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Abstract. In this paper, we focus on the ”fractional conformable wave equation”. By some new techniques,
we obtained the explicit formula of the mild solution. In the linear case, we study the convergence of the
mild solution when the fractional order derivative tends to 1−. As for the nonlinear case, we show the
global existence of the mild solution.

1. Introduction

Fractional derivatives can be consider as extensions of the classical derivative where the order of
derivatives is not an integer but a real number. From this new perspective a new field has arisen called
fractional calculus. Many famous mathematicians have mentioned and contributed to this theory over the
years, such as Laplace, Euler, Leibniz, Fourier and Lacroix, etc. Although it emerged as early as in 1695 from
the discussion between Leibniz and L’ Hospital, for a long time the theory of fractional calculus developed
only as a purely theoretical area of mathematics.

The first application of fractional calculus was by Niels Hendrik Abel in 1823 with his work on integral
equation that arises in the formulation of the isochrone problem. After many controversy both contribu-
tion, in the last decade of the nineteenth century, Oliver Heaviside used fractional differential operators
(generalized operator that time) to showed how certain linear differential equations can be solved. His
study have proved to be useful to engineers in the theory of the tranmission of electrical currents in cables.
[17]

Over time, the role and importance of fractional derivatives have been increasingly affirmed. One of
the advantages of fractional derivative is to model unusual phenomena as well as quick updates while data
changes. In the last decades, it was found that fractional derivatives and fractional integrals can provide
a better tool for understanding some physical phenomena, especially when processes with memory are
considered. That is the reason why the number of studies on fractional differential equations have increased
dramatically recently. Nowaday, the applications of fractional calculus mainly include in the modeling of
viscoelastic and viscoplastic materials, chemical sciences, biology, economics, engineering problems ...
[8, 9, 18, 20, 21].
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It should be noted that most of the known fractional derivatives do not satisfy all the properties
associated with classical integer derivatives. For instance, except the Caputo definition, the others do not
vanish the constant function with arbirary order. Riemann-Liouville and Caputo derivatives do not satisfy
the derivative of the product and quotient of two functions. Neither the Riemann-Liouville derivative nor
the Caputo derivative satisfy the chain rule nor the index rule. The only property that fractional derivative
definitions all satisfy is the linearity. In addition, the Caputo derivative assumes that the function f is
differentiable. Since they do not satisfy some basic principles of known integer order derivatives, it is not
possible to solve some fractional derivatives using those definitions.

Due to the limitations of known definitions as indicated above, more and more new definitions of
fractional derivatives are proposed to better satisfy the basic principles. Recently, the conformable fractional
derivative suggested by Khalil et al. [13] which is a simple and efficient definition.

Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with a smooth boundary ∂Ω, and T > 0 be a given positive
number. In this paper, we are interested in studying the following problem

C∂α

∂tα

(C∂αy(x, t)
∂tα

)
− ∆y(x, t) = F(x, t, y(x, t)), x ∈ Ω, t ∈ (0,T),

y(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T),

y(x, 0) = f (x),
C∂αy(x,0)
∂tα = 1(x), x ∈ Ω.

(1)

where the operator
C∂α

∂tα
, (0 < α ≤ 1) is time fractional conformable derivative defined by

C∂α

∂tα
y(t) := lim

h→0

y(t + ht1−α) − y(t)
h

, (2)

We name the problem under consideration as ”fractional conformable wave equation” since when α = 1
the problem (1) becomes the wave equation with classical derivative. Some components in the model such
as the source function on the right side F, the two initial data functions f , 1 or properties of the fractional
conformable derivative will be introduced in more detail in following sections.

The definition of a conformable derivative is based on limit approach and provides many computational
simplifications in the application of chain rules. That is why various researchers have started research in
the development of the theory of systems with conformable derivatives. Like other generalizations, con-
formable fractional derivatives were initially questioned about the applicability and practical significance.
Some researchers even argued that this generalization was not sufficiently new mathematically. However,
they also accepted that conformable fractional derivatives would play a role in constructing some valuable
new mathematical models to study certain physical phenomena in practice [14]. Mathematically, these
could be differential equations conformable derivatives and deviating arguments (delayed or neutral type).

Recently, Cenesiz and Kurt in [10] have investigated the heat equation with fractional conformable
derivative in both cases: the time equation and space equation. They showed that the conformable
fractional derivatives has many advantages in solving the fractional differential equations, such it can
easily and efficiently transform fractional differential equations into classical usual differential equations
without the need of complicated methods to find the analytical solutions. Evenly, it can be expanded for
others partial fractional differential equations of higher dimensional systems.

In [22] Zhou has shown that the conformable derivative is better fitted to data in anomalous diffusion
and so that the modelling is improved. The anomalous diffusion is complex transport which is easily
encounter in many physical, biological phenomena. For the diffusion equation with conformable operator
in Hilbert spaces, we refer to [4]. In that paper, they studied completely the existence and regularity for
the conformable diffusion equations with linear and nonlinear source. Based on the ideas of [4], recently,
Tuan-Tien-Chao [19] focused on the pseudo-parabolic equation with conformable derivative. They used
some new techniques for considering the existence and regularity of the mild solution.

In the work [16] the authors focused on conformable stochastic functional differential equations of
neutral type. They obtained the existence and uniqueness theorem of a solution. The moment estimation
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and exponential stability results are given. Recently, in [2], Ahmed-Ragusa considered the Sobolev-type
conformable fractional stochastic evolution inclusions. They investigated a nonlocal controllability of
nonlocal problem. In addition, new sufficient conditions for nonlocal controllability of their considered
system are investigated. In the paper [3], the authors derived the existence and approximation solutions
of the forward and backward problem for conformable diffusion equation. In [5], the authors considered
the initial inverse problem for a diffusion equation with a conformable derivative. They proved that the
backward problem is ill-posed, and they also proposed a regularizing scheme using a fractional Landweber
regularization method. In [6] the authors used semigroup theory combined with Schaefer fixed point
theorem to prove the existence of mild solutions for a class of nonlocal conformable fractional differential
equations. In [15] the author focused on the diffusion equation with conformable derivative. He also
proved the convergence of the mild solution when the order of fractional Laplacian tends to 1−.

