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Abstract. A square matrix P is considered a generalized reflection matrix if being Hermitian and having
its square equal to the identity matrix. Given two generalized reflection matrices P and Q, a matrix A is
said to be reflexive (anti-reflexive) with respect to pair (P,Q) if A = PAQ (A = −PAQ). This manuscript
introduces some iterative algorithms that utilizes the gradient method to solve coupled Sylvester-conjugate
transpose matrix equations over generalized reflexive matrices and anti-reflexive matrices. Furthermore,
we will conduct an analysis of the convergence properties of these methods. Then, we provide numerical
techniques to determine these solutions. To summarize, the numerical examples utilized in this study have
effectively demonstrated the efficacy of the iterative methods presented.

1. Introduction

Matrix equations have become a significant area of research in computational mathematics and con-
trol. They are used in diverse fields of engineering and mathematics. Control theory heavily relies on
understanding the solutions of matrix equations, especially in analyzing the stability of systems. For ex-
ample, Sylvester matrix equations are crucial in equilibrium realization, optimal control, and robust pole
assignment of discrete periodic systems [2, 28, 46].

Lyapunov or Riccati matrix equations are also essential in converting system stability problems into
existence problems, as the existence of positive definite solutions to these equations is crucial. Therefore,
investigating matrix equations is critical in computational mathematics and control, and its significance
cannot be underestimated [6, 16, 17, 22, 23, 30, 31, 43].

The computation of the least squares solution for the Sylvester-type matrix equation AXB + CXTD = E
was carried out using an approach known as the alternating direction method, as described in reference
[25].

Zhou et al. proposed an iteration algorithm in [32] for solving matrix equations (A1XB1,A2XB2) = (C1,C2)
with an unknown reflexive matrix X relative to generalized reflection matrices. This method guarantees
convergence within a finite number of iterations, assuming no round-off errors. Another study in linear
matrix equation can be found in [1, 4, 11–14, 21, 24, 27, 33, 34, 37]. In [33], an algorithm was introduced
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that can determine the solvability of the matrix equation automatically, and it converges to the solution
if the system is consistent. In [27], the least squares solution of matrix equation AXB + CYD = F was
presented, and the existence and uniqueness of the solution were deeply discussed. To solve generalized
matrix equations, the gradient method was extended to the matrix equation

(AXB + CYD,EXF + GYH) = (M,N), (1)

in [9], and the corresponding generalized bi-symmetric solution was obtained.
By introducing the modular operator, a cyclic gradient based iterative algorithm is provided for solving

a class of generalized coupled Sylvester-conjugate matrix equations [36]

p∑
j=1

(
Ai jX jBi j + Ci jX jDi j

)
= Fi, i = 1, ..,N,

where Ai j,Ci j ∈ Cmi×s j ,Bi j,Di j ∈ Ct j×ni ,Fi ∈ Cmi×ni are the known coefficient matrices, and X j ∈ Cs j×t j ( j =
1, .., p) are the matrices that need to be determined. Author of [19] introduced CGS and Bi-CGSTAB
methods for solving the Sylvester-transpose matrix equation

k∑
i=1

(
AiXBi + CiXTDi

)
= E

where Ai,Bi,Ci,Di,E ∈ Rm×m are known matrices for i = 1, 2, . . . , k and X ∈ Rm×m is the matrix to be
determined. Also these methods are suggestion for obtaining the solution of periodic Sylvester matrix
equation

Â jX̂ jB̂ j + Ĉ jX̂ j+1D̂ j = Ê j,

for j = 1, 2, . . ., where coefficient matrices and solutions are periodic with period λ, i.e., Â j+λ = Â j, B̂ j+λ =

B̂ j, Ĉ j+λ = Ĉ j, D̂ j+λ = D̂ j, Ê j+λ = Ê j and X̂ j+λ = X̂ j.
In [3], Bai introduced an iterative algorithm based on the Hermitian and skew-Hermitian splitting (HSS)

method to tackle the Sylvester matrix equation AX+XB = F, where the involved matrices are non-Hermitian
and positive definite or semi-definite. Ding et al. [15] utilized the Jacobi and Gauss-Seidel iterations to
extend their iterative solutions beyond the standard Ax = b matrix equation, allowing them to solve more
complex matrix equations AXB = C and AXB + CXD = F in their study.

In a separate paper, Xie and Ma proposed a modified conjugate gradient method that is specifically
designed to solve either the reflexive or anti-reflexive solutions for a given problem [45]. Their method is
particularly applicable to solving the following problem:{

AXB + CYTD = S1,
EXTF + GYH = S2,

(2)

where A,E ∈ Rp×n,C,G ∈ Rp×m,B,F ∈ Rn×q,D,H ∈ Rm×q,S1,S2 ∈ Rp×q are given constant matrices, and
X ∈ Rn×n,Y ∈ Rm×m are unknown matrices to be determined.

The computation of symmetric solutions for the generalized Sylvester matrix equation, represented
as

∑t
i=1 (AiXBi + CiYDi + EiZFi) = Gi, was achieved through the utilization of a variant of the biconjugate

residual algorithm called Lanczos, as documented in [20].
Several iterative algorithms have been developed for solving linear matrix equations, both coupled and

uncoupled, utilizing the conjugate gradient (CG) approach. This method has been explored extensively in
the literature [10, 38].

In their work, Wu et al. [39–41] tackled the matrix equation AX̄ + BY = XF,X −AX̄F = BY+R as well as
AV + BW = EVF, and presented analytical solutions to these equations.
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The solution for a set of linear equations involving matrices of known constants and an unknown matrix
X was presented in [29] and [44]. The equations are given by:

r∑
i=1

AiXBi +

s∑
j=1

C jXTD j = E,

where Ai, Bi, C j, D j (i = 1, . . . , r, j = 1, . . . , s) and E are matrices of appropriate dimensions.
The research presented in [7] explores the use of a novel approach to matrix splitting and applies it in

combination with the hierarchical identification principle to develop iterative techniques for solving linear
matrix equations and generalized coupled Sylvester matrix equations.

Our proposed approach for solving the Sylvester-conjugate transpose matrix equations:
A1X + XHB1 = F1,
A2X + XHB2 = F2,

...
ArX + XHBr = Fr,

(3)

where Ai, Bi, Fi (i = 1, . . . , r) are matrices of appropriate dimensions, utilizes a novel generalized matrix
splitting method and is based on the research by [7]. We employ an effective gradient method for the
implementation of our approach. We determine the solution to the Sylvester-conjugate transpose matrix
equations on matrices that are both generalized reflexive

Cn×n
r (P,Q) = {X ∈ Cn×n : X = PXQ},

and generalized anti-reflexive:

Cn×n
a (P,Q) = {X ∈ Cn×n : X = −PXQ}.

The paper is structured as follows: Section 2 provides useful definitions and lemmas. Also, in this
section, the necessary and sufficient conditions for the solvability of equations (3) are determined with the
help of Kronecker product. In addition, a closed form is determined for the solution of these equations. In
Section 3, we introduce a novel iterative approach to solve the coupled Sylvester-conjugate transpose matrix
equations (3) and provide a convergence analysis. We then extend the iterative method to derive generalized
reflexive and generalized anti-reflexive solutions for equations (3) in Section 4 and conduct a convergence
analysis of these methods. The numerical results are presented in Section 5, then an application for coupled
Sylvester-conjugate transpose matrix equations to the palindromic eigenvalue problem is studied. Finally,
in Section 6, we conclude the manuscript with some remarks.

2. Preliminaries

In this paper, the notations AT, A, AH , and ∥.∥ are utilized to represent the transpose, conjugate, conjugate
transpose, and norm of a matrix A, respectively. The spectral norm of A is denoted as ∥.∥2. Additionally,
the Kronecker product of matrices A and B is represented by A ⊗ B. To facilitate ease of understanding, we
present the following definitions:

Definition 2.1. [5] A square matrix of size n × n is considered a generalized reflection matrix if it satisfies two
conditions: being Hermitian and having its square equal to the identity matrix I. Given two generalized reflection
matrices P and Q, a matrix A of size n × n is said to be reflexive with respect to pair (P,Q) if A = PAQ, and
anti-reflexive with respect to pair (P,Q) if A = −PAQ. We use the notation Cn×n

r (P,Q) to denote the set of matrices
that are reflexive with respect to pair (P,Q), and Cn×n

a (P,Q) to denote the set of matrices that are anti-reflexive with
respect to pair (P,Q), where P and Q are two generalized reflection matrices.
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Definition 2.2. [44] Let X = [x1, x2, . . . , xn] ∈ Cn×n with xi ∈ Cn being the i-th column of X. Then Col [X] is an
n2-dimensional vector formed by columns of X, i.e.,

Col [X] =


x1
x2
...

xn

 ∈ Cn2
.

Definition 2.3. [44] Consider a square matrix Pn ∈ Rn2
×n2 partitioned into n×n submatrices where each submatrix

is an elementary matrix of order n× n denoted by Ei j = eieT
j , with ei being a column vector of order n× 1 with a unity

in the ith position and zeros elsewhere. Thus, we can express Pn as a sum of such submatrices:

Pn =

n∑
i=1

n∑
j=1

Ei j ⊗ ET
i j.

For example for n = 2 we have

P2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , X =
[
x11 x12
x21 x12

]
,

and

P2 Col [X] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



x11
x21
x12
x12

 =

x11
x12
x21
x12

 = Col
[
XT

]
.

In general by using this definition, we can show that Pn satisfies the following properties [44]:

• Col
[
XT

]
= Pn Col [X] ,

• P2
n = In2 ,

• PT
n = P−1

n = Pn.

Lemma 2.4. [25] If the equation AXB = F has a unique solution X∗, then the gradient-based iterative (GI) algorithm,

X(k + 1) = X(k) + µAH(F − AX(k)B)BH, (4)

where

0 < µ <
2

λmax (AAH)λmax (BHB)
or µ ≤

2
∥A∥2∥B∥2

, (5)

is such that X(k)→ X∗.

3. Main Results

From the property Col
[
XT

]
= Pn Col [X] it is easy to see that

Col
[
XH

]
= Pn Col [X] = Pn Col [X] = Pn Col

[
X
]
.

Thus the solution of Sylvester-conjugate transpose matrix equations (3) can be found by the following
lemma.
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Lemma 3.1. The matrix equations (3) have a unique solution X if and only if the matrix

Θ1 =



I ⊗ A1

(
BT

1 ⊗ I
)

Pn
...

...

I ⊗ Ar

(
BT

r ⊗ I
)

Pn

(BH
1 ⊗ I)Pn I ⊗ A1
...

...
(BH

r ⊗ I)Pn I ⊗ Ar


,

has full column rank and the rank of [Θ1, f1] is equal to the rank of Θ1, where

f1 =



Col[F1]
...

Col[Fr]
Col[F1]
...

Col[Fr]


.

In such cases, the solution to (3) can be obtained by solving the following linear system:



I ⊗ A1

(
BT

1 ⊗ I
)

Pn
...

