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Abstract. Let C be a bounded closed convex subset of a uniformly convex Banach space, and let f and 1
be selfmaps of C such that f is expansive relative to 1. Without assuming compactness of C, we show that
f and 1 have coincidence points, and they have common fixed points if they commute. As a consequence,
we derive the fixed point theorem of Browder-Göhde-Kirk.

1. Introduction

Let (B, ∥·∥) be a Banach space and C be a set of B and let f , 1 : C→ C be given maps. We say that f (resp.
1) is expansive relative to 1 (resp. nonexpansive relative to f [1]) or 1-expansive (resp. f -nonexpansive) if

∥1x − 1y∥ ≤ ∥ f x − f y∥ for all x, y ∈ C.

An expansive or a nonexpansive map relative to the identity map is simply called expansive or nonex-
pansive map, respectively. After the independent publications of the important fixed point theorem for
nonexpansive maps by Browder [2], Göhde [3] and Kirk [4], a particularly short and elementary proof was
given by Goebel [5]. Due to the importance of this theorem, it has been generalized to handle wider classes
of maps. For the most recent publications, we refer the reader to [6–8].

One of these research directions was to study the existence of coincidence points, which may be roughly
classified into two main classes. The first concerns a whole family of maps as in the works of Belluce
and Kirk [9] and Bachar and Khamsi [10], while the second deals with the relative nonexpansiveness as in
papers of Park [11] and Latif and Tweddle [12]. In both classes, some sort of compactness and commutativity
assumptions are required.

We intend here to investigate the second class using the fine geometric structure of the underlying
Banach space instead of assuming compactness of the domain. More precisely, we show that f and 1 have
coincidence points when f is 1-expansive, continuous, linear or affine and C is bounded, closed, convex set
of a uniformly convex Banach with some additional conditions on f (C) and 1(C). Moreover, if we assume
that f and 1 commute, we show that they have common fixed points. As a consequence, we derive the
fixed point theorem of Browder-Göhde-Kirk.
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2. Preliminaries

Let B be a Banach space endowed with a norm ∥ · ∥ and θ be its zero element. The modulus of convexity
is a function δ : [0, 2]→ [0, 1] given by

δ(ε) = inf
{
1 − 1

2∥x + y∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x − y∥ ≥ ε
}
.

The Banach space B is said to be uniformly convex if the modulus of convexity δ is positive on (0, 2]. Note
that δ(0) = 0. Recall now the result of Browder-Göhde-Kirk.

Theorem 2.1. Let C be a bounded closed convex subset of a uniformly convex Banach space. If a map 1 : C → C is
nonexpansive, then it has a fixed point.

Note that the convexity structure in Theorem 2.1 is not superfluous, since it may occur that 1 is fixed
points free, see for instance [13]. If B is uniformly convex, then δ, which may be assumed to be increasing
on (0, 2], satisfies

∥a − x∥ ≤ r
∥a − y∥ ≤ r
∥x − y∥ ≥ ε r

 =⇒ ∥a − 1
2 (x + y)∥ ≤ (1 − δ(ε))r.

Remark 2.2. If β is the inverse of δ, then limt→0 β(t) = 0. For further details on these functions see [14].

Lemma 2.3 ([5]). If x, y, z ∈ B such that ∥z − x∥ ≤ R, ∥z − y∥ ≤ R and ∥z − 1
2 (x + y)∥ ≥ r > 0, then

∥x − y∥ ≤ R β(1 − r
R ).

3. Coincidence points of relatively expansive maps

In order to obtain our first theorem, we start by establishing a preliminary result. Here and below, we
assume that θ ∈ C.

Proposition 3.1. Let C be a bounded closed convex set of a Banach space (B, ∥·∥) and let f , 1 : C→ C be given maps
such that cl

(
1(C)
)
⊆ f (C). If f is linear, continuous and 1-expansive, then

inf
{
∥ f x − 1x∥ : x ∈ C

}
= 0.