Very recently, in the paper [12] the authors studied a nonlinear Volterra equation with conformable
derivative. They showed that the problem have a mild soltution which exists locally in time. Then they
also showed that the convergence of the mild solution when the parameter tends to zero.

In the interesting paper [7], the authors also proved the convergence of the mild solution to conformable
diffusion to the solution of classical problem. Our current paper is a good continuation of that paper for
the wave equation. We learn many techniques in the paper [7] but we have many different modifications.
The main contribution of the paper is organized as follows

• At first, we show that the convergence of the mild solution to linear conformable wave equation when
α tends to 1−.

• As for the nonlinear case, we prove the global existence of the mild solution and give some estimation
in appropriate space with particular condition of initial data.

The rest of this paper is organized as follows. In section 2, we recall some needed preliminaries
concerning the fractional conformable calculus along with some related functional spaces. In section 3, we
provide some results on the formula of mild solution. Section 4 give result on the continuity problem for
the linear conformable wave equation. In final section, we derive the global existence for the mild solution
to the ”fractional conformable wave equation” for the nonlinear case.

2. Preliminaries and notations

In this section, we review some basic results about fractional conformable calculus and some common
used function spaces. Let’s start with the definition of fractional derivative and fractional integral in the
sense of conformable.

Definition 2.1. (see [13]) The conformable fractional derivative of y(t) at t > 0 of order α is defined as follows:

(Tαy)(t) =
C∂α

∂tα
y(t) := lim

h→0

y(t + ht1−α) − y(t)
h

, (3)

where 0 < α ≤ 1 and for any functional y taking values in Banach space B.

If lim
t→0+

C∂α

∂tα
y(t) exists then we define the conformable fractional derivative at t = 0 as follow

C∂α

∂tα
y(0) := lim

t→0+

C∂α

∂tα
y(t)

The left fractional derivative starting from a of the function y : [a,∞)→ B of order 0 < α ≤ 1 is:

(Tαa y)(t) := lim
h→0

y(t + h(t − a)1−α) − y(t)
h

, (4)
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Definition 2.2. The conformable fractional integral Iα(y) of a function y(.) is defined by

Iα(y)(t) =
∫ t

0
να−1y(ν)dν =

∫ t

0

y(ν)
ν1−α dν. (5)

Remark 2.3. Some properties of fractional conformable derivative are listed below.
Let α ∈ (0, 1] and f , 1 are two α−differentiable functions at a point t > 0, then:

• Tα(a f + b1) = aTα( f ) + bTα(1), for all a, b ∈ R

• Tα(tp) = p.tp−α, for all p ∈ R

• Tα(λ) = 0, for all constant function

• Tα( f1) = f Tα(1) + 1Tα( f )

• Tα( f (1)) =
d f
d1

Tα1,

• In addition, if f(t) is diffentiable then Tα f = t1−α d f
dt

In [1], the author gave some properties about the conformable fractional derivative and integral operators
as below

Theorem 2.4. Let y(.) be differentiable, then we have

Iα

(C∂αy
∂tα

)
(t) = y(t) − y(0). (6)

Let y(·) be a continuous function in the domain of Iα, then we have

C∂α
(
Iα(y)(t)

)
∂tα

= y(t) (7)

Definition 2.5. (see [6]) The conformable fractional Laplace transform of order α ∈ (0, 1] of a function y(.) is defined
by

Lα(y(t))(λ) =
∫ +∞

0
tα−1e−λ

tα
α y(t)dt, λ > 0

Theorem 2.6. If y(.) be differentiable, then we have

Lα

(C∂αy(t)
∂tα

)
(λ) = λLα(y(t))(λ) − y(0),

Remark 2.7. For two functions x(·) and y(·), we have

a) Lα
(
y( tα

α )
)

(λ) = L1
(
y(t)

)
(λ),

b) Lα
(∫ t

0 sα−1x
( tα − sα

α

)
y(s)ds

)
(λ) = L1 (x(t)) (λ)Lα

(
y(t)

)
(λ)

provided that the both terms of each equality exist.
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Now, we recall some definitions and results concerning the functional spaces which shall be used in our
paper. It is well known that the spectral problem:{

−∆ψn(x) = λnψn(x), x ∈ Ω
ψn(x) = 0, x ∈ ∂Ω

has the eigenvalues λn and corresponding eigenfunctions ψn ∈ H1
0(Ω) ∩ H2(Ω). Note that 0 < λ1 ≤ λ2 ≤

· · · ≤ λn ≤ . . . and lim
n→∞

λn = ∞.

For all s ≥ 0, the Hilbert scale spaceHs(Ω) includes,

Hs(Ω) =

θ ∈ L2(Ω) :
∞∑

n=1

∣∣∣⟨θ,ψn⟩
∣∣∣2 λ2s

n < ∞

 . (8)

The spaceHs(Ω) is also a Banach space equipped with the norm

∥θ∥Hs(Ω) :=

 ∞∑
n=1

∣∣∣⟨θ,ψn⟩
∣∣∣2 λ2s

n


1
2

, θ ∈Hs(Ω).

Let C ([0,T];B) be the set of all continuous functions which map [0,T] into a Banach space B. This is a
Banach space endowed with the usual supremum norm.

