∈N+.

It is easy to check that lev-α1⊑P ∩ lev-α2⊑P = K(3) ∪ {− 1
k I3 | k ∈ N+} and that if α j(X) ⊑K(3) O3 for j = 1, 2, then

α j(TX) ⊒K(3) O3, j = 1, 2, and if α j(X) ⊒K(3) O3 for j = 1, 2, then α j(TX) ⊑K(3) O3, j = 1, 2.
Also, T is a Ćirić-Jotić-type contraction with γ = 0 and λ = 0.6. This can be checked by opting any X,Y ∈ E with

α j(X) ⊑K(3) O3 and α j(Y) ⊒K(3) O3, j = 1, 2, i.e., X ∈ K(3) ∪ {− 1
k I3 | k ∈N+} and Y ∈ −K(3).

In what follows, we consider as an illustration the only two nontrivial cases (when the value of M(X,Y) in (2) is
not zero), and check particular values for matrices, to verify numerically the conditions of Theorem 2.2 for X , Y.

(I) Suppose that O3 ≺ X ⪯ I3, Y , O3 and Y , − 1
k I3, k ∈N+. Then the condition (2) reduces to

min


∥

1
5 X5
∥tr, ∥X − Y∥tr, ∥X + 1

5 X5
∥tr, ∥Y∥tr,

∥X+ 1
5 X5
∥tr(1+∥Y∥tr)

1+∥X−Y∥tr
,
∥Y∥tr(1+∥X+ 1

5 X5
∥tr)

1+∥X−Y∥tr
,

min{∥ 1
5 X5
∥

2
tr,∥X−Y∥2tr,∥Y∥

2
tr}

∥X−Y∥tr


≤ 0.6 max

{
∥X − Y∥tr, ∥X +

1
5

X5
∥tr

}
.

If this condition is tested numerically for

X =

 0.0863 0.1003 0.1167
0.1003 0.1781 0.1628
0.1167 0.1628 0.1699

 , Y =

 −0.0164 −0.0506 −0.0043
−0.0506 −0.2399 −0.0181
−0.0043 −0.0181 −0.0014

 ,
it becomes 0.0000076925 ≤ 0.4152.

(II) Suppose that X ≻ I3, Y , − 1
k I3, k ∈N+. Then the condition (2) reduces to

min


∥I3∥tr, ∥X − Y∥tr, ∥X + I3∥tr, ∥Y∥tr,
∥X+I3∥tr(1+∥Y∥tr)

1+∥X−Y∥tr
, ∥Y∥tr(1+∥X+I3∥tr)

1+∥X−Y∥tr
,

min{∥I3∥
2
tr,∥X−Y∥2tr,∥Y∥

2
tr}

∥X−Y∥tr


≤ 0.6 max {∥X − Y∥tr, ∥X + I3∥tr} .

If it is tested numerically for

X =

 15.8650 37.7850 12.6500
37.7850 95.1900 31.8500
12.6500 31.8500 11.5400

 , Y =

 −0.0126 −0.0070 −0.0093
−0.0070 −0.0067 −0.0081
−0.0093 −0.0081 −0.0107

 ,
it becomes 0.000007348 ≤ 75.3570.

Hence, all conditions of Theorem 2.2 are satisfied for γ = 0 and λ = 0.6. So, it follows that for U0 ∈ {−
1
k I3 | k ∈

N+} ∪ K(3) we have that {Tn(U0)} converges to a solution of the system T(X) = X and α j(X) = O3, j = 1, 2. In
particular, if U0 = −

1
k I3, k ∈ N+ we get Tn(U0) → − 1

k I3, if O3 ⪯ U0 ⪯ I3 we get Tn(U0) → O3, and if U ≻ I3, we
get Tn(U0)→ −I3. Thus, there are infinite many solutions to the underlying system.
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3. Application

In the next application to nonlinear matrix equations, we will use notation introduced in Example 2.5.

Theorem 3.1. Consider the pair of nonlinear matrix equations:

X = Q1 +

m∑
i=1

A∗i U(X)Ai,

X = Q2 +

m∑
i=1

A∗i V(X)Ai,

(5)

where Q1,Q2 ∈ K(n), Ai ∈ M(n) with
∑m

i=1 ∥A
∗

i Ai∥tr = η, and U,V : H(n)→ H(n) are two functions, continuous in
the trace norm of H(n). Define two subsets of H(n) as

W1 = {X ∈ H(n) : Q2 +

m∑
i=1

A∗i V(X)Ai ⪯ X},

W2 = {X ∈ H(n) : Q2 +

m∑
i=1

A∗i V(X)Ai ⪰ X}.

Assume that there exist a positive real number γ and a real number λ ∈ [0, 1/η) such that

(i) for every X,Y ∈ H(n) such that X ∈W1, Y ∈W2 and X , Y,

∥U(X) −U(Y)∥tr ≤ λ max
{
∥X − Y∥tr,

∥∥∥X −Q1 −
∑m

i=1 A∗i U(X)Ai

∥∥∥
tr

}
+ γ min

{ ∥∥∥X −Q1 −
∑m

i=1 A∗i U(Y)Ai

∥∥∥
tr ,∥∥∥Y −Q1 −

∑m
i=1 A∗i U(X)Ai

∥∥∥
tr

}
holds true;

(ii) W2 is a closed subset of H(n);
(iii) there exists X0 ∈ H(n) such that X0 ∈W1;
(iv) for every X ∈ H(n), we have

X ∈W1 ⇒ Q1 +

m∑
i=1

A∗i U(X)Ai ∈W2 and

X ∈W2 ⇒ Q1 +

m∑
i=1

A∗i U(X)Ai ∈W1.

Then the system (5) has a positive semi-definite solution. Moreover, the solution can be derived as the limit of the
iterative sequence {Xn}, where

Xn+1 = Q1 +

m∑
i=1

A∗i U(Xn)Ai,

with convergence, in the sense of trace norm ∥ · ∥tr, to a solution of the system (5).

Proof. Define mappings T,F : H(n)→ H(n) by

T(X) = Q1 +

m∑
i=1

A∗i U(X)Ai,

F(X) = Q2 +

m∑
i=1

A∗i V(X)Ai,
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and consider the cone P = K(n) in H(n). From the definition of W1,W2, and since the mapping U is
continuous, the conditions (i)–(iv) of Theorem 2.3 are satisfied.

Now, let X ∈W1 and Y ∈W2, with X , Y, that is, F(X) ⊑P X, F(Y) ⊒P Y. Then

∥T(X) − T(Y)∥tr = ∥
m∑

i=1

A∗i (U(X) −U(Y))Ai∥tr

≤

m∑
i=1

∥A∗i (U(X) −U(Y))Ai∥tr =

m∑
i=1

∥AiA∗i (U(X) −U(Y))∥tr

≤

m∑
i=1

∥A∗i Ai∥tr∥(U(X) −U(Y))∥tr = ∥(U(X) −U(Y))∥tr
m∑

i=1

∥A∗i Ai∥tr

≤ η
[
λ max {∥X − Y∥tr, ∥X − TX∥tr} + γmin {∥X − TY∥tr, ∥Y − TX∥tr}

]
= ληmax {∥X − Y∥tr, ∥X − TX∥tr} + γηmin {∥X − TY∥tr, ∥Y − TX∥tr} .

Hence (since λη < 1), the conditions of Theorem 2.3 are satisfied for the mappings T and F, so there exists a
positive semi-definite solution X of the system (5).
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