...

I ⊗ Ar

(
BT

r ⊗ I
)

Pn

(BH
1 ⊗ I)Pn I ⊗ A1
...

...
(BH

r ⊗ I)Pn I ⊗ Ar



[
Col[X]
Col[X]

]
=



Col[F1]
...

Col[Fr]
Col[F1]
...

Col[Fr]


.

Furthermore, it is observed that the corresponding homogeneous matrix equations (3) possesses a unique zeros
solution, X = On.

Proof. Taking conjugate from (3) yields:



A1X + XHB1 = F1,
...

ArX + XHBr = Fr,
A1 X + XTB1 = F1,

...
Ar X + XTB1 = Fr.

(6)

Now by using Kronecker product and property Col
[
XH

]
= Pn Col

[
X
]

we obtain:
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(I ⊗ A1) Col [X] + (BT
1 ⊗ I) Col

[
XH

]
= Col [F1] ,

...

(I ⊗ Ar) Col [X] + (BT
r ⊗ I) Col

[
XH

]
= Col [Fr] ,

(I ⊗ A1) Col
[
X
]
+ (B1

T
⊗ I) Col

[
XT

]
= Col

[
F1

]
,

...

(I ⊗ Ar) Col
[
X
]
+ (Br

T
⊗ I) Col

[
XT

]
= Col

[
Fr

]
,

(7)

or



(I ⊗ A1) Col [X] + (BT
1 ⊗ I)Pn Col

[
X
]
= Col [F1] ,

...

(I ⊗ Ar) Col [X] + (BT
r ⊗ I)Pn Col

[
X
]
= Col [Fr] ,

(I ⊗ A1) Col
[
X
]
+ (B1

H
⊗ I)Pn Col [X] = Col

[
F1

]
,

...

(I ⊗ Ar) Col
[
X
]
+ (Br

H
⊗ I)Pn Col [X] = Col

[
Fr

]
,

(8)

or 

(I ⊗ A1) Col [X] + (BT
1 ⊗ I)Pn Col

[
X
]
= Col [F1] ,

...

(I ⊗ Ar) Col [X] + (BT
r ⊗ I)Pn Col

[
X
]
= Col [Fr] ,

(B1
H
⊗ I)Pn Col [X] + (I ⊗ A1) Col

[
X
]
= Col

[
F1

]
,

...

(Br
H
⊗ I)Pn Col [X] + (I ⊗ Ar) Col

[
X
]
= Col

[
Fr

]
.

(9)

Now the above equations can be written as

Θ1

[
Col(X)
Col(X)

]
= f .

Hence matrix equations (3) have a unique solution X if and only if the matrix Θ1 has full column rank,
and Rank[Θ1, f1] = Rank[Θ1] = 2rn2. In this case we have[

Col(X)
Col(X)

]
= (ΘH

1 Θ1)−1ΘH
1 f1. (10)

Consequently, the exact solution of matrix equations (3) can be determined by (10). Moreover for f = 0,

we have
[

Col(X)
Col(X)

]
= 0 that yields the solution X = On.

Lemma 3.2. The matrix equations (3) have a unique solution X if and only if the matrix

Θ2 =



I ⊗ A1 BT
1 ⊗ I

...
...

I ⊗ Ar BT
r ⊗ I

I ⊗ BH
1 A1 ⊗ I
...

...
I ⊗ BH

r Ar ⊗ I


,
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has full column rank and the rank of [Θ2, f2] is equal to the rank of Θ2, where

f2 =



Col[F1]
...

Col[Fr]
Col[FH

1 ]
...

Col[FH
r ]


.

In such cases, the solution to (3) can be obtained by solving the following linear system:

I ⊗ A1 BT
1 ⊗ I

...
...

I ⊗ Ar BT
r ⊗ I

I ⊗ BH
1 A1 ⊗ I
...

...
I ⊗ BH

r Ar ⊗ I


[

Col[X]
Col[XH]

]
=



Col[F1]
...

Col[Fr]
Col[FH

1 ]
...

Col[FH
r ]


. (11)

Proof. From (3) we have:

A1X + XHB1 = F1,
...

ArX + XHBr = Fr,(
A1X + XHB1

)H
= FH

1 ,
...(

ArX + XHBr

)H
= FH

r ,

(12)

that yields:

A1X + XHB1 = F1,
...

ArX + XHBr = Fr,
BH

1 X + XHAH
1 = FH

1 ,
...

BH
r X + XHAH

r = FH
r .

(13)

Now by using Kronecker product we obtain:

(I ⊗ A1) Col [X] + (BT
1 ⊗ I) Col

[
XH

]
= Col [F1] ,

...

(I ⊗ Ar) Col [X] + (BT
r ⊗ I) Col

[
XH

]
= Col [Fr] ,

(I ⊗ B1
H) Col [X] + (A1 ⊗ I) Col

[
XH

]
= Col

[
F1

H
]
,

...

(I ⊗ Br
H) Col [X] + (Ar ⊗ I) Col

[
XH

]
= Col

[
Fr

H
]
,

(14)
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or 

I ⊗ A1 BT
1 ⊗ I

...
...

I ⊗ Ar BT
r ⊗ I

I ⊗ BH
1 A1 ⊗ I
...

...
I ⊗ BH

r Ar ⊗ I


[

Col[X]
Col[XH]

]
=



Col[F1]
...

Col[Fr]
Col[FH

1 ]
...

Col[FH
r ]


.

Hence matrix equations (3) have a unique solution X if and only if Rank[Θ2, f2] = Rank[Θ2] = 2rn2.
Moreover, the exact solution of matrix equations (3) can be determined by (11).

In the continuation of this work, the lemmas that we require will pertain to the particular solutions of
system of matrix equations (3).

Lemma 3.3. System of equations (3) has a generalized reflexive solution X ∈ Cn×n
r (P,Q) if and only if the following

system of linear matrix equations is consistent:

A1X + XHB1 = F1,
A1PXQ + (PXQ)HB1 = F1,

...
ArX + XHBr = Fr,

ArPXQ + (PXQ)HBr = Fr.

(15)

Proof. Suppose that the system (15) is consistent, then there exists a matrix X̃ such that (similar to the
approach in [8]):



A1X̃ + X̃HB1 = F1,
A1PX̃Q + (PX̃Q)HB1 = F1,

...
ArX̃ + X̃HBr = Fr,

ArPX̃Q + (PX̃Q)HBr = Fr.

(16)

Define

X̂ =
X̃ + PX̃Q

2
.

Then;

PX̂Q =
PX̃Q + P2X̃Q2

2
=

PX̃Q + X̃
2

= X̂⇒ X̂ ∈ Cn×n
r (P,Q).

Additionally, it can be written:

A jX̂ + X̂HB j = A j

(
X̃ + PX̃Q

2

)
+

(
X̃ + PX̃Q

2

)H

B j

=
1
2

(
A jX̃ + X̃HB j

)
+

1
2

(
A jPX̃Q + (PX̃Q)HB j

) (16)
=

F j

2
+

F j

2
= F j, j = 1, 2, ..., r.
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On the other hand, if system (3) possesses the generalized reflexive solution Z ∈ Cn×n
r (P,Q), then we can

derive:

A jPZQ + (PZQ)HB j = A jZ + ZHB j = F j, j = 1, 2, ..., r. (17)

From (17), it follows that the generalized reflexive solution Z is a solution to the system of matrix
equations (15), meaning that system (15) is consistent. This completes the proof.

Lemma 3.4. System of equations (3) has a generalized ant-reflexive solution X ∈ Cn×n
a (P,Q) if and only if the

following system of linear matrix equations is consistent:



A1X + XHB1 = F1,
A1PXQ + (PXQ)HB1 = −F1,

...
ArX + XHBr = −Fr,

ArPXQ + (PXQ)HBr = Fr,

(18)

Proof. Suppose that system (18) is consistent, then there exists a matrix X̃ such that (similar to the approach
in [8]):

A1X̃ + X̃HB1 = F1,
A1PX̃Q + (PX̃Q)HB1 = −F1,

...
ArX̃ + X̃HBr = −Fr,

ArPX̃Q + (PX̃Q)HBr = Fr.

(19)

Define

X̂ =
X̃ − PX̃Q

2
.

Then;

PX̂Q =
PX̃Q − P2X̃Q2

2
=
−X̃ + PX̃Q

2
= −X̂⇒ X̂ ∈ Cn×n

a (P,Q).

Additionally, it can be written:

A jX̂ + X̂HB j = A j

(
X̃ − PX̃Q

2

)
+

(
X̃ − PX̃Q

2

)H

B j

=
1
2

(
A jX̃ + X̃HB j

)
−

1
2

(
A jPX̃Q + (PX̃Q)HB j

)
=

1
2

F j −
1
2

(
−F j

)
= F j, j = 1, 2, ..., r.

On the other hand, if system (3) possesses the generalized anti-reflexive solution Z ∈ Cn×n
a (P,Q), then

PZQ = −Z, A jZ + ZHB j = F j, j = 1, 2, ..., r and:

A jPZQ + (PZQ)HB j = −A jZ − ZHB j = −F j, j = 1, 2, ..., r. (20)

From (20), it follows that the generalized ant-reflexive solution Z is a solution to the system of matrix
equations (18), meaning that system (18) is consistent. This completes the proof.
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3.1. Derive iterative algorithm
Consider a matrix A that can be expressed as the sum of three matrices: A = M + N + G, where M, N,

and G are arbitrary matrices. For example a choice for these matrices is

M =
1
2

(L + LH +U +UH), N =
1
2

(D +DH), G =
1
2

(L − LH +U −UH +D −DH), (21)

where U,L and D are the upper, lower, and diagonal parts of matrix A, respectively. Then it is easy to see
that in (21), M and N are Hermitian and G is skew-Hermitian matrix.

Let’s examine the following decompositions.

Ai =Ma,i +Na,i + Ga,i, Bi =Mb,i +Nb,i + Gb,i, i = 1, 2, ... , r, (22)

Ai =
(
Ma,i + τ∆a

)
−

(
τ∆a − Ga,i −Na,i

)
≡

(
Ga,i +Na,i + γΓa

)
−

(
γΓa −Ma,i

)
, (23)

Bi =
(
Mb,i + τ∆b

)
−

(
τ∆b − Gb,i −Nb,i

)
≡

(
Gb,i +Nb,i + γΓb

)
−

(
γΓb −Mb,i

)
, (24)

where τ and γ are real numbers, Ma,i and Na,i are Hermitian matrices, Mb,i and Nb,i are also Hermitian
matrices, and Ga,i and Gb,i are skew-Hermitian matrices for i = 1, 2. Furthermore, ∆a, ∆b, Γa, and Γb are
arbitrary known matrices.