For all 0 < α ≤ 1 and d, θ > 0, we denote Zd,θ,α((0,T]; X) the weighted space of all functionsψ ∈ C((0,T]; X)
such that

∥ψ∥Zd,θ,α((0,T];X) := sup
t∈(0,T]

tde−θtα
∥ψ(t, ·)∥X < ∞, (9)

3. Linear conformable parabolic equation

In this section we focus on the linear problem given as below

C∂α

∂tα

(C∂αy(x, t)
∂tα

)
− ∆y(x, t) = F(x, t), x ∈ Ω, t ∈ (0,T),

y(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T),

y(x, 0) = f (x),
C∂αy(x, 0)
∂tα

= 1(x), x ∈ Ω.

(10)

Theorem 3.1. The mild solution to linear problem (10) is defined by

y(x, t) =
∞∑

n=1

cos
(√
λn

tα

α

)
⟨ f , ψn⟩ψn(x) +

∞∑
n=1

sin
(√
λn

tα
α

)
√
λn

⟨1, ψn⟩ψn(x)

+

∞∑
n=1

[ ∫ t

0
sα−1

sin
(√
λn( tα−sα

α )
)

√
λn

Fn(s)ds
]
ψn(x). (11)

Proof. In order to construct the explicit mild solution, the main technique is based on the Fourier represen-
tation, separable of variables and semi group method. Firstly, we consider the searching solution has the
Fourier series form of:

y(x, t) =
∞∑

n=1

⟨y(., t), ψn⟩ψn(x) =
∞∑

n=1

yn(t)ψn(x). (12)
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After substituting in to the equation and combining with the fact that ψn(x) is the eigenfunction of −∆
corresponding to eigenvalue λn we obtain:

C∂α

∂tα

(C∂αyn(t)
∂tα

)
= −λnyn(t) + Fn(t), (13)

with corresponding initial conditions: yn(0) = ⟨ f , ψn⟩,
C∂αyn(0)
∂tα = ⟨1, ψn⟩.

Note that Fn(t) is the Fourier coefficient of the source function F(x, t).
As many fractional derivatives, the conformable derivative does not satisfy the index rule. That fact leads
to many difficulties in solving the wave equation which has 2 times differentiate of order α. Therefore, we
have to treat each time derivative separately.
For the first derivation, we apply the integral conformable fractional operator Iα(t) into both sides of above
equality

Iα

(
C∂α

∂tα

(C∂αyn(t)
∂tα

) )
= −λnIα

(
yn(t)

)
+ Iα

(
Fn(t)

)
.

Thus using theorem (2.4), we have the following equality

Iα

(
C∂α

∂tα

(C∂αyn(t)
∂tα

) )
=

C∂αyn(t)
∂tα

−

C∂αyn(0)
∂tα

= t1−α dyn(t)
dt

− ⟨1, ψn⟩ (14)

where we note that

⟨1, ψn⟩ = lim
t→0+

(
t1−α dyn(t)

dt

)
.

Combining with definition (6) we have that

t1−α dyn(t)
dt

= ⟨1, ψn⟩ − λn

∫ t

0
να−1yn(ν)dν +

∫ t

0
να−1Fn(ν)dν. (15)

Taking the first derivative to bothsides above, we get that

d
dt

(
t1−α dyn(t)

dt

)
= −λntα−1yn(t) + tα−1Fn(t). (16)

For convenient in solving the equation above, we set the variable ω(t) = tα
α and zn(ω) = yn(t).

It is obvious to see that

dzn(ω)
dω

=
dyn(t)

dt
dt
dω
= t1−α dyn(t)

dt
. (17)

This implies that

d
dt

(
t1−α dyn(t)

dt

)
=

d2zn(ω)
dω2

dω
dt
= tα−1 d2zn(ω)

dω2 . (18)

Combining (16) and (18), one has

d2zn(ω)
dω2 = −λnzn(ω) + Fn(t) = −λnzn(ω) + Fn(w), (19)

where we set the following function

Fn(w) = Fn(
tα

α
) = Fn(t), 0 ≤ t ≤ T. (20)
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Since the fact that ⟨1, ψn⟩ = lim
t→0+

(
t1−α dyn(t)

dt

)
and zn(ω) = yn(t), ω(t) = tα

α , we know that

zn(0) = yn(0) = ⟨ f , ψn⟩,
dzn(0)

dω
= ⟨1, ψn⟩. (21)

By solving the Cauchy problem of second order differential equations (19), (21) above, it is well-known that

zn(ω) = cos
(√
λnω

)
zn(0) +

sin
(√
λnω

)
√
λn

dzn(0)
dω

+

∫ ω

0

sin
(√
λn(ω − r)

)
√
λn

Fn(r)dr. (22)

It is obvious to see that∫ ω

0

sin
(√
λn(ω − r)

)
√
λn

Fn(r)dr =
∫ tα

α

0

sin
(√
λn( tα

α − r)
)

√
λn

Fn(r)dr. (23)

We consider the following integral term

T =

∫ t

0
sα−1

sin
(√
λn( tα−sα

α )
)

√
λn

Fn(s)ds. (24)

Let r = sα
α then dr = sα−1ds. Since the fact that (20), we know the fact that

Fn(r) = Fn(
sα

α
) = Fn(s).

This implies that

T =

∫ t

0
sα−1

sin
(√
λn( tα−sα

α )
)

√
λn

Fn(s)ds =
∫ tα

α

0

sin
(√
λn( tα

α − r)
)

√
λn

Fn(r)dr. (25)

Combining (22), (23) and (25), we find that the following equality

yn(t) = cos
(√
λn

tα

α

)
⟨ f , ψn⟩ +

sin
(√
λn

tα
α

)
√
λn

⟨1, ψn⟩

+

∫ t

0
sα−1

sin
(√
λn( tα−sα

α )
)

√
λn

Fn(s)ds. (26)

This fomula implies that (11).

Lemma 3.2. Let α0 ≤ α ≤ 1. Then we get∣∣∣∣ tαα − t
∣∣∣∣ ≤ C(α0, µ)tα−µM(α, µ), (27)

where any µ > 0 and

M(α, µ) = (1 − α)µ + (1 − α) + |T1−α
− 1|.