Proof. For ε ∈ (0, 1), let hε = ε 1. We shall show that cl (hε(C)) ⊆ f (C). Since cl
(
1(C)
)
⊆ f (C), then if {xn} ⊂ 1(C)

is a convergent sequence, its point of convergence is in f (C). Let ε ∈ (0, 1) and take a convergent sequence
{yεn} ⊂ hε(C) to some point yε, and we shall show that yε ∈ f (C). From {yεn} ⊂ hε(C), we deduce that there
exists a sequence {xn} ⊂ 1(C) such that yεn = ε xn. Since {yεn} is convergent, then so is {xn}, and it converges in
f (C). Hence, {xn} converges to x = ε−1yε ∈ f (C), so there exists z ∈ C such that x = f z. By using the linearity
of f and the convexity of C, we deduce that

yε = ε x = ε f z = f (ε z).

This proves that yε ∈ f (C) and therefore cl (hε(C)) ⊆ f (C).
Next, we have

∥hεx − hεy∥ = ε ∥1x − 1y∥ ≤ ε ∥ f x − f y∥,

then by [15, Corollary 2.2] follows that f and hε have a coincidence point xε, say. Thus

∥ f xε − 1xε∥ = ∥hεxε − 1xε∥ = ∥ε 1xε − 1xε∥ = (1 − ε)∥1xε∥ ≤ (1 − ε)ρ,

where ρ is the diameter of C. The result follows by letting ε tends to 1.
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Remark 3.2. The condition cl
(
1(C)
)
⊆ f (C), which was used in the following short list of references [16–25], can

be easily satisfied if for example 1(C) ⊆ f (C) and f (C) is closed or f : C → C is surjective [26, 27], see also the
application below. For the proof of this inclusion in the case of a fractional differential equation see [25, Lemma 1.16].

We next present the first main result.

Theorem 3.3. Let C be a bounded closed convex subset of a uniformly convex Banach space (B, ∥·∥) and let f , 1 : C→ C
be two maps such that cl

(
1(C)
)
⊆ f (C). If f is linear, continuous and 1-expansive, then f and 1 have a coincidence

point.

Proof. Let ε ∈ (0, 1). Define

Cε B
{
x ∈ C : ∥ f x − 1x∥ ≤ ε

}
,

and

Dε B
{
x ∈ Cε : ∥x∥ ≤ a + ε

}
,

where a B limε→0 inf{∥x∥ : x ∈ Cε}. We shall show that the intersection of all sets Cε is nonempty. Otherwise
if a > 0, it follows by Proposition 3.1 that every Cε is closed and nonempty. Take x and y two elements in
Cε and let z = 1

2 (x + y), then for

Rε B 1
2∥ f x − f y∥ + ε,

and by linearity and expansiveness of f , we get

∥ f x − f z∥ ≤ 1
2∥ f x − f y∥ ≤ Rε, (2.1a)

∥ f x − 1z∥ ≤ ∥ f x − 1x∥ + ∥1x − 1z∥ ≤ ε + 1
2∥ f x − f y∥ ≤ Rε. (2.1b)

Similarly, we have

∥ f y − f z∥ ≤ 1
2∥ f x − f y∥ ≤ Rε, (2.2a)

∥ f y − 1z∥ ≤ ∥ f y − 1y∥ + ∥1y − 1z∥ ≤ ε + 1
2∥ f x − f y∥ ≤ Rε. (2.2b)

Using the triangular inequality, then one of the following inequalities holds:

∥ f x − 1
2 ( f z + 1z)∥ ≥ r, (2.3a)

∥ f y − 1
2 ( f z + 1z)∥ ≥ r, (2.3b)

where r = 1
2∥ f x − f y∥. We deduce, by Lemma 2.3, (2.1), (2.2) and (2.3) that,

∥ f z − 1z∥ ≤ Rεβ(1 − r
Rε

)

≤ sup
{
(t + ε)β

(
ε

t+ε

)
: 0 ≤ t ≤ ρ2

}
≤ max

(
sup
{
(t + ε)β

(
ε

t+ε

)
: 0 ≤ t ≤

√
ε − ε

}
,

sup
{
(t + ε)β

(
ε

t+ε

)
:
√
ε − ε ≤ t ≤ ρ2

})
≤ ϕ(ε) B max

(
2
√
ε, ( ρ2 + ε)β(

√
ε)
)
.