Drawing inspiration from the approach taken in [7], we can employ a hierarchical identification principle
to solve system of equations (3). Utilizing the decompositions given in (23), we can express the system as:(

Ma,i + τ∆a
)
X =

(
τ∆a − Ga,i −Na,i

)
X − XHBi + Fi, (25)

or

Z1,1X = J1,1, ... , Z1,rX = J1,r, (26)

such that

Z1,1 =Ma,1 + τ∆a, ... , Z1,r =Ma,r + τ∆a, (27)

and

J1,1 =
(
τ∆a − Ga,1 −Na,1

)
X − XHB1 + F1,

... (28)

J1,r =
(
τ∆a − Ga,r −Na,r

)
X − XHBr + Fr.

The formula stated in the above equations concludes that:

S1 : Z1X = J1, (29)

where

Z1 =


Z1,1
...

Z1,r

 , J1 =


J1,1
...

J1,r

 . (30)

Applying the decompositions given in equation (23) to equations (3), gives:(
Ga,i +Na,i + γΓa

)
X =

(
γΓa −Ma,i

)
X − XHBi + Fi, (31)

or

Z2,1X = J2,1, ... , Z2,rX = J2,r, (32)
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where

Z2,1 = Ga,1 +Na,1 + γΓa, ... , Z2,r = Ga,r +Na,r + γΓa, (33)

and

J2,1 =
(
γΓa −Ma,1

)
X − XHB1 + F1,

... (34)

J2,r =
(
γΓa −Ma,r

)
X − XHBr + Fr.

In a comparable manner, we can derive:

Z2,1X = J2,1, ... , Z2,rX = J2,r, (35)

or

S2 : Z2X = J2, (36)

such that

Z2 =


Z2,1
...

Z2,r

 , J2 =


J2,1
...

J2,r

 . (37)

By substituting the splittings described in equation (24) into equations (3), the resulting expression is:

XH(
Mb,i + τ∆b

)
= XH (

τ∆b − Gb,i −Nb,i
)
− AiX + Fi. (38)

The matrices are defined as follows:

Z3,1 =Mb,1 + τ∆b, ... , Z3,r =Mb,r + τ∆b, (39)

and

J3,1 = XH (
τ∆b − Gb,1 −Nb,1

)
− A1X + F1,

... (40)

J3,r = XH (
τ∆b − Gb,r −Nb,r

)
− ArX + Fr.

Thus, we can represent equation (38) in the following form:

S3 : XHZ3 = J3, (41)

where

Z3 =
[

Z3,1, . . . , Z3,r

]
, J3 =

[
J3,1, . . . , J3,r

]
. (42)

Applying comparable computations leads to the following relationships:

XH(
Gb,i +Nb,i + γΓb

)
= XH (

γΓb −Mb,i
)
− AiX + Fi. (43)

By defining

Z4,1 = Gb,1 +Nb,1 + γΓb, ... , Z4,r = Gb,r +Nb,r + γΓb, (44)
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and

J4,1 = XH (
γΓb −Mb,1

)
− A1X + F1,

... (45)

J4,r = XH (
γΓb −Mb,r

)
− ArX + Fr,

we get

S4 : XHZ4 = J4, (46)

such that

Z4 =
[

Z4,1, . . . , Z4,r

]
, J4 =

[
J4,1, . . . , J4,r

]
. (47)

Iterative methods for system S1 can be obtained by utilizing gradient method (4) in the following
manner:

X1(k + 1) = X1(k) + µ1


Ma,1 + τ∆a

...
Ma,r + τ∆a


H 

F1 − A1X1(k) − X1(k)HB1
...

Fr − ArX1(k) − X1(k)HBr

 .
The same procedure applied to system S2 in (36) results in:

X2(k + 1) = X2(k) + µ2


Ga,1 +Na,1 + γΓa

...
Ga,r +Na,r + γΓa


H 

F1 − A1X2(k) − X2(k)HB1
...

Fr − ArX2(k) − X2(k)HBr

 .
Applying gradient method (4) to system S3 in (41), confirms:

X3(k + 1) = X3(k) + µ1
[
Mb,1 + τ∆b, . . . ,Mb,r + τ∆b

] [
F1 − A1X3(k) − X3(k)HB1,

. . . , Fr − ArX3(k) − X3(k)HBr

]H
.

Consequently, we arrive at the following equation:

X4(k + 1) = X4(k) + µ2
[
Gb,1 +Nb,1 + γΓb, . . . ,Gb,r +Nb,r + γΓb

]
×

[
F1 − A1X4(k) − X4(k)HB1, . . . , Fr − ArX4(k) − X4(k)HBr

]H
.

A gradient iterative algorithm can be derived by computing the mean of Yi(k) for i = 1, 2, 3, 4 (refer to
[7]):

X(k + 1) =
∑4

i=1 Xi(k + 1)
4

, (48)

where

X1(k + 1) = X(k) + µ1


Ma,1 + τ∆a

...
Ma,r + τ∆a


H 

F1 − A1X(k) − X(k)HB1
...

Fr − ArX(k) − X(k)HBr

 , (49)

X2(k + 1) = X(k) + µ2


Ga,1 +Na,1 + γΓa

...
Ga,r +Na,r + γΓa


H 

F1 − A1X(k) − X(k)HB1
...

Fr − ArX(k) − X(k)HBr

 , (50)
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X3(k + 1) = X(k) + µ1
[
Mb,1 + τ∆b, . . . ,Mb,r + τ∆b

] [
F1 − A1X(k) − X(k)HB1,

. . . , Fr − ArX(k) − X(k)HBr

]H
,

(51)

and

X4(k + 1) = X(k) + µ2
[
Gb,1 +Nb,1 + γΓb, . . . ,Gb,r +Nb,r + γΓb

]
×

[
F1 − A1X(k) − X(k)HB1, . . . , Fr − ArX(k) − X(k)HBr

]H
.

(52)

For the sake of brevity, we will adopt the following notation:

Ψi(k) = Fi − AiX(k) − X(k)HBi, i = 1, 2, . . . , r.

The new algorithm can be expressed in the following manner:

X1(k + 1) = X(k) + µ1


Ma,1 + τ∆a

...
Ma,r + τ∆a


H 
Ψ1(k)
...

Ψs(k)

 ,

X2(k + 1) = X(k) + µ2


Ga,1 +Na,1 + γΓa

...
Ga,r +Na,r + γΓa


H 
Ψ1(k)
...

Ψs(k)

 ,
X3(k + 1) = X(k) + µ1

[
Mb,1 + τ∆b, . . . ,Mb,r + τ∆b

]
[Ψ1(k), . . . , Ψs(k)]H ,

and

X4(k + 1) = X(k) + µ2
[
Gb,1 +Nb,1 + γΓb, . . . ,Gb,r +Nb,r + γΓb

]
[Ψ1(k), . . . , Ψs(k)]H .

The aforementioned equations lead to the conclusion that:

X(k + 1) = X(k) +
1
4


µ1

(
Ma,1 + τ∆a

)
+ µ2

(
Ga,1 +Na,1 + γΓa

)
...

µ1
(
Ma,r + τ∆a

)
+ µ2

(
Ga,r +Na,r + γΓa

)


H 
Ψ1(k)
...

Ψs(k)


+

1
4
[
µ1

(
Mb,1 + τ∆b

)
+ µ2

(
Gb,1 +Nb,1 + γΓb

)
, . . . , µ1

(
Mb,r + τ∆b

)
+ µ2

(
Gb,r +Nb,r + γΓb

)]
× [Ψ1(k), . . . ,Ψs(k)]H , (53)

or

X(k + 1) = X(k) +
1
4

{
µ1


A1
...

Ar


H

+
(
µ2 − µ1

) 
Ga,1 +Na,1

...
Ga,r +Na,r


H

+ µ1τ


∆a
...
∆a


H

+ µ2γ


Γa
...
Γa


H } 

Ψ1(k)
...

Ψs(k)

 + 1
4

{
µ1

[
B1, . . . ,Br

]
+ (µ2 − µ1)

[
Gb,1 +Nb,1, . . . ,Gb,r +Nb,r

]
+ µ1τ[∆b, . . . , ∆b] + µ2γ[Γb, . . . , Γb]

}
[Ψ1(k), . . . ,Ψs(k)]H .

Therefore,
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X(k + 1) = X(k) +
µ1

4




A1
...

Ar


H 
Ψ1(k)
...

Ψs(k)

 + [
B1, . . . ,Br

]
[Ψ1(k), . . . ,Ψs(k)]H


+
µ2 − µ1

4




Ga,1 +Na,1
...

Ga,r +Na,r


H 
Ψ1(k)
...

Ψs(k)

 + [Gb,1 +Nb,1, . . . ,Gb,r +Nb,r] [Ψ1(k), . . . ,Ψs(k)]H


+
µ1τ

4



∆a
...
∆a


H 
Ψ1(k)
...

Ψs(k)

 + [∆b, . . . , ∆b] [Ψ1(k), . . . ,Ψs(k)]H


+
µ2γ

4



Γa
...
Γa


H 
Ψ1(k)
...

Ψs(k)

 + [Γb, . . . , Γb] [Ψ1(k), . . . ,Ψs(k)]H

 .
Therefore

X(k + 1) = X(k) +
µ1

4

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H
)

+
µ2 − µ1

4

r∑
i=1

(
(Ga,i +Na,i)HΨi(k) + (Gb,i +Nb,i)Ψi(k)H

)
+
µ1τ

4

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H
)
+
µ2γ

4

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H
)
. (54)

As a final step, we establish the following iterative algorithm to solve equations (3).
Algorithm 1. To begin, select a matrix X(1) ∈ Cn×n and real parameters µ1, µ2, τ, γ. Then, for each

k = 1, 2, ..., perform the following computation:

Ψi(k) = Fi − AiX(k) − X(k)HBi, i = 1, 2, . . . , r,

X(k + 1) = X(k) +
µ1

4

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H
)
+
µ2 − µ1

4

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H

)
+
µ1τ

4

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H
)
+
µ2γ

4

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H
)
. (55)

Remark 3.5. In Algorithm 1 suppose µ1 = µ2 = µ, τ = γ = 0, then the following iterative method will be obtained

X(k + 1) = X(k) +
µ

4

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H
)

(56)

that is the gradient iterative algorithm (GI) as described in [42].

This section aims to examine the convergence characteristics of Algorithm 1.

Theorem 3.6. If we have coupled Sylvester matrix equations (3) with a unique solution X, the solution X(k) derived
from Algorithm 1 will converge to X∗ provided that the inequality
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r∑
i=1

[∥∥∥∥∥ I
r
−
µ2 − µ1

4
(Na,i − Ga,i)Ai −

µ2 − µ1

4
(Nb,i + Gb,i)BH

i −
µ1

4
(AH

i Ai + BiBH
i )

∥∥∥∥∥
+

∥∥∥∥∥µ1

4
AH

i +
µ2 − µ1

4
(Na,i − Ga,i)

∥∥∥∥∥ ∥Bi∥

+

∥∥∥∥∥µ1

4
Bi +

µ2 − µ1

4
(Na,i + Ga,i)

∥∥∥∥∥ ∥Ai∥ +
µ1τ

4
{∥Ai∥ + ∥Bi∥}{∥∆a∥ + ∥∆b∥}

+
µ2γ

4
{∥Ai∥ + ∥Bi∥}{∥Γa∥ + ∥Γb∥}

]
< 1, (57)

holds for the parameters µ1, µ2, τ and γ, where ∥.∥ is a matrix norm.