The proof of Lemma (3.2) can be found in the proof of Theorem 3 [7].
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Lemma 3.3. Let α0 ≤ α ≤ 1. Then, for all 0 < ε < 1 we get∣∣∣∣ cos
(√
λn

tα

α

)
− cos

(√
λnt

)∣∣∣∣ ≤ C(ε, α0, µ)λ
ε
2
n t(α−µ)ε

∣∣∣∣M(α, µ)
∣∣∣∣ε. (28)

and

∣∣∣∣sin
(√
λn

tα
α

)
√
λn

−

sin
(√
λnt

)
√
λn

∣∣∣∣ ≤ C(ε, α0, µ)λ
ε−1

2
n t(α−µ)ε

∣∣∣∣M(α, µ)
∣∣∣∣ε. (29)

Proof. For convenience, from now on, we only consider ε ∈ (0, 1). Using the inequality | cos(a) − cos(b)| ≤
C(ε)|a − b|ε and in view of Lemma (3.2), we get the following inequality∣∣∣∣ cos

(√
λn

tα

α

)
− cos

(√
λnt

)∣∣∣∣ ≤ C(ε)λ
ε
2
n

∣∣∣∣ tαα − t
∣∣∣∣ε ≤ C(ε, α0, µ)λ

ε
2
n t(α−µ)ε

∣∣∣∣M(α, µ)
∣∣∣∣ε. (30)

By a similar explanation as above, we get that∣∣∣∣ sin
(√
λn

tα

α

)
− sin

(√
λnt

)∣∣∣∣ ≤ C(ε, α0, µ)λ
ε
2
n t(α−µ)ε

∣∣∣∣M(α, µ)
∣∣∣∣ε. (31)

By dividing both sides of the above expression by
√
λn, one has

∣∣∣∣sin
(√
λn

tα
α

)
√
λn

−

sin
(√
λnt

)
√
λn

∣∣∣∣ ≤ C(ε, α0, µ)λ
ε−1

2
n t(α−µ)ε

∣∣∣∣M(α, µ)
∣∣∣∣ε (32)

The proof of our lemma is showed.

4. Continuous dependence of the mild solution in the linear case

Theorem 4.1. Let 0 < α0 ≤ α < 1. Let yα be the mild solution to problem (10). Let y∗ be the solution of classical
problem

ytt − ∆y = F(x, t), (x, t) ∈ Ω × (0,T),
y(x, t) = 0, (x, t) ∈ ∂Ω × (0,T),
y(x, 0) = f (x), yt(x, 0) = 1(x), x ∈ Ω,

(33)

Assume that f ∈Hs+ ε2 (Ω), 1 ∈Hs+ ε−1
2 (Ω) and F ∈ L∞(0,T;Hs+ ε−1

2 (Ω)) where s > 0 and 2s + ε > 1. Then we get∥∥∥∥y∗(., t) − yα(., t)
∥∥∥∥
Hs(Ω)

≤ C
∣∣∣∣M(α, µ)

∣∣∣∣ε(∥∥∥∥ f
∥∥∥∥
Hs+ ε2 (Ω)

+
∥∥∥∥1∥∥∥∥

Hs+ ε−1
2 (Ω)

+
∥∥∥∥F

∥∥∥∥
L∞(0,T;Hs+ ε−1

2 (Ω))

)
+ TεC(α0, θ,T)M(α, θ)

∥∥∥∥F
∥∥∥∥

L∞(0,T;Hs+ ε−1
2 (Ω))

. (34)

Proof. Let us denote yα be the mild solution to problem (10). Then one has

yα(x, t) =
∞∑

n=1

cos
(√
λn

tα

α

)
⟨ f , ψn⟩ψn(x) +

∞∑
n=1

sin
(√
λn

tα
α

)
√
λn

⟨1, ψn⟩ψn(x)

+

∞∑
n=1

[ ∫ t

0
rα−1

sin
(√
λn( tα−rα

α )
)

√
λn

Fn(r)dr
]
ψn(x). (35)
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Let y∗ be the mild solution of classical problem (33).

y∗(x, t) =
∞∑

n=1

cos
(√
λnt

)
⟨ f , ψn⟩ψn(x) +

∞∑
n=1

sin
(√
λnt

)
√
λn

⟨1, ψn⟩ψn(x)

+

∞∑
n=1

[ ∫ t

0

sin
(√
λn(t − r)

)
√
λn

Fn(r)dr
]
ψn(x). (36)

From (11) and (36), we have the following equality

y∗(x, t) − yα(x, t) =
∞∑

n=1

[
cos

(√
λn

tα

α

)
− cos

(√
λnt

)]
⟨ f , ψn⟩ψn(x)

+

∞∑
n=1

[sin
(√
λn

tα
α

)
√
λn

−

sin
(√
λnt

)
√
λn

]
⟨1, ψn⟩ψn(x)

+

∞∑
n=1

[ ∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]
Fn(r)dr

]
ψn(x)

+

∞∑
n=1

[ ∫ t

0

(
rα−1
− 1

)sin
(√
λn(t − r)

)
√
λn

Fn(r)dr
]
ψn(x) =

4∑
j=1

B j(x, t). (37)

Let us now divide into some following steps.
Step 1. Estimation of B1. Let us now to treat the first term B1(x, t). Using (28), we provide the following
estimate∥∥∥∥B1(., t)

∥∥∥∥2

Hs(Ω)
=

∞∑
n=1

λ2s
n

[
cos

(√
λn

tα

α

)
− cos

(√
λnt

)]2

⟨ f , ψn⟩
2

≤ |C(ε, α0, µ)|2t2(α−µ)ε
∣∣∣∣M(α, µ)

∣∣∣∣2ε ∞∑
n=1

λ2s+ε
n ⟨ f , ψn⟩

2. (38)

