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Abstract. In this study, we demonstrate the existence of solutions to an anisotropic elliptic problem
featuring a singularity, where the non-homogeneous term is characterized by a non-negative Radon measure
µ. The model problem is
−

N∑
i=1
∂i

(
|∂iu|pi−2∂iu

)
=

f
(eu−1)γ + µ in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

where Ω is a bounded domain in RN, γ > 0, f ∈ L1(Ω) and 2 < p1 ≤ p2 ≤ . . . ≤ pN. The primary goal of this
work is to establish the existence of solutions based on the values of γ.

1. Introduction and some preliminaries

Anisotropic equations hold a pivotal position in a broad spectrum of mathematical models. A notable
illustration is their utilization in the examination of fluid dynamics, where they capture the behavior of
fluids with diverse conductivities in different orientations (refer to [2]). Additionally, these equations
bear significance in the realm of biology, specifically in the modeling of epidemic disease propagation in
heterogeneous environments, as investigated by Bendahmane, Langlais, and Saad in their research (see
[3]). These instances underscore the adaptability and significance of anisotropic equations across various
scientific disciplines.

The objective of this paper is to concentrate on the investigation of an anisotropic elliptic problem
described by the following equations

−

N∑
i=1
∂i

(
|∂iu|pi−2∂iu

)
= f (x)1(u) + µ in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

(1)
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where Ω is a bounded open set in RN (with N > 2), µ is a non-negative, bounded, Radon measure on Ω,
and f belongs to the space L1(Ω) with non-negative values, that could also be considered as a measure. The
vector −→p = (p1, ..., pN) ∈ RN satisfies the following conditions

2 < p1 ≤ p2 ≤ ... ≤ pN and 2 < p < N, (2)

here, p represents the harmonic mean of pi and is defined as

p = N

 N∑
i=1

1
pi


−1

.

The function 1 : (0,+∞)→ (0,+∞) is a nonlinear function, such that

1 is non-increasing, continuous and lim
s→0+
1(s) = +∞, (3)

and it also has the following growth conditions near zero and infinity

∃γ > 0, M > 0, t > 0 such that 1(t) ≤
M
tγ

for all t ≤ t, (4)

∃θ > 0, M > 0, t > t such that 1(t) ≤
M
tθ

for all t ≥ t. (5)

It is worth mentioning that the singularity appearing in problem (1) can be controlled by the conditions (4).
The anisotropic Sobolev spaces naturally serve as the functional framework for problem (1) are W1,−→p (Ω)

and W1,−→p
0 (Ω), which are defined as follows

W1,−→p (Ω) =
{
u ∈W1,1(Ω) : ∂iu ∈ Lpi (Ω),∀i = 1, . . . ,N

}
,

and
W1,−→p

0 (Ω) =
{
u ∈W1,1

0 (Ω) : ∂iu ∈ Lpi (Ω),∀i = 1, . . . ,N
}
.

The space W1,−→p
0 (Ω) can also be defined as the closure of C∞c (Ω) with respect to the norm

∥u∥−→p =
N∑

i=1

(∫
Ω

|∂iu|pi dx
) 1

pi

,

endowed with this norm, W1,−→p
0 (Ω) is a separable and reflexive Banach space.

The theory concerning such spaces was developed in [11, 20, 21, 23]. In particular, it has been demon-
strated in [23] that when p < N, the following continuous embedding holds

W1,−→p
0 (Ω) ↪→ Lr(Ω), ∀r ∈ [1, p⋆], where p⋆ =

Np
N − p

,

additionally, this embedding is compact for r < p⋆. Furthermore, in reference [23], positive constants C and
C, which depend solely on Ω, exist such that(∫

Ω

|u|rdx
) 1

r

≤ C
N∏

i=1

(∫
Ω

|∂iu|pi dx
) 1

Npi

, ∀r ∈ [1, p⋆], ∀u ∈W1,−→p
0 (Ω). (6)