Proof. We start by defining the error matrix E(k) = X(k) − X∗, where X∗ is the true solution. Subsequently,
applying Algorithm 1 leads to the following outcome (similar to the approach in [7]):

E(k + 1) = E(k) +
µ1

4

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H
)
+
µ2 − µ1

4

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H

)
+
µ1τ

4

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H
)
+
µ2γ

4

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H
)
. (58)

On the other hand

Ψi(k) = −(AiE(k) + E(k)HBi), i = 1, ..., r. (59)

Hence the expression below can be obtained by combining equations (78) and (79):

E(k + 1) = E(k) −
µ1

4

r∑
i=1

(
AH

i AiE(k) + AH
i E(k)HBi + Bi(E(k)HAH

i + BH
i E(k))

)
−
µ2 − µ1

4

r∑
i=1

(
(Na,i − Ga,i)(AiE(k) + E(k)HBi) + (Nb,i + Gb,i)(E(k)HAH

i + BH
i E(k))

)
−
µ1τ

4

r∑
i=1

(
∆H

a (AiE(k) + E(k)HBi) + ∆b(E(k)HAH
i + BH

i E(k))
)

−
µ2γ

4

r∑
i=1

(
ΓH

a (AiE(k) + E(k)HBi) + Γb(E(k)HAH
i + BH

i E(k))
)

= E(k) −
µ1

4

r∑
i=1

(
AH

i AiE(k) + AH
i E(k)HBi + BiE(k)HAH

i + BiBH
i E(k)

)
−
µ2 − µ1

4

r∑
i=1

((Na,i − Ga,i)AiE(k) + (Na,i − Ga,i)E(k)HBi + (Nb,i + Gb,i)E(k)HAH
i + (Nb,i + Gb,i)BH

i E(k))

−
µ1τ

4

r∑
i=1

(
∆H

a AiE(k) + ∆H
a E(k)HBi + ∆bE(k)HAH

i + ∆bBH
i E(k)

)
−
µ2γ

4

r∑
i=1

(
ΓH

a AiE(k) + ΓH
a E(k)HBi + ΓbE(k)HAH

i + ΓbBH
i E(k)

)
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= E(k) −
µ1

4

r∑
i=1

(
AH

i AiE(k) + BiBH
i E(k)

)
−
µ1

4

r∑
i=1

(
AH

i E(k)HBi + BiE(k)HAH
i

)
−
µ2 − µ1

4

r∑
i=1

((Na,i − Ga,i)AiE(k) + (Nb,i + Gb,i)BH
i E(k))

−
µ2 − µ1

4

r∑
i=1

((Na,i − Ga,i)E(k)HBi + (Nb,i + Gb,i)E(k)HAH
i )

−
µ1τ

4

r∑
i=1

(
∆H

a AiE(k) + ∆H
a E(k)HBi + ∆bE(k)HAH

i + ∆bBH
i E(k)

)
−
µ2γ

4

r∑
i=1

(
ΓH

a AiE(k) + ΓH
a E(k)HBi + ΓbE(k)HAH

i + ΓbBH
i E(k)

)

=

r∑
i=1

( I
r
−
µ2 − µ1

4
(Na,i − Ga,i)Ai −

µ2 − µ1

4
(Nb,i + Gb,i)BH

i

−
µ1

4
(AH

i Ai + BiBH
i )

)
E(k) −

r∑
i=1

(µ1

4
AH

i +
µ2 − µ1

4
(Na,i − Ga,i)

)
E(k)HBi

−

r∑
i=1

(µ1

4
Bi +

µ2 − µ1

4
(Na,i + Ga,i)

)
E(k)HAH

i −
µ1τ

4

r∑
i=1

(
∆H

a AiE(k) + ∆H
a E(k)HBi + ∆bE(k)HAH

i + ∆bBH
i E(k)

)
−
µ2γ

4

r∑
i=1

(
ΓH

a AiE(k) + ΓH
a E(k)HBi + ΓbE(k)HAH

i + ΓbBH
i E(k)

)
.

Furthermore, through the application of matrix norm to each side of above equation, one can derive:

∥E(k + 1)∥ ≤
r∑

i=1

∥∥∥∥∥ I
r
−
µ2 − µ1

4
(Na,i − Ga,i)Ai −

µ2 − µ1

4
(Nb,i + Gb,i)BH

i

−
µ1

4
(AH

i Ai + BiBH
i )

∥∥∥∥∥ ∥E(k)∥ +
r∑

i=1

∥∥∥∥∥µ1

4
AH

i +
µ2 − µ1

4
(Na,i − Ga,i)

∥∥∥∥∥ ∥Bi∥ ∥E(k)∥

+

r∑
i=1

∥∥∥∥∥µ1

4
Bi +

µ2 − µ1

4
(Na,i + Ga,i)

∥∥∥∥∥ ∥Ai∥ ∥E(k)∥

+
µ1τ

4

r∑
i=1

∥∥∥∆H
a AiE(k) + ∆H

a E(k)HBi + ∆bE(k)HAH
i + ∆bBH

i E(k)
∥∥∥

+
µ2γ

4

r∑
i=1

∥∥∥ΓH
a AiE(k) + ΓH

a E(k)HBi + ΓbE(k)HAH
i + ΓbBH

i E(k)
∥∥∥ , (60)

or

∥E(k + 1)∥ ≤
[ r∑

i=1

∥∥∥∥∥ I
r
−
µ2 − µ1

4
(Na,i − Ga,i)Ai −

µ2 − µ1

4
(Nb,i + Gb,i)BH

i

−
µ1

4
(AH

i Ai + BiBH
i )

∥∥∥∥∥ + r∑
i=1

∥∥∥∥∥µ1

4
AH

i +
µ2 − µ1

4
(Na,i − Ga,i)

∥∥∥∥∥ ∥Bi∥
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+

r∑
i=1

∥∥∥∥∥µ1

4
Bi +

µ2 − µ1

4
(Na,i + Ga,i)

∥∥∥∥∥ ∥Ai∥ +
µ1τ

4

r∑
i=1

{∥Ai∥ + ∥Bi∥}{∥∆a∥ + ∥∆b∥}

+
µ2γ

4

r∑
i=1

{∥Ai∥ + ∥Bi∥}{∥Γa∥ + ∥Γb∥}

]
∥E(k)∥. (61)

It is apparent that the equation presented above can be rephrased as:

∥E(k + 1)∥ ≤
r∑

i=1

[∥∥∥∥∥ I
r
−
µ2 − µ1

4
(Na,i − Ga,i)Ai −

µ2 − µ1

4
(Nb,i + Gb,i)BH

i

−
µ1

4
(AH

i Ai + BiBH
i )

∥∥∥∥∥ + ∥∥∥∥∥µ1

4
AH

i +
µ2 − µ1

4
(Na,i − Ga,i)

∥∥∥∥∥ ∥Bi∥

+

∥∥∥∥∥µ1

4
Bi +

µ2 − µ1

4
(Na,i + Ga,i)

∥∥∥∥∥ ∥Ai∥ +
µ1τ

4
{∥Ai∥ + ∥Bi∥}{∥∆a∥ + ∥∆b∥}

+
µ2γ

4
{∥Ai∥ + ∥Bi∥}{∥Γa∥ + ∥Γb∥}

]
∥E(k)∥. (62)

From equation (62), we conclude that if (57) is satisfied, then lim
k→∞
E(k) = 0, that gives

lim
k→∞

X(k) = X∗,

which completes the proof immediately.

Remark 3.7. Note that even if the condition (57) is not satisfied, Algorithm 1 can be employed. This is because,
during the proof, we observe that the control inequality serves as a sufficient criterion rather than a necessary one.

Remark 3.8. Let Ai, Bi, Fi ∈ Cn×n (i = 1, . . . , r) and there exists ai such that AH
i Ai + BiBH

i = aiI (i = 1, . . . , r)(for
example let Ai and Bi be unitary matrices). Suppose µ = µ1 = µ2. Then the inequality of (57) will be as follows:

r∑
i=1

[∥∥∥∥∥ I
r
−
µai

4
I
∥∥∥∥∥ + µ2 ∥Ai∥ ∥Bi∥ +

µτ

4
{∥Ai∥ + ∥Bi∥}{∥∆a∥ + ∥∆b∥} +

µγ

4
{∥Ai∥ + ∥Bi∥}{∥Γa∥ + ∥Γb∥}

]
< 1. (63)

Then we have
r∑

i=1

∥∥∥∥∥ I
r
−
µai

4
I
∥∥∥∥∥ + µθ1 + µτθ2 + µγθ3 < 1,

where

θ1 =
1
2

r∑
i=1

∥Ai∥ ∥Bi∥ , (64)

θ2 =
1
4

(∥∆a∥ + ∥∆b∥)
r∑

i=1

(∥Ai∥ + ∥Bi∥), (65)

θ3 =
1
4

(∥Γa∥ + ∥Γb∥)
r∑

i=1

(∥Ai∥ + ∥Bi∥). (66)

Now suppose we use Euclidean norm, then
r∑

i=1

∣∣∣∣∣1r − µai

4

∣∣∣∣∣ + µθ1 + µτθ2 + µγθ3 < 1.

It can be easily seen that a solution for the above inequality is as follows∣∣∣4 − rµai

∣∣∣ < 1, (i = 1, . . . , r), µγ <
1

4θ3
, µτ <

1
4θ2
, µ <

1
4θ1
.
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4. Determining the generalized reflexive and anti-reflexive solutions

This section aims to derive solutions for matrix equations (3), encompassing both generalized reflexive
and anti-reflexive cases, while also examining the convergence characteristics of these techniques.

4.1. Generalized reflexive solution
By applying Lemma 3.3, we can obtain the generalized reflexive solution of system (3) by solving the

following equations:

A1X + XHB1 = F1,
A1PXQ + (PXQ)HB1 = F1,

...
ArX + XHBr = Fr,

ArPXQ + (PXQ)HBr = Fr.

(67)

By following a similar approach as in the preceding section, we can obtain equations:(
Ma,i + τ∆a

)
PXQ =

(
τ∆a − Ga,i −Na,i

)
PXQ − (PXQ)HBi + Fi, (68)(

Ga,i +Na,i + γΓa
)
PXQ =

(
γΓa −Ma,i

)
PXQ − (PXQ)HBi + Fi, (69)

(PXQ)H(
Mb,i + τ∆b

)
= (PXQ)H (

τ∆b − Gb,i −Nb,i
)
− AiPXQ + Fi, (70)

(PXQ)H(
Gb,i +Nb,i + γΓb

)
= (PXQ)H (

γΓb −Mb,i
)
− AiPXQ + Fi, (71)

for i = 1, 2, ..., r. The implementation of the Hierarchical identification principle to the above-mentioned
equations results in the following outcomes:

X5(k + 1) = X(k) + µ1PH


Ma,1 + τ∆a

...
Ma,r + τ∆a


H 

F1 − A1PX(k)Q − (PX(k)Q)HB1
...