Thus if x, y ∈ Cε, then z ∈ Cϕ(ε). Clearly limε→0 ϕ(ε) = 0.
Let x, y ∈ Dε, so ∥x∥ ≤ a + ε and ∥y∥ ≤ a + ε, and since z ∈ Cϕ(ε), we deduce that ∥z∥ ≥ aϕ B inf{∥x∥ : x ∈

Cϕ(ε)}. Now, using again Lemma 2.3, we obtain

diam(Dε) B supx,y∈Dε ∥x − y∥ ≤ (a + ε)β
( a+ε−aϕ

a+ε

)
,

and thus limε→0 diam(Dε) = 0. We deduce by Cantor’s theorem that the intersection of all Dε is nonempty,
and so is the intersection of all Cε. We conclude that f and 1 have a coincidence point.
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Remark 3.4. From the proofs of Proposition 3.1 and Theorem 3.3 it is clear that the linearity of f can be replaced by
the following property:

f (λx) = λ f (x), for all λ ∈ (0, 1) and x ∈ C. (P)

The following corollary follows immediately from Theorem 3.3.

Corollary 3.5. Theorem 2.1 is a particular case of Theorem 3.3.

We next show that Proposition 3.1 remains true if f (C) is θ-starshaped and f is not necessarily linear,
where a set M ⊂ B is said to be θ-starshaped if λx ∈M whenever λ ∈ [0, 1] and x ∈M.

Proposition 3.6. Let C be a bounded closed set of a Banach space (B, ∥·∥) and let f , 1 : C → C be given maps such
that cl

(
1(C)
)
⊆ f (C) and f (C) is θ-starshaped. If f is continuous and 1-expansive, then

inf
{
∥ f x − 1x∥ : x ∈ C

}
= 0.

Proof. We only need to show that cl (hε(C)) ⊆ f (C) in the proof of Proposition 3.1. This follows from the fact
that

yε = ε x = ε f z ∈ f (C),

because ε ∈ (0, 1), f (z) ∈ f (C) and f (C) is θ-starshaped.

In the next result, we assume that f (C) is θ-starshaped and that f is affine, that is, f x = Tx + fθ, where
T : C→ C is a linear map.

Theorem 3.7. Let (B, ∥·∥) be a uniformly convex Banach space and C be a bounded closed convex set of B. Let
f , 1 : C → C be two maps such that cl

(
1(C)
)
⊆ f (C) and f (C) is θ-starshaped. If f is affine, continuous and

1-expansive, then f and 1 have a coincidence point.

Proof. Let ε ∈ (0, 1). Define

Cε B
{
x ∈ C : ∥ f x − 1x∥ ≤ ε

}
,

and

Dε B
{
x ∈ Cε : ∥x∥ ≤ a + ε

}
,

where a B limε→0 inf{∥x∥ : x ∈ Cε}. We shall show that the intersection of all sets Cε is nonempty. Otherwise
if a > 0, it follows by Proposition 3.6 that every Cε is closed. Take x and y two elements in Cε and let
z = 1

2 (x + y), then for

Rε B 1
2∥ f x − f y∥ + ε,

and by using the linearity and the expansiveness of f , we get

∥ f x − f z∥ ≤ ∥ f x − T( 1
2 (x + y)) − fθ∥ ≤ Rε,

∥ f x − 1z∥ ≤ ∥ f x − 1x∥ + ∥1x − 1z∥ ≤ ε + ∥ f x − f z∥ ≤ Rε.

Using the triangular inequality, then one of the following inequalities holds:

∥ f x − 1
2 ( f z + 1z)∥ ≥ 1

2∥ f x − f y∥,

∥ f y − 1
2 ( f z + 1z)∥ ≥ 1

2∥ f x − f y∥.

The remaining of the proof is exactly as the proof of Theorem 3.3.
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4. Common fixed points of relatively expansive maps

We start with a preliminary result.