1

C

(∫
Ω

|u|p
⋆

) pN
p⋆

≤

N∑
i=1

∫
Ω

|∂iu|pi dx, ∀u ∈W1,−→p
0 (Ω). (7)
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Furthermore, for each i = 1, . . . ,N, there exists a constant Ci > 0 (see [18, Lemma 1.1]) such that the following
inequality holds

(∫
Ω

|u|pi dx
) 1

pi

≤ Ci

(∫
Ω

|∂iu|pi dx
) 1

pi

, ∀u ∈W1,−→p
0 (Ω). (8)

We represent the collection of finite Radon measures on Ω asM(Ω). This space is equipped with the
”total variation norm,” which is defined as

∥µ∥M(Ω) =

∫
Ω

d|µ|.

Recall that the Marcinkiewicz space Ms(Ω) (also known as the weak Ls(Ω) space), as defined in [4]. This
space is defined for all s > 0 and is given by

Ms(Ω) =
{
u : Ω→ Rmeasurable

/
∃C > 0,∀t > 0 : meas

{
x ∈ Ω : |u(x)| ≥ t

}
≤

C
ts

}
,

where meas
{
x ∈ Ω : |u(x)| ≥ t

}
denotes the Lebesgue measure of the set

{
x ∈ Ω : |u(x)| ≥ t

}
. Moreover,

it holds that Ms(Ω) ⊂ Ms(Ω) if s ≥ s. Additionally, the following continuous embeddings hold for every
1 < s < ∞ and 0 < ε ≤ s − 1,

Ls(Ω) ↪→Ms(Ω) ↪→ Ls−ε(Ω), (9)

Furthermore, we have

∀u ∈Ms(Ω), ∃Cu > 0, ∀E ⊂ Ω (measurable) :
∫

E
|u|dx ≤ Cumeas{E}1−

1
s .

The simplest anisotropic problem has been studied in detail in [8], the author established the existence
and regularity of solutions for the specific case of problem (1), where 1(u) ≡ 1, f ∈ Lm(Ω) with m ≥ 1, and
µ ≡ 0. The paper extensively discussed various cases by considering different values of m.

Numerous studies in the literature [13, 17, 19, 24] have addressed anisotropic problems involving
singularities. One such problem was considered in [17], where the authors investigated the anisotropic
problem


−∆−→p u =

f
uγ

in Ω,

u = 0 on ∂Ω,
u ≥ 0 in Ω,

(10)

here, the anisotropic Laplace operator ∆−→p u is defined as follows

∆−→p u =
N∑

i=1

∂i

(
|∂iu|pi−2∂iu

)
where ∂iu =

∂u
∂xi

, ∀i = 1, . . . ,N, (11)

where γ > 0, 1 ≤ p1 ≤ p2 ≤ . . . ≤ pN, and f is a non-negative function in Lm(Ω). The authors obtained the
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existence and regularity results for problem (10), which are summarized in the following table.

Values of γ Assumptions on f Regularity of u
f ∈ L1(Ω) u ∈W1,−→p

0 (Ω)

γ = 1 f ∈Mm(Ω) u ∈W1,−→p
0 (Ω) ∩ L∞(Ω)

where m > N
p

f ∈ Lm(Ω) u ∈ Ls(Ω)
where (p∗)′ < m < N

p with s = mNp
N−mp

0 < γ < 1 f ∈ L1(Ω) u ∈W1,−→s
0 (Ω) ∩ Ls∗ (Ω)

for all si < pi
N(p−(1−γ)N)
p(N−(1−γ))

1 < γ f ∈ L1(Ω) u ∈ Ls(Ω)
with s = N(γ−1+p)

N−p

Table. Regularity results for different values of γ.