Using Parseval’s equality, we derive that∥∥∥∥B1(., t)
∥∥∥∥
Hs(Ω)

≤ C(ε, α0, µ)t(α−µ)ε
∣∣∣∣M(α, µ)

∣∣∣∣ε∥∥∥∥ f
∥∥∥∥
Hs+ ε2 (Ω)

≤ C(ε, α0, µ)T(α−µ)ε
∣∣∣∣M(α, µ)

∣∣∣∣ε∥∥∥∥ f
∥∥∥∥
Hs+ ε2 (Ω)

(39)

Step 2. Estimation of B2. Now, we consider the second term B2(x, t). Indeed, we have

∥∥∥∥B2(., t)
∥∥∥∥2

Hs(Ω)
=

∞∑
n=1

λ2s
n

[sin
(√
λn

tα
α

)
√
λn

−

sin
(√
λnt

)
√
λn

]2

⟨1, ψn⟩
2

≤ |C(ε, α0, µ)|2t2(α−µ)ε
∣∣∣∣M(α, µ)

∣∣∣∣2ε ∞∑
n=1

λ2s+ε−1
n ⟨1, ψn⟩

2. (40)

Thus, we find that the following bound∥∥∥∥B2(., t)
∥∥∥∥
Hs(Ω)

≤ C(ε, α0, µ)t(α−µ)ε
∣∣∣∣M(α, µ)

∣∣∣∣ε∥∥∥∥1∥∥∥∥
Hs+ ε−1

2 (Ω)
. (41)
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Step 3. Estimation of B3. By Parseval’s equality and Hölder inequality, we have that

∥∥∥∥B3(., t)
∥∥∥∥2

Hs(Ω)
=

∞∑
n=1

λ2s
n

( ∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]
Fn(r)dr

)2

≤

∞∑
n=1

λ2s
n

( ∫ t

0
rα−1dr

)( ∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]2
|Fn(r)|2dr

)

≤
tα

α

∞∑
n=1

λ2s
n

( ∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]2
|Fn(r)|2dr

)
. (42)

Using the inequality | sin(a) − sin(b)| ≤ C(ε)|a − b|ε, for any 0 < ε < 1, we obtain:∣∣∣∣ sin
(√
λn(

tα − rα

α
)
)
− sin

(√
λn(t − r)

)∣∣∣∣
≤ C(ε)λ

ε
2
n

∣∣∣∣ tα − rα

α
− (t − r)

∣∣∣∣ε ≤ C(ε)λ
ε
2
n

[∣∣∣∣ tαα − t
∣∣∣∣ε + ∣∣∣∣ rαα − r

∣∣∣∣ε]. (43)

In view of (27) and noting that (a + b)ε ≤ C(ε) (aε + bε) for any a, b ≥ 0, we know that∣∣∣∣ tαα − t
∣∣∣∣ε + ∣∣∣∣ rαα − r

∣∣∣∣ε ≤ C(α0, µ, ε)
∣∣∣∣M(α, µ)

∣∣∣∣ε(t(α−µ)ε + r(α−µ)ε
)
. (44)

Some above observations implies that

∣∣∣∣sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

∣∣∣∣2
≤ 2|C(α0, µ, ε)|2λε−1

n

∣∣∣∣M(α, µ)
∣∣∣∣2ε(t2(α−µ)ε + r2(α−µ)ε

)
. (45)

Thus, we get immediately that

∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]2
|Fn(r)|2dr

≤ 2|C(α0, µ, ε)|2
∣∣∣∣M(α, µ)

∣∣∣∣2εt2(α−µ)ε
∫ t

0
rα−1λε−1

n |Fn(r)|2dr

+ 2|C(α0, µ, ε)|2
∣∣∣∣M(α, µ)

∣∣∣∣2ε ∫ t

0
rα−1+2(α−µ)ελε−1

n |Fn(r)|2dr. (46)

This inequality implies that

∞∑
n=1

λ2s
n

( ∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]2
Fn(r)|2dr

)
≤ 2|C(α0, µ, ε)|2

∣∣∣∣M(α, µ)
∣∣∣∣2εt2(α−µ)ε

∫ t

0
rα−1

( ∞∑
n=1

λ2s+ε−1
n |Fn(r)|2

)
dr

+ 2|C(α0, µ, ε)|2
∣∣∣∣M(α, µ)

∣∣∣∣2ε ∫ t

0
rα−1+2(α−µ)ε

( ∞∑
n=1

λ2s+ε−1
n |Fn(r)|2

)
dr. (47)
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Using Parseval’s equality, we get that the following bound

∞∑
n=1

λ2s
n

( ∫ t

0
rα−1

[sin
(√
λn( tα−rα

α )
)

√
λn

−

sin
(√
λn(t − r)

)
√
λn

]2
Fn(r)|2dr

)
≤ 2|C(α0, µ, ε)|2

∣∣∣∣M(α, µ)
∣∣∣∣2εt2(α−µ)ε

∫ t

0
rα−1

∥∥∥∥F(., r)
∥∥∥∥2

Hs+ ε−1
2 (Ω)

dr

+ 2|C(α0, µ, ε)|2
∣∣∣∣M(α, µ)

∣∣∣∣2ε ∫ t

0
rα−1+2(α−µ)ε

∥∥∥∥F(., r)
∥∥∥∥2

Hs+ ε−1
2 (Ω)

dr (48)

It is obvious to see that∫ t

0
rα−1

∥∥∥∥F(., r)
∥∥∥∥2

Hs+ ε−1
2 (Ω)

dr ≤
∥∥∥∥F

∥∥∥∥2

L∞(0,T;Hs+ ε−1
2 (Ω))

( ∫ t

0
rα−1dr

)
=

tα

α

∥∥∥∥F
∥∥∥∥2

L∞(0,T;Hs+ ε−1
2 (Ω))