Fr − ArPX(k)Q − (PX(k)Q)HBr

 QH,

X6(k + 1) = X(k) + µ2PH


Ga,1 +Na,1 + γΓa

...
Ga,r +Na,r + γΓa


H 

F1 − A1PX(k)Q − (PX(k)Q)HB1
...

Fr − ArPX(k)Q − (PX(k)Q)HBr

 QH,

X7(k + 1) = X(k) + µ1PH [
Mb,1 + τ∆b, . . . ,Mb,r + τ∆b

] [
F1 − A1(PX(k)Q) − (PX(k)Q)HB1,

. . . , Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

]H
QH,

and

X8(k + 1) = X(k) + µ2PH [
Gb,1 +Nb,1 + γΓb, . . . ,Gb,r +Nb,r + γΓb

]
×

[
F1 − A1(PX(k)Q) − (PX(k)Q)HB1, . . . , Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

]H
QH.

To derive an iterative gradient algorithm, we can compute the mean of Xi(k) for i = 1, 2, ..., 8:

X(k + 1) =
∑8

i=1 Xi(k)
8

, (72)

where X1(k),X2(k),X3(k) and X4(k) are defined in Eqs. (49)-(52) and

X5(k + 1) = X(k) + µ1P


Ma,1 + τ∆a

...
Ma,r + τ∆a


H 

F1 − A1PX(k)Q − (PX(k)Q)HB1
...

Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

 Q, (73)
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X6(k + 1) = X(k) + µ2P


Ga,1 +Na,1 + γΓa

...
Ga,r +Na,r + γΓa


H 

F1 − A1(PX(k)Q) − (PX(k)Q)HB1
...

Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

 Q, (74)

X7(k + 1) = X(k) + µ1P
[
Mb,1 + τ∆b, . . . ,Mb,r + τ∆b

] [
F1 − A1(PX(k)Q) − (PX(k)Q)HB1,

. . . , Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

]H
Q,

(75)

and

X8(k + 1) = X(k) + µ2P
[
Gb,1 +Nb,1 + γΓb, . . . ,Gb,r +Nb,r + γΓb

]
×

[
F1 − A1(PX(k)Q) − (PX(k)Q)HB1, . . . , Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

]H
Q.

(76)

It is easy to check that if X(1) ∈ Cn×n
r (P,Q) then

Fi − Ai(PX(k)Q) − (PX(k)Q)HBi = Fi − AiX(k) − X(k)HBi, i = 1, ..., r, k = 1, 2, ....

Finally, from (49)-(52), (72), (73)-(76), the following iterative algorithm is determined to solve equations (3)
over generalized reflexive matrices.

Algorithm 2. Choose an initial matrix X(1) ∈ Cn×n
r (P,Q) and real parameters µ1, µ2, τ, γ. For k = 1, 2, ...,

compute:
Ψi(k) = Fi − AiX(k) − X(k)HBi, i = 1, 2, . . . , r.

X(k + 1) = X(k) +
µ1

8

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H + PAH
i Ψi(k)Q + PBiΨi(k)HQ

)
+
µ2 − µ1

8

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H + P(Na,i − Ga,i)Ψi(k)Q + P(Nb,i + Gb,i)Ψi(k)HQ

)
+
µ1τ

8

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H + P∆H
a Ψi(k)Q + P∆bΨi(k)HQ

)
+
µ2γ

8

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H + PΓH
a Ψi(k)Q + PΓbΨi(k)HQ

)
. (77)

The focus of this section is to analyze the convergence properties of the Algorithm 2.

Theorem 4.1. Given coupled Sylvester matrix equations (3) with a unique generalized reflexive solution X∗ ∈
Cn×n

r (P,Q), the iterative solution X(k) obtained from Algorithm 2 converges to X∗ when inequality (57) holds for the
parameters µ1, µ2, τ and γ, where ∥.∥ is a matrix norm.

Proof. We can apply a similar approach as demonstrated in [7] to prove this theorem. Initially, let the matrix
of errors given by

E(k) = X(k) − X∗.

After that, applying Algorithm 2 will yield the following result:

E(k + 1) = E(k) +
µ1

8

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H + PAH
i Ψi(k)Q + PBiΨi(k)HQ

)
+
µ2 − µ1

8

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H + P(Na,i − Ga,i)Ψi(k)Q + P(Nb,i + Gb,i)Ψi(k)HQ

)
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+
µ1τ

8

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H + P∆H
a Ψi(k)Q + P∆bΨi(k)HQ

)
+
µ2γ

8

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H + PΓH
a Ψi(k)Q + PΓbΨi(k)HQ

)
. (78)

On the other hand we have

Ψi(k) = −(AiE(k) + E(k)HBi), i = 1, ..., r. (79)

Therefore, by combining equations (78) and (79), we can derive

E(k + 1) = E(k) −
µ1

8

r∑
i=1

(
AH

i AiE(k) + AH
i E(k)HBi + BiE(k)HAH

i + BiBH
i E(k)

+ PAH
i AiE(k)Q + PAH

i E(k)HBiQ + PBiE(k)HAH
i Q + PBiBH

i E(k)Q
)

−
µ2 − µ1

8

r∑
i=1

(
(Na,i − Ga,i)AiE(k) + (Na,i − Ga,i)E(k)HBi

+ (Nb,i + Gb,i)E(k)HAH
i + (Nb,i + Gb,i)BH

i E(k) + P(Na,i − Ga,i)AiE(k)Q + P(Na,i − Ga,i)E(k)HBiQ

+ P(Nb,i + Gb,i)E(k)HAH
i Q + P(Nb,i + Gb,i)BH

i E(k)Q
)

−
µ1τ

8

r∑
i=1

(
∆H

a AiE(k) + ∆H
a E(k)HBi + ∆bE(k)HAH

i + ∆bBH
i E(k)

+ P∆H
a AiE(k)Q + P∆H

a E(k)HBiQ + P∆bE(k)HAH
i Q + P∆bBH

i E(k)Q
)

−
µ2γ

8

r∑
i=1

(
ΓH

a AiE(k) + ΓH
a E(k)HBi + ΓbE(k)HAH

i + ΓbBH
i E(k)

+ PΓH
a AiE(k)Q + PΓH

a E(k)HBiQ + PΓbE(k)HAH
i Q + PΓbBH

i E(k)Q
)

=

r∑
i=1

( I
2r
−
µ2 − µ1

8
(Na,i − Ga,i)Ai −

µ2 − µ1

8
(Nb,i + Gb,i)BH

i −
µ1

8
AH

i Ai −
µ1

8
BiBH

i

)
E(k)

−

r∑
i=1

(µ1

8
AH

i +
µ2 − µ1

8
(Na,i − Ga,i)

)
E(k)HBi −

r∑
i=1

(µ1

8
Bi +

µ2 − µ1

8
(Na,i + Ga,i)

)
E(k)HAH

i

−
µ1τ

8

r∑
i=1

(
∆H

a AiE(k) + ∆H
a E(k)HBi + ∆bE(k)HAH

i + ∆bBH
i E(k)

)
−
µ2γ

8

r∑
i=1

(
ΓH

a AiE(k) + ΓH
a E(k)HBi + ΓbE(k)HAH

i + ΓbBH
i E(k)

)
+

r∑
i=1

P
( I

2r
−
µ2 − µ1

8
(Na,i − Ga,i)Ai −

µ2 − µ1

8
(Nb,i + Gb,i)BH

i −
µ1

8
AH

i Ai −
µ1

8
BiBH

i

)
E(k)Q

−

r∑
i=1

P
(µ1

8
AH

i +
µ2 − µ1

8
(Na,i − Ga,i)

)
E(k)HBiQ −

r∑
i=1

P
(µ1

8
Bi +

µ2 − µ1

8
(Na,i + Ga,i)

)
E(k)HAH

i Q

−
µ1τ

8

r∑
i=1

P
(
∆H

a AiE(k) + ∆H
a E(k)HBi + ∆bE(k)HAH

i + ∆bBH
i E(k)

)
Q
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−
µ2γ

8

r∑
i=1

P
(
ΓH

a AiE(k) + ΓH
a E(k)HBi + ΓbE(k)HAH

i + ΓbBH
i E(k)

)
Q.

Taking the matrix norm of both sides of the last equation yields:

∥E(k + 1)∥ ≤ 2
r∑

i=1

∥∥∥∥∥ I
2r
−
µ2 − µ1

8
(Na,i − Ga,i)Ai −

µ2 − µ1

8
(Nb,i + Gb,i)BH

i

−
µ1

8
AH

i Ai −
µ1

8
BiBH

i

∥∥∥∥∥ ∥E(k)∥ + 2
r∑

i=1

∥∥∥∥∥µ1

8
AH

i +
µ2 − µ1

8
(Na,i − Ga,i)

∥∥∥∥∥ ∥Bi∥ ∥E(k)∥

+ 2
r∑

i=1

∥∥∥∥∥µ1

8
Bi +

µ2 − µ1

8
(Na,i + Ga,i)

∥∥∥∥∥ ∥Ai∥ ∥E(k)∥

+
µ1τ

4

r∑
i=1

∥∥∥∆H
a AiE(k) + ∆H

a E(k)HBi + ∆bE(k)HAH
i + ∆bBH

i E(k)
∥∥∥

+
µ2γ

4

r∑
i=1

∥∥∥ΓH
a AiE(k) + ΓH

a E(k)HBi + ΓbE(k)HAH
i + ΓbBH

i E(k)
∥∥∥ . (80)

As a result of the analysis, it can be concluded that the sequence {X(k)} converges provided that condition
(57) holds.

Remark 4.2. If we set P = Q in Algorithm 2, the resulting algorithm provides the reflexive solution of matrix
equations (3), and it can be simplified as follows:

Algorithm 3. Choose an initial matrix X(1) ∈ Cn×n
r (P) and real parameters µ1, µ2, τ, γ. For k = 1, 2, ...,

compute:

Ψi(k) = Fi − AiX(k) − X(k)HBi, i = 1, 2, . . . , r.

X(k + 1) = X(k) +
µ1

8

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H + PAH
i Ψi(k)P + PBiΨi(k)HP

)
+
µ2 − µ1

8

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H + P(Na,i − Ga,i)Ψi(k)P + P(Nb,i + Gb,i)Ψi(k)HP

)
+
µ1τ

8

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H + P∆H
a Ψi(k)P + P∆bΨi(k)HP

)
+
µ2γ

8

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H + PΓH
a Ψi(k)P + PΓbΨi(k)HP

)
. (81)

Theorem 4.3. Given coupled Sylvester matrix equations (3) with a unique reflexive solution X∗ ∈ Cn×n
r (P), the

iterative solution X(k) obtained from Algorithm 3 converges to X∗ when the inequality (57) holds for the parameters
µ1, µ2, τ and γ.