The problem (10) has been studied in [19] with a singular nonlinearity having a variable exponent, i.e.,
γ ≡ γ(x) ∈ C(Ω). In [24], the problem (10) is investigated with the substitution of the operator (11) by the
degenerate operator

Au =
N∑

i=1

∂i

(
|∂iu|pi−2∂iu

(1 + |u|)θ

)
,

we also recommend, for instance, referring to [14] for addressing anisotropic degenerate problems.
The problems involving singularities in the isotropic case, where pi = 2 for all i, have been extensively

studied in the literature. In work [5], the authors obtained existence and regularity of solutions to the
problem

−div (M(x)∇u) = f
uγ in Ω,

u = 0 on ∂Ω,
u > 0 in Ω.

(12)

where Ω is a bounded open subset of RN with N ≥ 2, γ > 0, f ∈ Lm(Ω) or f ∈ M(Ω), and M is a bounded
elliptic matrix.

The existence and stability of solutions to a problem more general than (12) were explored in [12], it is
as follows

−div (A(x)∇u) = F(x,u) in Ω,
u = 0 on ∂Ω,
u ≥ 0 in Ω,

(13)

whereΩ is a bounded open set ofRN,N ≥ 1, A is a coercive matrix with coefficients in L∞(Ω), and F : (x, s) ∈
Ω× [0,+∞[→ F(x, s) ∈ [0,+∞] is a Carathéodory function which satisfies 0 ≤ F(x, s) ≤ h(x)

Γ(s) a.e. x ∈ Ω,∀s > 0,
with h ∈ Lm(Ω),m ≥ 1 and Γ ∈ C1([0,+∞[) strictly increasing function such that Γ(0) = 0.

Regarding problems involving singularity and measure data, we recommend, for instance [1, 7, 10]. In
[1] the authors studied the following model

−div (∇u) = f (x)1(u) + µ in Ω,
u = 0 on ∂Ω,
u > 0 in Ω,

(14)

here, µ represents a nonnegative, bounded, Radon measure onΩ, while f stands for a nonnegative function
in Lm(Ω) with m ≥ 1, which can be seen as a measure. The function 1 : (0,+∞) → (0,+∞) is a nonlinear,
nonincreasing, continuous function satisfying the conditions (3), (4) and (5). Under these assumptions, the
authors have proved the following results
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(R1) For 0 < γ < 1, a weak solution u of (14) exists in W1,q
0 (Ω) for all q < N

N−1 .

(R2) For γ ≥ 1, problem (14) has a weak solution u in the space W1,q
loc (Ω), where q < N

N−1 .

They have also obtained several other noteworthy results, which can be explored in detail within the
referenced publication. The reference [10] addresses a specific case of (14) where 1(u) = u−γ with γ > 0, and
f ∈ L1(Ω).

Drawing inspiration from the aforementioned facts and motivated by the previous results, we seek
to generalize the problem (14) by introducing an anisotropic Laplace operator denoted as ∆−→p u, which is
defined in (11). By incorporating this anisotropic Laplace operator, we formulate the generalized problem
presented in (1).

Regarding subsequences, we will need the following useful topological trick of uniqueness.

Lemma 1.1. [16, Lemma 1.1] Let X be a topological space, and consider a sequence (xn) in X with the property that
for any subsequence (xnk ), there exists a convergent subsequence (xnkj

) with a limit of x. In such cases, the sequence
(xn) converges to x.

2. Main results

Currently, we present two essential definitions that play a crucial role in our analysis of the matter
introduced in equation (1).

Definition 2.1. Let (µn) be a sequence of measures inM(Ω). We say (µn) weakly converges to µ ∈ M(Ω), denoted
µn ⇀ µ inM(Ω), if for any continuous function f ∈ Cc(Ω)∫

Ω

f dµn →

∫
Ω

f dµ.

Definition 2.2. (i) For 0 < γ < 1, a weak solution to problem (1) is a function u ∈ W1,1
0 (Ω) that fulfills the

equality

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iφdx =
∫
Ω

f1(u)φdx +
∫
Ω

φdµ, ∀φ ∈ C1
c (Ω), (15)

and the condition

∀ω ⊂⊂ Ω, ∃Cω > 0 : u ≥ Cω > 0, a.e. in ω. (16)

(ii) For γ ≥ 1, a weak solution to problem (1) is a function u ∈ W1,1
loc (Ω) satisfying (15) and (16), with T

γ+pi−1
pi

k (u) ∈

W1,−→p
0 (Ω) for each fixed k > 0.