Proposition 4.1. Let C be a bounded closed convex set of a Banach space (B, ∥·∥) and let f , 1 : C→ C be commutative
maps such that cl

(
1(C)
)
⊆ f (C). If f is linear, continuous and 1-expansive, then

inf
{
∥x − f x∥ + ∥ f x − 1x∥ : x ∈ C

}
= 0.

Proof. For ε ∈ (0, 1) let hε = ε 1. As in Proposition 3.1, we show that cl (hε(C)) ⊆ f (C). Next, it is not difficult
to see that f and hε commute whenever f and 1 do. Moreover, we have for all x, y ∈ C,

∥hεx − hεy∥ = ε ∥1x − 1y∥ ≤ ε ∥ f x − f y∥.

Hence, by [15, Theorem 2.1], f and each hε have a unique common fixed point xε, say. Hence

∥xε − f xε∥ + ∥ f xε − 1xε∥ = ∥hεxε − 1xε∥ = (1 − ε)∥1xε∥ ≤ (1 − ε)ρ,

where ρ is the diameter of C. Hence, the result follows as ε tends to 1.

Theorem 4.2. Let (B, ∥·∥) be a uniformly convex Banach space and C be a bounded closed convex set of B. Let
f , 1 : C→ C be commutative maps such that cl

(
1(C)
)
⊆ f (C). If f is linear, continuous and 1-expansive, then f and

1 have a common fixed point.

Proof. For a positive ε ∈ (0, 1), let

Cε B
{
x ∈ C : ∥x − f x∥ + ∥ f x − 1x∥ ≤ ε

}
,

and

Dε B
{
x ∈ Cε : ∥x∥ ≤ a + ε

}
,

where a B limε→0 inf{∥x∥ : x ∈ Cε}. We shall show that the intersection of all sets Cε is nonempty. Otherwise
if a > 0, it follows by Proposition 4.1 that every Cε is closed. Take x and y two elements in Cε and let
z = 1

2 (x + y), then by linearity of f , we get

∥z − f z∥ ≤ 1
2∥x − f x∥ + 1

2∥y − f y∥ ≤ ε.

Now, take

Rε B 1
2∥x − y∥ + ε and R′ε B

1
2∥ f x − f y∥ + ε.

Hence, we obtain

∥x − f z∥ ≤ ∥x − z∥ + ∥z − f z∥ ≤ Rε, (4.1a)

∥y − f z∥ ≤ ∥y − z∥ + ∥z − f z∥ ≤ Rε. (4.1b)

Similarly, and by using the expansiveness of f , we obtain

∥ f x − 1z∥ ≤ ∥ f x − 1x∥ + ∥1x − 1z∥ ≤ ε + ∥ f x − f z∥ ≤ R′ε, (4.2a)

∥ f y − 1z∥ ≤ ∥ f y − 1y∥ + ∥1y − 1z∥ ≤ ε + ∥ f y − f z∥ ≤ R′ε. (4.2b)

Observe also that we have

∥x − z∥ ≤ Rε and ∥y − z∥ ≤ Rε. (4.3a)

∥ f x − f z∥ ≤ R′ε and ∥ f y − f z∥ ≤ R′ε. (4.3b)
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Using the triangular inequality, then either

∥x − 1
2 ( f z + z)∥ ≥ r or ∥y − 1

2 ( f z + z)∥ ≥ r, (4.4)

where r B 1
2∥x − y∥. Similarly, either

∥ f x − 1
2 (1z + f z)∥ ≥ r′ or ∥ f y − 1

2 (1z + f z)∥ ≥ r′, (4.6)

where r′ B 1
2∥ f x − f y∥. So, by (4.1)–(4.5), and by applying twice Lemma 2.3, we obtain

∥z − f z∥ + ∥ f z − 1z∥ ≤ Rεβ(1 − r
Rε

) + R′εβ(1 −
r′
R′ε

)

≤ 2 sup
{
(t + ε)β

(
ε

t+ε

)
: 0 ≤ t ≤ ρ2

}
≤ 2 max

(
sup
{
(t + ε)β

(
ε

t+ε

)
: 0 ≤ t ≤

√
ε − ε

}
,

sup
{
(t + ε)β

(
ε

t+ε

)
:
√
ε − ε ≤ t ≤ ρ2

})
≤ ϕ(ε) B 2 max

(
2
√
ε, ( ρ2 + ε)β(

√
ε)
)
.