(49)

and ∫ t

0
rα−1+2(α−µ)ε

∥∥∥∥F(., r)
∥∥∥∥2

Hs+ ε−1
2 (Ω)

dr ≤
∥∥∥∥F

∥∥∥∥2

L∞(0,T;Hs+ ε−1
2 (Ω))

( ∫ t

0
rα−1+2(α−µ)εdr

)
=

tα+2(α−µ)ε

α + 2(α − µ)ε

∥∥∥∥F
∥∥∥∥2

L∞(0,T;Hs+ ε−1
2 (Ω))

. (50)

Combining (42), (48), (49) and (50), we find that∥∥∥∥B3(., t)
∥∥∥∥2

Hs(Ω)
≤ 2|C(α0, µ, ε)|2

∣∣∣∣M(α, µ)
∣∣∣∣2ε

t2α+2(α−µ)ε
[ 1
α2 +

1
α2 + 2αε(α − µ)

]∥∥∥∥F
∥∥∥∥2

L∞(0,T;Hs+ ε−1
2 (Ω))

. (51)

Therefore, by taking the square root of the above two sides, we immediately have∥∥∥∥B3(., t)
∥∥∥∥
Hs(Ω)

≤ 2C(α0, µ, ε)
∣∣∣∣M(α, µ)

∣∣∣∣ε
tα+(α−µ)ε

√
1
α2 +

1
α2 + 2αε(α − µ)

∥∥∥∥F
∥∥∥∥

L∞(0,T;Hs+ ε−1
2 (Ω))

. (52)

Step 4. Estimation of B4. Using Parseval’s indentity and Hölder inequality, we find that

∥∥∥∥B4(., t)
∥∥∥∥2

Hs(Ω)
=

∞∑
n=1

λ2s
n

[ ∫ t

0

(
rα−1
− 1

)sin
(√
λn(t − r)

)
√
λn

Fn(r)dr
]2

≤

∞∑
n=1

λ2s
n

( ∫ t

0
|rα−1

− 1|dr
)[ ∫ t

0
|rα−1

− 1|
∣∣∣∣sin

(√
λn(t − r)

)
√
λn

∣∣∣∣2|Fn(r)|2dr
]
. (53)

Using the inequality | sin(z)| ≤ Cβzβ for 0 < β < 1, we have the following bound

∣∣∣∣∣∣sin
(√
λn(t − r)

)
√
λn

∣∣∣∣∣∣ ≤ Cβλ
β−1

2
n (t − r)β. (54)
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This implies that

∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣∣∣∣∣sin
(√
λn(t − r)

)
√
λn

∣∣∣∣2|Fn(r)|2dr ≤ C2
βλ

β−1
n

∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣(t − r)2β
|Fn(r)|2dr. (55)

Hence, we find that the following bound

∞∑
n=1

λ2s
n

[ ∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣∣∣∣∣sin
(√
λn(t − r)

)
√
λn

∣∣∣∣2|Fn(r)|2dr
]

≲

∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣(t − r)2β
∥∥∥∥F(r)

∥∥∥∥2

Hs+
β−1

2 (Ω)
dr

≤

( ∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣(t − r)2βdr
)∥∥∥∥F

∥∥∥∥2

L∞(0,T;Hs+
β−1

2 (Ω))

≤ T2β
( ∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣dr
)∥∥∥∥F

∥∥∥∥2

L∞(0,T;Hs+
β−1

2 (Ω))
. (56)

By applying Theorem 4 (see in [7]), we obtain that the following result∫ t

0
|rα−1

− 1|dr ≤ C(α0, θ)tα−θM(α, θ) +
1
α
− 1

≤ C(α0, θ)Tα−θM(α, θ) +
1 − α
α0
≤ C(α0, θ,T)M(α, θ) (57)

for any 0 < θ ≤ α0. Here we recall that

M(α, θ) = 1 − α + (1 − α)θ + |T1−α
− 1|.

Combining (53), (56) and (57), we deduce that the following estimate∥∥∥∥B4(., t)
∥∥∥∥
Hs(Ω)

≤ Tβ
( ∫ t

0

∣∣∣∣rα−1
− 1

∣∣∣∣dr
)∥∥∥∥F

∥∥∥∥
L∞(0,T;Hs+

β−1
2 (Ω))

≤ TβC(α0, θ,T)M(α, θ)
∥∥∥∥F

∥∥∥∥
L∞(0,T;Hs+

β−1
2 (Ω))

. (58)

By the choice β = ε, we know that the following estimate∥∥∥∥B4(., t)
∥∥∥∥
Hs(Ω)

≤ TεC(α0, θ,T)M(α, θ)
∥∥∥∥F

∥∥∥∥
L∞(0,T;Hs+ ε−1

2 (Ω))
. (59)

Combining (37), (39), (41), (52) and (59), we find that∥∥∥∥y∗(., t) − yα(., t)
∥∥∥∥
Hs(Ω)

≤

∥∥∥∥B1(., t)
∥∥∥∥
Hs(Ω)

+
∥∥∥∥B2(., t)

∥∥∥∥
Hs(Ω)

+
∥∥∥∥B3(., t)

∥∥∥∥
Hs(Ω)

+
∥∥∥∥B4(., t)

∥∥∥∥
Hs(Ω)

≤ C
∣∣∣∣M(α, µ)

∣∣∣∣ε(∥∥∥∥ f
∥∥∥∥
Hs+ ε2 (Ω)

+
∥∥∥∥1∥∥∥∥

Hs+ ε−1
2 (Ω)

+
∥∥∥∥F

∥∥∥∥
L∞(0,T;Hs+ ε−1

2 (Ω))

)
+ TεC(α0, θ,T)M(α, θ)

∥∥∥∥F
∥∥∥∥

L∞(0,T;Hs+ ε−1
2 (Ω))

. (60)

Note that lim
α→1−

M(α, .) = 0, so we obtain the convergence of mild solution.
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5. Conformable wave equation with nonlinear source

In this section, we study the global existence of Problem (1).