Our first result is presented in the following theorem.

Theorem 2.3. Let f ∈ L1(Ω) be a positive function, and 0 < γ < 1. Assume that (2)–(5) hold true. Then, the
problem (1) has at least one weak solution u ∈W1,−→q

0 (Ω) (As defined in Definition 2.2, under case (i)), where

1 < qi <
N(p − 1)
p(N − 1)

pi, ∀i = 1, . . . ,N. (17)

The next result deals with the existence of solutions belonging to a space larger than the one mentioned
in the previous theorem.

Theorem 2.4. Let f ∈ L1(Ω) and γ ≥ 1. Assuming that (2) through (5) hold. Then, the problem (1) possesses at
least one weak solution u ∈W1,−→q

loc (Ω) (in the sense of Definition 2.2, under case (ii)), where qi satisfies (17).



H. Khelifi, R. Nesraoui / Filomat 38:27 (2024), 9435–9451 9440

Remark 2.5. The assumption (2) ensures that(
1,

N(p − 1)
p(N − 1)

pi

)
, ∅ and qi < pi, for all i = 1, . . . ,N.

Indeed,

2 > 1 +
N − 1
N + 1

=⇒ p > 1 +
N − 1
N + 1

(because p > 2)

=⇒ p >
2N

N + 1
=⇒ pN + p > 2N
=⇒ 2pN − 2N > pN − p

=⇒ 2 >
p(N − 1)
N(p − 1)

(p − 1 > 0)

=⇒ pi >
p(N − 1)
N(p − 1)

(because pi > 2)

=⇒
N(p − 1)
p(N − 1)

pi > 1.

To show that qi < pi, it is enough to prove that N(p−1)
p(N−1) < 1, we have

N(p − 1)
p(N − 1)

< 1⇐⇒ N(p − 1) < p(N − 1)⇐⇒ N > p (true).

Remark 2.6. In the isotropic case, i.e., pi = 2, the results of Theorem 2.3 and Theorem 2.4 coincide with regularity
results for elliptic equation problems involving a singular term and a Radon measure (see Theorem 2.6 and Theorem
2.9 in [1]).

3. Approximate solutions

We will use the following truncation functions: Tk(s) = min{k,max{−k, s}} and Gk(s) = s − Tk(s), where
s ∈ R and k > 0. For any s ∈ R and k > 0, the equality Tk(s) + Gk(s) = s is apparent.

Let’s begin by looking at the following approximation problem −
N∑

i=1
∂i

(
|∂iun|

pi−2∂iun

)
= fn1n

(
un +

1
n

)
+ µn in Ω,

un = 0 on ∂Ω,
(18)

here, fn = Tn( f ), 1n = Tn(1), and (µn) is a sequence of smooth non-negative functions bounded in L1(Ω),
converging to µ as per Definition 2.1. The weak formulation of (18) reads

N∑
i=1

∫
Ω

|∂iun|
pi−2∂iun∂iφdx =

∫
Ω

fn1n

(
un +

1
n

)
φdx +

∫
Ω

µnφdx, (19)

for all φ ∈ C1
c (Ω).

By means of the following lemma, we will demonstrate the existence of a solution to problem (18).

Lemma 3.1. Assuming (2) to (5) are satisfied. Then, the problem (18) has a non-negative weak solution un ∈

W1,−→p
0 (Ω) ∩ L∞(Ω).
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Proof. The lemma’s proof will be carried out by employing Schauder’s fixed point argument.
Let n ∈N⋆ be fixed. We introduce a mapping S : Lp(Ω)→ Lp(Ω), where for all v ∈ Lp(Ω), w = S(v) is the

unique weak solution to the problem −
N∑

i=1
∂i

(
|∂iw|pi−2∂iw

)
= fn1n

(
|v| + 1

n

)
+ µn in Ω,

w = 0 on ∂Ω.
(20)

To demonstrate the existence of a unique solution w ∈W1,−→p
0 (Ω), to (20), please consult Appendix A.