Proof. The proof of this theorem follows a similar approach to Theorem 4.1 and is omitted for brevity.
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4.2. Generalized ant-reflexive solution

Using Lemma 3.4, we can derive the generalized anti-reflexive solution of system (3) by solving a set of
equations given by

A1X + XHB1 = F1,
A1PXQ + (PXQ)HB1 = −F1,

...
ArX + XHBr = −Fr,

ArPXQ + (PXQ)HBr = Fr.

(82)

Following a similar approach as in the previous section, we can obtain equations as follows:

X5(k + 1) = X(k) + µ1PH


Ma,1 + τ∆a

...
Ma,r + τ∆a


H 
−F1 − A1PX(k)Q − (PX(k)Q)HB1

...
−Fr − ArPX(k)Q − (PX(k)Q)HBr

 QH,

X6(k + 1) = X(k) + µ2PH


Ga,1 +Na,1 + γΓa

...
Ga,r +Na,r + γΓa


H 
−F1 − A1PX(k)Q − (PX(k)Q)HB1

...
−Fr − ArPX(k)Q − (PX(k)Q)HBr

 QH,

X7(k + 1) = X(k) + µ1PH [
Mb,1 + τ∆b, . . . ,Mb,r + τ∆b

] [
−F1 − A1(PX(k)Q) − (PX(k)Q)HB1,

. . . , −Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

]H
QH,

and

X8(k + 1) = X(k) + µ2PH [
Gb,1 +Nb,1 + γΓb, . . . ,Gb,r +Nb,r + γΓb

]
×

[
−F1 − A1(PX(k)Q) − (PX(k)Q)HB1, . . . , −Fr − Ar(PX(k)Q) − (PX(k)Q)HBr

]H
QH.

Similar to Algorithm 2, the following iterative algorithm is determined to solve equations (3) over
generalized anti-reflexive matrices.

Algorithm 4. Choose an initial matrix X(1) ∈ Cn×n
a (P,Q) and real parameters µ1, µ2, τ, γ. For k = 1, 2, ...,

compute:
Ψi(k) = Fi − AiX(k) − X(k)HBi, i = 1, 2, . . . , r.

X(k + 1) = X(k) +
µ1

8

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H
− PAH

i Ψi(k)Q − PBiΨi(k)HQ
)

+
µ2 − µ1

8

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H

− P(Na,i − Ga,i)Ψi(k)Q − P(Nb,i + Gb,i)Ψi(k)HQ
)

+
µ1τ

8

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H
− P∆H

a Ψi(k)Q − P∆bΨi(k)HQ
)

+
µ2γ

8

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H
− PΓH

a Ψi(k)Q − PΓbΨi(k)HQ
)
. (83)

Theorem 4.4. Given coupled Sylvester matrix equations (3) with a unique generalized ant-reflexive solution X∗ ∈
Cn×n

a (P,Q), the iterative solution X(k) obtained from Algorithm 4 converges to X∗ when inequality (57) holds for the
parameters µ1, µ2, τ and γ.
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Proof. The proof of this theorem follows a similar approach to Theorem 4.1 and is omitted for brevity.

Remark 4.5. If we set P = Q in Algorithm 4, the resulting algorithm provides the ant-reflexive solution of matrix
equations (3), and it can be simplified as follows:

Algorithm 5. Choose an initial matrix X(1) ∈ Cn×n
a (P) and real parameters µ1, µ2, τ, γ. For k = 1, 2, ...,

compute:

Ψi(k) = Fi − AiX(k) − X(k)HBi, i = 1, 2, . . . , r. (84)

X(k + 1) = X(k) +
µ1

8

r∑
i=1

(
AH

i Ψi(k) + BiΨi(k)H
− PAH

i Ψi(k)P − PBiΨi(k)HP
)

+
µ2 − µ1

8

r∑
i=1

(
(Na,i − Ga,i)Ψi(k) + (Nb,i + Gb,i)Ψi(k)H

− P(Na,i − Ga,i)Ψi(k)P − P(Nb,i + Gb,i)Ψi(k)HP
)

+
µ1τ

8

r∑
i=1

(
∆H

a Ψi(k) + ∆bΨi(k)H
− P∆H

a Ψi(k)P − P∆bΨi(k)HP
)

+
µ2γ

8

r∑
i=1

(
ΓH

a Ψi(k) + ΓbΨi(k)H
− PΓH

a Ψi(k)P − PΓbΨi(k)HP
)
. (85)

Theorem 4.6. Given coupled Sylvester matrix equations (3) with a unique ant-reflexive solution X∗ ∈ Cn×n
a (P), the

iterative solution X(k) obtained from Algorithm 5 converges to X∗ when the inequality (57) holds for the parameters
µ1, µ2, τ and γ.

Proof. The proof of this theorem follows a similar approach to Theorem 4.1 and is omitted for brevity.

5. Numerical reports

In this section, we provide numerical experiments to demonstrate the effectiveness of our proposed
algorithms. The initial matrices are set to X(1) = On, where On denotes an n × n zero matrix. We consider
E(k) to be a zero matrix if ∥E(k)∥ < ϵ, where ϵ is a small positive number. Additionally, we measure the
relative error using :

RES(k) :=

√∑r
i=1 ∥AiX(k) + X(k)HBi − Fi∥

2
2∑r

i=1 ∥Fi∥
2
2

, k = 1, 2, . . . .

In addition, the matrices Ga,i,Gb,i,Na,i,Nb,i, i = 1, 2, ..., r are selected according to the procedure described
in (21).

The numerical experiments were conducted using MATLAB (R2015a) software on a system with an
Intel (R) Pentium 29 (R) CPU N3700 and 4 GB of RAM.

Example 5.1. The system of matrix equations we are studying in this section is given by [18]{
A1X + XTB1 = F1,
A2X + XTB2 = F2,

with the following parameters:

A1 =

 3 5 −2
10 2 2
−11 −6 18

 , A2 =

 14 4 −1
−6 0 0
16 4 8

 ,
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B1 =

 8 −6 3
8 4 6
4 9 4

 , B2 =

 −1 5 −4
2 −5 −14
−3 −5 8

 ,
F1 =

 13 24 45
110 108 139
120 56 18

 and F2 =

 12 61 123
−23 −58 −70
39 106 70

 .
The solution to the coupled matrix equations that satisfies the generalized reflexive property can be expressed in the
following manner:

X∗ =

 2 3 6
−1 5 5
2 6 3

 ∈ R3×3
r (P,Q),

with

P =

 0 0 1
0 1 0
1 0 0

 and Q =

 1 0 0
0 0 1
0 1 0

 .
We will use Algorithm 2 to solve this problem. In this algorithm, we set ∆a = ∆b = Γa = Γb = I.

The convergence curves for the iterative method (77) with different parameters are shown in Figures 1 and 2.
Based on the results presented in these figures, we can determine the optimal parameters as:

τ = γ = 3, µ1 = 10−3, µ2 = 8 × 10−3.

Interestingly, we observe that for these parameters, increasing the number of iterations improves the accuracy of
solution.

Table 1 displays the solution obtained after each iteration, and the final solution achieved after 130 iterations is
given below:

X(130) =

 2.000000000000001 3.000000000000000 5.999999999999999
−1.000000000000002 4.999999999999997 4.999999999999997
2.000000000000001 5.999999999999999 3.000000000000000

 ,
such that

PX(130)Q =

 2.000000000000001 3.000000000000000 5.999999999999999
−1.000000000000002 4.999999999999997 4.999999999999997
2.000000000000001 5.999999999999999 3.000000000000000

 = X(130),

and RES(130) = 2.8684×10−16. The results obtained from our study demonstrate that the algorithms utilized provide
efficient and reliable approaches for computing the solutions to linear matrix equations (3) with generalized reflexive
properties.

Example 5.2. Consider the system of matrix equations{
A1X + XHB1 = F1,
A2X + XHB2 = F2,

with the following matrices:

A1 =



−4 + 2 i −6 − 4 i −6 + 2 i −6 − 5 i 5 − i 1 + 8 i
14 + 4 i 4 + 6 i 1 + 3 i 13 − 3 i 1 + 3 i 8 − 4 i
−2 + 3 i −3 − 2 i −3 + 6 i 2 i 6 4 − 2 i

7 −3 + i 9 + 9 i −4 − 7 i −8 − 5 i 2 + 3 i
−5 − 2 i 7 + 4 i −1 + 8 i −12 − 5 i 4 − 5 i 4 − i

2 + i −1 − 6 i 12 i −4 + 6 i −4 + 5 i 2 + i


,
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A2 =



3 + 7 i 1 + 2 i −5 + 3 i −2 + 7 i −i 2 + 3 i
3 i 4 + 3 i 4 − 4 i −2 + 9 i 3 − 8 i −13 + 2 i

3 + i −6 − 7 i −3 + 2 i 4 + 5 i 3 − 6 i −5 − 8 i
6 5 i −2 − 4 i −4 + i −5 − 6 i −6 − 9 i

−7 + 2 i −5 + i −2 + 5 i 6 + 3 i 13 − 2 i 1 − i
−1 + 4 i 4 − 7 i 1 + 2 i 6 + 2 i 6 − 6 i 6 + 4 i


,

B1 =



7 − 13 i −2 i −6 − 4 i −1 + 4 i 1 + 9 i 7 − 3 i
−2 − 8 i 3 + 4 i 3 + 2 i −2 + 5 i 4 + 8 i 4 − 2 i
−7 + 4 i 6 + 8 i 2 + 2 i −4 − 4 i 1 − 2 i 9 − 4 i
1 + 4 i 6 + 6 i −11 −1 + 12 i −1 + i 2 + 3 i
−4 + 6 i 7 − 7 i 7 − i 13 + i 4 i −4 − 9 i
−2 − 4 i 9 + i −3 − 2 i −2 + 6 i 3 − 6 i 2 + 2 i


,

B2 =



−5 − 2 i 3 − 3 i −6 − i −2 + 7 i −3 + 2 i 7 − 4 i
−1 − 7 i 14 − i 3 + 8 i 10 + 2 i −1 + i 6 + 2 i
2 − 7 i 6 + 7 i 3 − 4 i 2 − 2 i 3 − 2 i 4 + 9 i
−2 + 5 i 6 − i −3 + 3 i −2 − 6 i −4 + i −5 − 3 i
−2 + i 3 4 − i 2 1 + i 7 + 8 i
2 + 3 i 7 − 6 i 5 + 3 i −6 + 3 i −7 + 3 i 0


,

F1 =



0 −5 + 10 i 0 −1 − 5 i 0 0
−9 24 + 8 i −1 −1 + 11 i 4 − 8 i 11 − 2 i
0 1 + 4 i 0 3 − 2 i 0 0

−6 − 2 i 21 + 9 i 10 + i 2 i 4 + 12 i −11 i
0 3 + 7 i 0 11 − i 0 0
0 2 + 13 i 0 −5 − i 0 0


,

and

F2 =



0 −3 + 6 i 0 1 + i 0 0
4 − 4 i 4 − i 8 − i 3 − 4 i −4 + i 4 + 9 i

0 −8 − 6 i 0 −3 − 13 i 0 0
−3 − 6 i 9 − 14 i 7 + 7 i 7 + i 2 i 13 + 10 i

0 −1 + 4 i 0 8 − i 0 0
0 7 + 6 i 0 10 − 13 i 0 0


.