Theorem 5.1. Let Ω be an open, bounded, sufficiently smooth domain in RN, N ≥ 1. Let F : Hq(Ω) → Hp(Ω)
such that F(0) = 0 and

∥F(y1) − F(y2)∥Hp(Ω) ≤ LF∥y1 − y2∥Hq(Ω), (61)

for any y1, y2 ∈ Hq(Ω) and LF is a positive constant. Here the two numbers p, q above are chosen such that 1 ≤ p ≤ q
and q − p < 1

2 . Let the initial datum f , 1 ∈Hq(Ω). Then problem (1) has a global unique solution

yα ∈ Zd,θ0,α((0,T];Hq(Ω))

for θ0 large enough. Here d is a constant which satisfies 0 < d < α. Moreover, one has∥∥∥∥yα
∥∥∥∥

Lp(0,T;Hq(Ω))
≲

(∥∥∥∥ f
∥∥∥∥
Hq(Ω)

+
∥∥∥∥1∥∥∥∥

Hq(Ω)

)
(62)

for 1 ≤ p < 1
d .

The following lemma is introduced to play an important role in later proofs ( see [11], Lemma 8).

Lemma 5.2. Let a > −1, b > −1 such that a + b ≥ −1, θ > 0 and t ∈ [0,T]. For h > 0, the following limit holds

lim
θ→∞

 sup
t∈[0,T]

th
∫ 1

0
νa(1 − ν)be−θtα(1−ν)dν

 = 0.

Proof. Let us define the following operator

P(t)( f ) =
∞∑

n=1

cos
(√
λnt

)
⟨ f , ψn⟩ψn(x), Q(t)( f ) =

∞∑
n=1

sin
(√
λnt

)
√
λn

⟨ f , ψn⟩ψn(x). (63)

Using the inequality | sin(z)| ≤ Cρzρ for any 0 < ρ < 1, we get that∣∣∣∣ sin
(√
λnt

)∣∣∣∣ ≤ Cρλ
ρ
2
n tρ.

This implies that

∥∥∥∥Q(t)( f )
∥∥∥∥2

Hs(Ω)
=

∞∑
n=1

λ2s
n

sin
(√
λnt

)
√
λn


2

⟨ f , ψn⟩
2
≤ C2

ρt2ρ
∞∑

n=1

λ
2s+ρ−1
n ⟨ f , ψn⟩

2. (64)

Thus, we find that∥∥∥∥Q(t)( f )
∥∥∥∥
Hs(Ω)

≤ Cρtρ
∥∥∥∥ f

∥∥∥∥
Hs+

ρ−1
2 (Ω)

, ρ > 0. (65)

By a fact that∣∣∣∣ cos
(√
λnt

)∣∣∣∣ ≤ 1.

We obtain∥∥∥∥P(t)( f )
∥∥∥∥2

Hs(Ω)
=

∞∑
n=1

λ2s
n

∣∣∣∣ cos
(√
λnt

)∣∣∣∣2⟨ f , ψn⟩
2
≤

∞∑
n=1

λ2s
n ⟨ f , ψn⟩

2. (66)
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Hence, we can verify that∥∥∥∥P(t)( f )
∥∥∥∥
Hs(Ω)

≤

∥∥∥∥ f
∥∥∥∥
Hs(Ω)

. (67)

Let us start by proving the existence and uniqueness of the mild solution to Problem (1).
Let Zd,θ,α((0,T];Hq(Ω)) be the weighted space as stated in (9). We define the operator M as below:

M : Zd,θ,α((0,T];Hq(Ω))→ Zd,θ,α((0,T];Hq(Ω))

with θ > 0 and

My(t) := P
( tα

α

)
( f ) +Q

( tα

α

)
(1) +

∫ t

0
να−1Q

( tα − να

α

)
F(y(ν))dν. (68)

If y = 0 then one has

M
(
y(t) = 0

)
:= P

( tα

α

)
( f ) +Q

( tα

α

)
(1).

This together with (65) and (66) with the choide ρ = 1 in (65), we find that∥∥∥∥P
( tα

α

)
( f )

∥∥∥∥
Hq(Ω)

+
∥∥∥∥Q

( tα

α

)
(1)

∥∥∥∥
Hq(Ω)

≲ C(α)
(∥∥∥∥ f

∥∥∥∥
Hq(Ω)

+
∥∥∥∥1∥∥∥∥

Hq(Ω)

)
, (69)

where we note that f ∈Hq(Ω). The above inequality allows us to deduce that

M
(
y(t) = 0

)
∈ Zd,θ,α((0,T];Hq(Ω))

for any θ > 0.
Let us to continue to provide upper bound for the term

∥∥∥My1(t) −My2(t)
∥∥∥
Hs(Ω)

.
For any y1, y2 ∈ Zd,θ,α((0,T];Hq(Ω)), it is obvious to see that

∥∥∥∥My1(t) −My2(t)
∥∥∥∥
Hq(Ω)

=
∥∥∥∥∫ t

0
να−1Q

( tα − να

α

) (
F(y1(ν)) − F(y2(ν))

)
dν

∥∥∥∥
Hq(Ω)

≤ Cρ

∫ t

0
να−1

( tα − να

α

)ρ ∥∥∥∥F(y1(ν)) − F(y2(ν))
∥∥∥∥
Hq+

ρ−1
2 (Ω)

dν, (70)

where ρ is chosen such that

0 < ρ ≤ 1 − 2(q − p) and q +
ρ − 1

2
< p

Since the above, we know that the Sobolev embeddingHp(Ω) ↪→Hq+ ρ−1
2 (Ω), so we obtain:∥∥∥∥F(y1(ν)) − F(y2(ν))

∥∥∥∥
Hq+

ρ−1
2 (Ω)