Therefore z ∈ Cϕ(ε), if x, y ∈ Cε and limε→0 ϕ(ε) = 0. Finally, we conclude as in Theorem 3.3 that the
intersection of all Cε is nonempty. Hence f and 1 have a common fixed point.

Proposition 4.3. Let (B, ∥·∥) be a uniformly convex Banach space and C be a bounded closed convex set of B. Let
f , 1 : C→ C be given maps such that cl

(
1(C)
)
⊆ f (C) and f (C) is θ-starshaped. If f is continuous and 1-expansive,

then

inf
{
∥x − f x∥ + ∥ f x − 1x∥ : x ∈ C

}
= 0.

Proof. The proof is similar to that of Proposition 4.1 except for the proof of cl (hε(C)) ⊆ f (C), which is similar
to that of Proposition 3.6.

Theorem 4.4. Let (B, ∥·∥) be a uniformly convex Banach space and C be a bounded closed convex set of B. Let
f , 1 : C → C be two maps such that cl

(
1(C)
)
⊆ f (C) and f (C) is θ-starshaped. If f is affine, continuous and

1-expansive, then f and 1 have a common fixed point.

Proof. For a positive ε ∈ (0, 1), let

Cε B
{
x ∈ C : ∥x − f x∥ + ∥ f x − 1x∥ ≤ ε

}
,

and

Dε B
{
x ∈ Cε : ∥x∥ ≤ a + ε

}
,

where a B limε→0 inf{∥x∥ : x ∈ Cε}. We shall show that the intersection of all sets Cε is nonempty. Otherwise
if a > 0, it follows by Proposition 4.3 that every Cε is closed. Take x and y two elements in Cε and let
z = 1

2 (x + y). Observe first that by convexity of C and the affinity of f , we have

∥z − f z∥ ≤ ∥ 1
2 (x + y) − T( 1

2 (x + y)) − fθ∥ ≤ 1
2∥x − f x∥ + 1

2∥y − f y∥ ≤ ε,

and that

∥ f x − f z∥ ≤ ∥ f x − T( 1
2 (x + y)) − fθ∥ ≤ 1

2∥ f x − f y∥,

∥ f y − f z∥ ≤ ∥ f y − T( 1
2 (x + y)) − fθ∥ ≤ 1

2∥ f x − f y∥.

Now, take

Rε B 1
2∥x − y∥ + ε and R′ε B

1
2∥ f x − f y∥ + ε.
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Hence, we obtain

∥x − f z∥ ≤ ∥x − z∥ + ∥z − f z∥ ≤ Rε,
∥y − f z∥ ≤ ∥y − z∥ + ∥z − f z∥ ≤ Rε.

Similarly, and by using the expansiveness of f , we obtain

∥ f x − 1z∥ ≤ ∥ f x − 1x∥ + ∥1x − 1z∥ ≤ ε + ∥ f x − f z∥ ≤ R′ε,
∥ f y − 1z∥ ≤ ∥ f y − 1y∥ + ∥1y − 1z∥ ≤ ε + ∥ f y − f z∥ ≤ R′ε.

Also, we have

∥x − z∥ ≤ Rε, ∥y − z∥ ≤ Rε, ∥ f x − f z∥ ≤ R′ε and ∥ f y − f z∥ ≤ R′ε.

Using the triangular inequality, then either

∥x − 1
2 ( f z + z)∥ ≥ r or ∥y − 1

2 ( f z + z)∥ ≥ r,

where r B 1
2∥x − y∥. Similarly, either

∥ f x − 1
2 (1z + f z)∥ ≥ r′ or ∥ f y − 1

2 (1z + f z)∥ ≥ r′,

where r′ B 1
2∥ f x − f y∥. The remaining of the proof is similar to the proof of Theorem 4.2.