The generalized anti-reflexive solution for this problem can be expressed as follows:

X∗ =



0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0


∈ R6×6

a (P,Q),

with

P =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0


, and Q =



0 0 1 0 0 0
0 0 0 −1 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


To solve this problem, we will utilize Algorithms 1, 4, and the gradient iterative algorithm (GI) as described in (56)
(refer to [42]). In the Algorithms 1 and 4, we set ∆a = ∆b = Γa = Γb = I. Moreover the optimal parameters for these
algorithms have been determined through experimental analysis and are presented below:



A. Shirilord, M. Dehghan / Filomat 38:27 (2024), 9399–9434 9424

• For GI method, µ = 8.4 × 10−3,

• For Algorithm 1, τ = 5, γ = 2.5, µ1 = µ2 = 8 × 10−3,

• For Algorithm 4, τ = 0, γ = 1, µ1 = 10−3 and µ2 = 4 × 10−3.

After 200 iterations, we obtained the following results for Algorithms 1, 4 and GI method:

• For GI method: we obtain ∥X∗ − X(200)∥2 = 3.5715 × 10−4.

• For Algorithms 1: we obtain ∥X∗ − X(200)∥2 = 9.8080 × 10−6.

• For Algorithms 4: we obtain ∥X∗ − X(200)∥2 = 7.1612 × 10−14 and

∥X(200) + PX(200)Q∥2 = 9.0288 × 10−14.

The above results clearly show that Algorithm 4 has been able to approximate the generalized anti-reflexive solution
of matrix equations (3) with high accuracy. Also the convergence curves for the mentioned iterative methods with
optimal parameters can be seen in Figure 3. From the obtained results, it is evident that the new algorithms are
effective for computing the approximate solution of linear matrix equations (3).

Example 5.3. Consider complex matrix equation AX + XHB = F with full matrices

A =



0.6131 0.8473 0.2959 0.6509 0.2356 0.6432 0.6293 0.3993 0.1779 0.2723
0.3942 0.6478 0.5305 0.3530 0.4784 0.6912 0.8806 0.9087 0.8787 0.0472
0.7456 0.4458 0.2843 0.3944 0.0438 0.4308 0.1943 0.9715 0.3739 0.7673
0.1140 0.4232 0.5516 0.8707 0.3489 0.4579 0.1387 0.4346 0.4680 0.9173
0.2353 0.4334 0.7044 0.9824 0.2325 0.7228 0.9972 0.3735 0.6448 0.0053
0.9717 0.6235 0.2554 0.3713 0.8292 0.3848 0.7507 0.4350 0.4229 0.3609
0.2326 0.1909 0.4913 0.7410 0.7807 0.4794 0.0374 0.1989 0.3645 0.2590
0.6295 0.8275 0.6904 0.8247 0.5668 0.1442 0.1316 0.7997 0.5318 0.7539
0.8265 0.7521 0.6249 0.0962 0.6033 0.3725 0.7198 0.8524 0.1920 0.1377
0.3634 0.9164 0.1316 0.3789 0.5338 0.0589 0.6721 0.5005 0.5004 0.2085



+i



0.3568 0.6470 0.2634 0.9521 0.4893 0.8238 0.7189 0.7653 0.8854 0.1352
0.4413 0.8922 0.8522 0.5248 0.9394 0.3946 0.6562 0.6699 0.7116 0.8109
0.1926 0.3257 0.6759 0.5855 0.3990 0.3146 0.7015 0.8561 0.4686 0.3071
0.5048 0.3553 0.6082 0.9870 0.7646 0.3654 0.0349 0.2680 0.0659 0.8459
0.4123 0.3886 0.7170 0.9371 0.5987 0.1208 0.0902 0.2423 0.0704 0.4265
0.8234 0.9436 0.9265 0.3459 0.8117 0.8025 0.2854 0.5299 0.7353 0.2734
0.6676 0.9677 0.4373 0.1711 0.5403 0.3118 0.5744 0.2756 0.6845 0.1982
0.5859 0.2253 0.1143 0.3462 0.6682 0.0367 0.9581 0.7315 0.5405 0.5196
0.4153 0.7224 0.3837 0.1402 0.2151 0.2155 0.8935 0.7004 0.0277 0.9618
0.8056 0.7515 0.5754 0.7516 0.4350 0.6653 0.2497 0.7074 0.0748 0.8542


,

B =



20.5819 0.6225 0.0378 0.9454 0.1020 0.8390 0.4574 0.8020 0.1840 0.8214
0.4078 20.9269 0.5325 0.0443 0.1267 0.5751 0.9508 0.8459 0.6778 0.2392
0.6676 0.2811 21.0757 0.6038 0.1613 0.9635 0.9825 0.3289 0.7972 0.7159
0.0419 0.7268 0.4211 20.1158 0.9749 0.6093 0.9241 0.2335 0.3658 0.0973
0.1354 0.4253 0.9918 0.7724 20.4130 0.9329 0.0970 0.8366 0.9296 0.6283
0.0673 0.7526 0.6673 0.3517 0.0587 21.2604 0.1445 0.9229 0.4875 0.2865
0.7068 0.2701 0.8899 0.5803 0.5727 0.0655 21.3558 0.6689 0.2810 0.6470
0.9337 0.5670 0.3570 0.1843 0.5094 0.4608 0.6794 21.2115 0.8227 0.2556
0.6415 0.8565 0.0977 0.2513 0.2559 0.4793 0.5453 0.9653 21.0154 0.6173
0.0873 0.0900 0.7263 0.3664 0.1212 0.6901 0.3937 0.1833 0.4632 21.1009
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+i



0.8184 0.6171 0.5050 0.6428 0.7586 0.3889 0.8986 0.0243 0.2773 0.9953
0.9301 0.6878 0.8816 0.3380 0.0621 0.0128 0.9476 0.9767 0.6544 0.3477
0.0834 0.9042 0.9108 0.9301 0.2808 0.1352 0.3014 0.1753 0.5523 0.5704
0.5812 0.0100 0.1737 0.7091 0.5614 0.8175 0.8519 0.2409 0.3022 0.3658
0.6080 0.9309 0.2582 0.6126 0.8900 0.7595 0.9293 0.8054 0.0470 0.9245
0.6197 0.4284 0.6775 0.3930 0.8893 0.5638 0.2082 0.0226 0.6778 0.7640
0.9067 0.0377 0.1329 0.7449 0.5160 0.4195 0.7897 0.3111 0.3210 0.4391
0.9357 0.5332 0.6655 0.7413 0.5711 0.3828 0.9329 0.6841 0.9267 0.7210
0.1299 0.3483 0.9487 0.1122 0.3621 0.5298 0.8866 0.5398 0.0785 0.2999
0.8795 0.7002 0.8913 0.2815 0.2540 0.7200 0.6258 0.1757 0.4425 0.6240


,

and

F =



0.5221 0.2033 0.5592 0.2201 0.6078 0.6520 0.8380 0.1276 0.2296 0.3966
0.8317 0.6864 0.7144 0.6059 0.6259 0.4903 0.9974 0.1558 0.7329 0.1167
0.5317 0.6293 0.0189 0.8091 0.6988 0.7587 0.0179 0.6091 0.8682 0.8325
0.7645 0.4162 0.5598 0.7006 0.7275 0.4748 0.4374 0.8568 0.9860 0.0245
0.2291 0.4993 0.9951 0.6629 0.0754 0.5650 0.6868 0.7530 0.7761 0.1673
0.0572 0.1156 0.4693 0.2150 0.3528 0.0734 0.5885 0.8216 0.0460 0.4064
0.1870 0.8088 0.7003 0.5908 0.2469 0.9095 0.1579 0.3178 0.3449 0.7072
0.5438 0.4490 0.8813 0.8698 0.1582 0.0378 0.3157 0.2062 0.8334 0.7675
0.9127 0.5398 0.6453 0.4095 0.6658 0.6173 0.6110 0.2813 0.6373 0.2179
0.4281 0.9437 0.0904 0.3394 0.2769 0.5433 0.1073 0.5529 0.7768 0.3949


.

By using Lemma 3.1, the solution of the above system of matrix equations can be given:[
Col[X]
Col[X]

]
=

[ I ⊗ A
(
BT
⊗ I

)
P10(

BH
⊗ I

)
P10 I ⊗ A

]H [
I ⊗ A

(
BT
⊗ I

)
P10(

BH
⊗ I

)
P10 I ⊗ A

]−1

×

[
I ⊗ A

(
BT
⊗ I

)
P10(

BH
⊗ I

)
P10 I ⊗ A

]H [
Col[F]
Col[F]

]
.

Hence

X =



0.0197 0.0327 0.0203 0.0300 0.0022 −0.0041 0.0037 0.0202 0.0369 0.0155
0.0027 0.0233 0.0218 0.0111 0.0139 −0.0007 0.0321 0.0134 0.0164 0.0379
0.0185 0.0251 −0.0090 0.0175 0.0400 0.0151 0.0250 0.0334 0.0229 −0.0025
0.0027 0.0190 0.0322 0.0261 0.0243 0.0037 0.0225 0.0343 0.0101 0.0105
0.0245 0.0222 0.0274 0.0281 −0.0058 0.0124 0.0070 −0.0000 0.0261 0.0087
0.0260 0.0156 0.0280 0.0147 0.0203 −0.0003 0.0373 −0.0060 0.0212 0.0205
0.0322 0.0372 −0.0090 0.0094 0.0215 0.0215 −0.0018 0.0034 0.0200 −0.0027
−0.0011 −0.0022 0.0196 0.0302 0.0274 0.0350 0.0077 0.0008 0.0045 0.0190
0.0041 0.0265 0.0337 0.0394 0.0284 −0.0053 0.0090 0.0323 0.0216 0.0307
0.0114 −0.0042 0.0320 −0.0077 0.0005 0.0141 0.0283 0.0283 0.0015 0.0125



+i



0.0088 0.0107 0.0098 0.0090 0.0076 0.0087 0.0088 0.0086 0.0093 0.0089
0.0100 0.0114 0.0095 0.0091 0.0083 0.0099 0.0103 0.0097 0.0094 0.0090
0.0096 0.0112 0.0095 0.0106 0.0098 0.0088 0.0099 0.0101 0.0088 0.0111
0.0114 0.0126 0.0092 0.0101 0.0100 0.0111 0.0093 0.0102 0.0089 0.0083
0.0107 0.0115 0.0108 0.0095 0.0080 0.0087 0.0080 0.0076 0.0095 0.0083
0.0051 0.0065 0.0077 0.0059 0.0048 0.0040 0.0043 0.0066 0.0065 0.0050
0.0086 0.0120 0.0104 0.0116 0.0089 0.0086 0.0079 0.0081 0.0098 0.0107
0.0056 0.0083 0.0068 0.0080 0.0069 0.0066 0.0057 0.0057 0.0059 0.0076
0.0074 0.0086 0.0071 0.0071 0.0077 0.0091 0.0086 0.0071 0.0065 0.0078
0.0095 0.0105 0.0086 0.0088 0.0069 0.0084 0.0085 0.0075 0.0091 0.0082


.
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Algorithm 1 can be applied to solve this problem by setting the parameters ∆a, ∆b, Γa, and Γb to be equal to the
identity matrix I. The residual RES(k) as a function of the iteration number is shown in Figure 4 for τ = γ = 8.
Additionally, Figure 5 illustrates the variation of the residual RES(k) with respect to the iteration number for specific
values of µ1 = 10−3 and µ2 = 4 × 10−3. Notably, Figure 5 (bottom) demonstrates that when γ = 8, the parameter τ
has no discernible effect on the convergence speed. Hence, to minimize computational requirements, it is advisable to
select τ = 0.