≤ C(p, q)
∥∥∥∥F(y1(ν)) − F(y2(ν))

∥∥∥∥
Hp(Ω)

≤ C(p, q)LF

∥∥∥∥y1(ν) − y2(ν)
∥∥∥∥
Hq(Ω)

, (71)

where we have used the globally Lipschitz of F.
This estimate together with (70) yields to

tde−θtα
∥∥∥∥My1(t) −My2(t)

∥∥∥∥
Hq(Ω)

≤ C1LFtde−θtα
∫ t

0
να−1

(
tα − να

)ρ∥∥∥∥y1(ν) − y2(ν)
∥∥∥∥
Hq(Ω)

dν

= C1LFtd
∫ t

0
να−1−de−θ(tα−να)

(
tα − να

)ρ
νde−θν

α
∥∥∥∥y1(ν) − y2(ν)

∥∥∥∥
Hq(Ω)

dν (72)
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where C1 depends on p, q, ρ, α. Thus, we find that∫ t

0
να−1−de−θ(tα−να)

(
tα − να

)ρ
νde−θν

α
∥∥∥∥y1(ν) − y2(ν)

∥∥∥∥
Hq(Ω)

dν

≤

(∫ t

0
να−1−de−θ(tα−να)

(
tα − να

)ρ
dν

) ∥∥∥∥y1 − y2

∥∥∥∥
Zd,θ,α((0,T];Hq(Ω))

. (73)

Since two latter estimates, we obtain

tde−θtα
∥∥∥∥My1(t) −My2(t)

∥∥∥∥
Hq(Ω)

≤ C1LFtd
( ∫ t

0
να−1−de−θ(tα−να)

(
tα − να

)ρ
dν

)∥∥∥∥y1 − y2

∥∥∥∥
Zd,θ,α((0,T];Hq(Ω))

. (74)

By set the variable ν = tµ
1
α , we get dν = 1

α tµ
1
α−1dµ. Thus, after a simple caculation, one has

td
( ∫ t

0
να−1−de−θ(tα−να)

(
tα − να

)ρ
dν

)
=

1
α

tα+αρ
∫ 1

0
µ
−d
α (1 − µ)ρe−θtα(1−µ)dµ. (75)

Since d < α we know that

−
d
α
> −1, −

d
α
+ ρ > −1.

Hence, all conditions of Lemma (5.2) is true. By the virtue of Lemma (5.2), we provide that

lim
θ→∞

 sup
t∈[0,T]

td
( ∫ t

0
να−1−de−θ(tα−να)

(
tα − να

)ρ
dν

) = 0. (76)

From the above equality, we know that there exists a positive constant θ0 such as

sup
t∈[0,T]

td
( ∫ t

0
να−1−de−θ0(tα−να)

(
tα − να

)ρ
dν

)
≤

1
2C1LF

. (77)

Combining (74) and (77), we give the following confirmation

sup
t∈[0,T]

tde−θ0tα
∥∥∥∥My1(t) −My2(t)

∥∥∥∥
Hq(Ω)

≤
1
2

∥∥∥∥y1 − y2

∥∥∥∥
Zd,θ0 ,α((0,T];Hq(Ω))

. (78)

Hence∥∥∥∥My1 −My2

∥∥∥∥
Zd,θ0 ,α((0,T];Hq(Ω))

≤
1
2

∥∥∥∥y1 − y2

∥∥∥∥
Zd,θ0 ,α((0,T];Hq(Ω))

. (79)

Since the fact that M
(
y(t) = 0

)
∈ Zd,θ0,α((0,T];Hq(Ω)), we come to the conclusion

My ∈ Zd,θ0,α((0,T];Hq(Ω)), ∀y ∈ Zd,θ0,α((0,T];Hq(Ω))

It follows from (79) that M is a contraction mapping on Zd,θ0,α((0,T];Hq(Ω)). By applying Banach fixed
point theory, we deduce that M has a fixed point yα ∈ Zd,θ0,α((0,T];Hq(Ω)) which satisfies that

yα(t) = P
( tα

α

)
( f ) +Q

( tα

α

)
(1) +

∫ t

0
να−1Q

( tα − να

α

)
F(yα(ν))dν. (80)
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Using (79), we obtain that∥∥∥∥yα
∥∥∥∥

Zd,θ0 ,α((0,T];Hq(Ω))
=

∥∥∥∥Myα
∥∥∥∥

Zd,θ0 ,α((0,T];Hq(Ω))

≤
1
2

∥∥∥∥yα
∥∥∥∥

Zd,θ0 ,α((0,T];Hq(Ω))
+ C(α)

(∥∥∥∥ f
∥∥∥∥
Hq(Ω)

+
∥∥∥∥1∥∥∥∥

Hq(Ω)

)
(81)

This implies that∥∥∥∥yα
∥∥∥∥

Zd,θ0 ,α((0,T];Hq(Ω))
≤ 2C(α)

(∥∥∥∥ f
∥∥∥∥
Hq(Ω)

+
∥∥∥∥1∥∥∥∥

Hq(Ω)

)
. (82)

Hence, for all t ∈ (0,T], we have:∥∥∥∥yα(t)
∥∥∥∥
Hq(Ω)

≤ 2C(α)
(∥∥∥∥ f

∥∥∥∥
Hq(Ω)

+
∥∥∥∥1∥∥∥∥

Hq(Ω)

)
t−deθ0Tα . (83)

Since 1 ≤ p < 1
d , we know that yα ∈ Lp(0,T;Hq(Ω)) and∥∥∥∥yα

∥∥∥∥
Lp(0,T;Hq(Ω))

≲
(∥∥∥∥ f

∥∥∥∥
Hq(Ω)

+
∥∥∥∥1∥∥∥∥

Hq(Ω)

)
. (84)

From there, we complete the proof of Theorem (5.1).
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