5. Application

Let X be a real Hilbert space endowed with the scalar product (·|·). We show that a solution of the
following differential equation must satisfies certain periodicity property,

f (x(t))′ = k(t, x(t)), (5.1)

where here the initial condition is given by

x(0) = x0. (5.2)

Theorem 5.1. Let (X, (·|·)) be an Hilbert space and p > 0 is fixed. Assume that:

(a) The function f : X→ X is continuous and satisfy the property (P).

(b) The function k : [0,+∞) × X→ X satisfies:

(i) k(t + p, x) = k(t, x) for all t ∈ [0,+∞) and x ∈ X,

(ii) (k(t, x(t)) − k(t, y(t))| f (x(t)) − f (y(t))) ≤ 0 for all t ∈ [0,+∞) and x, y ∈ X.

(c) There is a real number R > 0 such that for all (t, x) ∈ [0,+∞) × X with ∥ f (x)∥ = R, we have

(k(t, x(t))| f (x(t))) < 0.

(d) The initial-value problem (5.1)-(5.2) has a solution x : [0,+∞)→ X for all x0 with ∥ f x0∥ ≤ R.

Then the differential equation (5.1) has a solution which satisfies

f (x(t)) = f (x(t + p)).

Remark 5.2. The condition (d) may be fulfilled if for example we can apply [25, Theorem 1.4].
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Proof. Let u, v : R → X be maps into Hilbert space (X, (·|·)) which are differentiable with respect to t. Then
we have the following formula:

d
dt

(u(t)|v(t)) = (u′(t)|v(t)) + (u(t)|v′(t)).

If x and y are two solutions of (5.1) on [0,+∞), then it follows from (b)-(ii) that

d
dt

(∥ f (x(t)) − f (y(t))∥2) = 2(k(t, x(t)) − k(t, y(t))| f (x(t)) − f (y(t))) ≤ 0, (5.3)

which implies

∥ f (x(t)) − f (y(t))∥ ≤ ∥ f (x(0)) − f (y(0))∥ for all t ≥ 0. (5.4)

Hence f (x(0)) = f (y(0)) implies that f (x(t)) = f (y(t)) for all t ≥ 0.
Define the function L(x) = ∥ f (x(t))∥2 on X. Observe that for a solution of (5.1) on [0,+∞) with ∥ f (x(t))∥ = R

and t ∈ [0, p], we have by (c) that

d
dt

L(x(t)) = 2(k(t, x(t))| f (x(t))) < 0. (5.5)

Let M B { f x ∈ X : ∥ f x∥ ≤ R}. For f x0 ∈M, we define the operator 1 by

1x0 = f (x(p)), (5.6)

where x(·) is a solution of (5.1)-(5.2). We deduce from (5.5) and the definition of L that

∥ f (x(t))∥ ≤ ∥ f (x(0))∥ = ∥ f x0∥ ≤ R,

and this means that t 7→ f (x(t)) remains in M for t ∈ [0, p]. Observe also that M is closed and bounded,
thus its image by the continuous function f will be closed, we deduce by definition of 1 that we have
cl
(
1(M)

)
⊆ f (M) ⊆M. The operator 1 is f -nonexpansive, since by (5.3) and (5.6) we have

∥1x0 − 1y0∥ = ∥ f (x(p)) − f (y(p))∥
≤ ∥ f (x(0)) − f (y(0))∥ = ∥ f x0 − f y0∥.

We conclude by Theorem 3.3 that f and 1 have a coincidence point, which is a solution of (5.1) and satisfies
f (x(0)) = f (x(p)). Now, to see that f (x(t)) = f (y(t)), where y(t) = x(t + p) note that by (b)-(i) if t 7→ x(t) is
solution of (5.1) implies that t 7→ y(t) is also its solution. Further, y(0) = x(0) so f (y(0)) = f (x(0)) and by
(5.4), we have f (x(t)) = f (y(t)) for all t ≥ 0, that is, f (x(t)) = f (x(t + p)) for all t ≥ 0.
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