Therefore based on the results depicted in the figures, we have determined the optimal parameters as follows:

τ = 0, γ = 8, µ1 = 10−3, µ2 = 4 × 10−3.

Notably, it is intriguing to observe that as the number of iterations increases, the accuracy improves.
It can be seen that for method in [7]; the optimum parameters are

τ = γ = 8, µ1 = µ2 = 7.1 × 10−4.

The residual RES(k) as a function of the iteration number is shown in Figure 6 for method in [7] and method (55) by
optimum parameters τ = 0, γ = 8, µ1 = 10−3, µ2 = 4 × 10−3. This figure shows that method (55) is much faster
than method in [7]. The obtained numerical results demonstrate the effectiveness and reliability of new algorithms in
computing the approximate solution of linear matrix equations (3). These algorithms offer efficient and dependable
methods for obtaining these solutions.

Example 5.4. Let us consider the coefficient matrices with dimensions of 100 × 100 as given below:

A1 = rand(100), A2 = rand(100),

B1 = dia1(40 + dia1(rand(100))) + rand(100), B2 = dia1(40 + dia1(rand(100))) + rand(100),

where rand(.) and dia1(.) are functions in MATLAB. Also consider two cases for right-hand side matrices F1 and F2.
Case I: Let

F1 = A1X1 + XT
1 B1, F2 = A2X1 + XT

1 B2,

where X1 represents a 100 × 100 matrix, and all its elements are set to 1.
Case II: Let

F1 = A1X2 + XT
2 B1, F2 = A2X2 + XT

2 B2,

where X2 = (xi, j) with

xi, j =
1

sin(xi) + cos(y j) + 2.1
, i, j = 1, 2, ..., 100, (86)

and xi = −6 + 4(i−1)
33 and y j = −6 + 4( j−1)

33 , i, j = 1, 2, ..., 100.
To solve this problem, Algorithm 1 is applied with the following settings:

∆a = ∆b = Γa = Γb = I.

The optimal parameters for this method have been determined through experimental analysis. The convergence curve
of the iterative method with various parameters is depicted in Figure 7, which helps identify the optimal parameters
as follows:

τ = 0, γ = 30, µ1 = 0, µ2 = 2 × 10−4,

for iterative method (55) and
τ = γ = 30, µ1 = µ2 = 1 × 10−4,

for method in [7].
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Table 2 provides the values of the error RES(.) and the corresponding execution times for different numbers of
iterations 50, 100, 150 and 200. It can be observed that the error RES(.) decreases with the increase in iterations,
although the running time also increases. This table shows that method (55) is much faster than method in [7].

Figure 8 displays the exact solution as well as several approximations of the exact solution X2 achieved through
different iterations of Algorithm 1 with parameters τ = 0, γ = 30, µ1 = 0, and µ2 = 2 × 10−4. By examining the
figure, it becomes evident that increasing the number of iterations in this algorithm results in a closer approximation
to the exact solution. Notably, for k=50 iterations, the approximate solution closely matches the exact solution.
Our findings demonstrate that the algorithms utilized in this study provide efficient and dependable approaches for
computing the approximate solutions of linear matrix equations (3).

5.1. An application to the palindromic eigenvalue problem
The content of this section is taken from reference [26]. Interested readers can see this reference for more

details. Consider the palindromic eigenvalue problem expressed as

Ax = λAHx,

where A ∈ Cn×n. In [26], a method is presented to address this problem by first reducing matrix A to an
anti-Hessenberg-triangular form. Subsequently, an anti-Hessenberg-triangular matrix, which may not be
in its unreduced state, can be deflated to obtain unreduced eigenvalue problems of smaller dimensions. In
[26], it is demonstrated that any matrix in anti-Hessenberg form can be transformed to an anti-Hessenberg-
triangular form using a unitary transformation.
This transformation can be easily achieved when an−p,p = 0 for some p = 1, ...,n −

⌊
n−1

2

⌋
− 1. In such cases,

matrix A can be partitioned as:

A =


p n − 2p p

p A13
n − 2p A22 A23
p A31 A32 A33

.
Consequently, the eigenvalues of (A,AH) can be obtained from the generalized eigenvalue problem (A31,AH

13)
and the palindromic eigenvalue problem (A22,AH

22). Let us consider the transformation of matrix A as [26]:

A =


p m p

p A13
m A22 A23
p A31 A32 A33

.
It is important to note that m = 1 if n is even and m = 0 otherwise. However, the discussion below applies
to general cases of m. Exchanging the bulges consists of finding a unitary matrix Q such that [26]:

Ã = QHAQ =


p m p

p Ã13
m Ã22 Ã23
p Ã31 Ã32 Ã33

,
where Λ(Ã31, ÃH

13) = Λ(A13,AH
31). Note that if Y,Z satisfy the conditions [26]:A31Y + ZHA22 = −A32,

AH
13Y + ZHAH

22 = −AH
23,

(87)

and X ∈ Cp×p solves the equation:

A31X + XHA13 = F, (88)
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where

F = −
(
A33 + A32Z + ZHA23 + ZHA22Z

)
,

then the following transformation can be employed to get[26]: XH ZH I
YH I
I


 A13

A22 A23
A31 A32 A33


 X Y I

Z I
I

 =
 A31

A22
A13

 .
To achieve a unitary transformation, let us consider the QR factorization [26]: X Y I

Z I
I

 = Q

 R11 R12 R13
R22 R23

R33

 ,
where Rii, i = 1, 2, 3 are non-singular since the left-hand matrix is. Thus,

Ã = QH

 A13
A22 A23

A31 A32 A33

 Q =

 R−H
11 A31R−1

33
R−H

22 A22R−1
22 Ã23

R−H
33 A13R−1

11 Ã32 Ã33

 ,
which accomplishes the desired exchange. Equations (87) and (88) correspond to the linear matrix equa-
tions that arise in the context of the palindromic eigenvalue problem discussed here. These equations
demonstrate the practical application and relevance of the issues explored and analyzed in this paper. For
a comprehensive understanding and further information, refer to [26].

6. Conclusions

In this paper, we considered the problem of computing the generalized reflexive and anti-reflexive
solutions of a coupled Sylvester-conjugate transpose matrix equations by introducing new splittings of
the coefficient matrices and utilizing the hierarchical identification principle. We presented some iterative
algorithms, namely Algorithms 1, 2, 3, 4, and 5, to solve this problem. Convergence analysis was per-
formed to show that the algorithms converge to the desired solutions under certain conditions. We also
provided numerical examples to demonstrate the effectiveness of the proposed algorithms. Our results
showed that new algorithms offer efficient and reliable methods for computing the generalized reflexive
and anti-reflexive solutions of linear matrix equations (3), which have various applications in fields such as
engineering and science.
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Table 1: The numerical solution versus iterations number for Example 5.1.

Iteration(= k) x11 x12 x13 x21 x22 x23 x31 x32 x33

1 5.9524 5.5750 7.9749 -0.8751 4.4313 4.4313 5.9524 7.9749 5.5750
2 0.3577 0.8639 4.5828 -1.9008 3.1864 3.1864 0.3577 4.5828 0.8639
3 3.7693 4.6230 6.7616 -1.0354 4.5081 4.5081 3.7693 6.7616 4.6230
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38 2.0000 3.0000 6.0000 -1.0000 4.9999 4.9999 2.0000 6.0000 3.0000
39 2.0000 3.0000 6.0000 -1.0000 4.9999 4.9999 2.0000 6.0000 3.0000
40 2.0000 3.0000 6.0000 -1.0000 5.0000 5.0000 2.0000 6.0000 3.0000

Exact solution 2 3 6 -1 5 5 2 6 3

Table 2: The error RES(k) and running time (in seconds) versus iterations number for Example 5.4.

k(Iteration) 50 100 150 200

τ = γ = 30, µ1 = µ2 = 1 × 10−4 RES(k) 1.2070 × 10−4 1.7334 × 10−6 5.3809 × 10−8 1.3606 × 10−9

CPU Time (s) 1.340353 2.499115 3.783740 5.000741
τ = 0, γ = 30, µ1 = 0, µ2 = 2 × 10−4 RES(k) 7.4864 × 10−7 1.4491 × 10−10 2.5430 × 10−14 6.4201 × 10−17

CPU Time (s) 1.082153 1.100686 2.139891 3.226895
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Figure 1: Example 5.1; The convergence curves for iterative method (77) by τ = γ = 3.

Figure 2: Example 5.1; The convergence curves for iterative method (77) by µ1 = 10−3, µ2 = 8 × 10−3.

Figure 3: Example 5.2; The convergence curves for Algorithms 1, 4 and GI method with optimal parameters.
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Figure 4: Example 5.3; The convergence curves for iterative method (55) by τ = γ = 8.

Figure 5: Example 5.3; The convergence curves for iterative method (55) by µ1 = 10−3, µ2 = 4 × 10−3.
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Figure 6: Example 5.3; The convergence curves for iterative method (55) (when τ = 0, γ = 8, µ1 = 10−3, µ2 = 4× 10−3) and method in
[7] (when τ = γ = 8, µ1 = µ2 = 7.1 × 10−4 ).

Figure 7: Example 5.4; The convergence curves for the iterative method (55) (when τ = 0, γ = 30, µ1 = 0, µ2 = 2 × 10−4) and method
in [7] (when τ = γ = 30, µ1 = µ2 = 1 × 10−4 ).
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Figure 8: Example 5.4; Approximations of the exact solution X2 in different iterations by τ = 0, γ = 30, µ1 = 0, µ2 = 2 × 10−4.