Let us consider w as a test function in the weak formulation of (20). Using (4), (5), and the fact that
fn ≤ n, we obtain

N∑
i=1

∥∂iun∥
pi

Lpi (Ω) =

N∑
i=1

∫
Ω

|∂iw|pi dx

=

∫
Ω

fn1n

(
|v| +

1
n

)
wdx +

∫
Ω

µnwdx

≤M
∫{
|v|+ 1

n<t
} fnw(
|v| + 1

n

)γ dx +M
∫{
|v|+ 1

n>t
} fnw(
|v| + 1

n

)θ dx +max
t∈[t,t]

h(t)
∫{

t≤|v|+ 1
n≤t

} fnwdx

+ C(n)
∫
Ω

|w|dx

≤Mnγ+1
∫{
|v|+ 1

n<t
} |w|dx +Mnθ+1

∫{
|v|+ 1

n>t
} |w|dx + n max

t∈[t,t]
h(t)

∫{
t≤|v|+ 1

n≤t
} |w|dx

+ C(n)
∫
Ω

|w|dx

≤ C(n, γ, θ)
∫
Ω

|w|dx.

By utilizing (7) on the left-hand side and Hölder’s inequality with exponent p⋆ on the right-hand side, we
obtain

1

C
∥w∥pN

Lp⋆ (Ω)
≤

N∑
i=1

∥∂iun∥
pi

Lpi (Ω) ≤ C(n, γ, θ)|Ω|
1

(p⋆ )′ ∥w∥Lp⋆ (Ω). (21)

As pN > 1, a positive constant R(n, |Ω|), independent of v and w, exists such that

∥w∥Lp⋆ (Ω) ≤ CC(n, γ, θ) = R(n, |Ω|). (22)

As p < p⋆, then

∥w∥Lp(Ω) ≤ CC(n, γ, θ) = R(n, |Ω|). (23)

Thus, equation (23) implies that the ball B in Lp(Ω), with radius R(n, |Q|), is invariant under the map S.
Claim: S is continuous on Lp(Ω).
Let v ∈ Lp(Ω) and let (vk) be a sequence of functions converges to v in Lp(Ω). We denote wk = S(vk) and

w = S(v). To prove that wk −→ w in Lp(Ω), it suffices to demonstrate that wk −→ w in W1,−→p
0 (Ω) because

W1,−→p
0 (Ω) ↪→ Lp(Ω). According to Lemma 1.1, to verify that wk −→ w in W1,−→p

0 (Ω), it is sufficient to show that
for any subsequence of (wk), it is possible to extract a further subsequence that converges to w.
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Let (wσ(k)) be a subsequence of (wk). Firstly, since vσ(k) −→ v in Lp(Ω) as σ(k) → ∞, we can extract a
subsequence (vσ1(k)) of (vσ(k)) such that

vσ1(k)

σ1(k)→∞
−−−−−−−→ v a.e. in Ω. (24)

Secondly, for every integer σ1(k), one has∣∣∣∣∣ fn1n

(
vσ1(k) +

1
n

)
+ µn

∣∣∣∣∣ ≤ n2 + C(n). (25)

From (24) and (25), we can apply the dominated convergence theorem to deduce that∥∥∥∥∥ [
fn1n

(
vσ1(k) +

1
n

)
+ µn

]
−

[
fn1n

(
v +

1
n

)
+ µn

] ∥∥∥∥∥
Lα(Ω)

σ1(k)→∞
−−−−−−−→ 0, ∀α ≥ 1.

Hence∥∥∥∥∥ fn1n

(
vσ1(k) +

1
n

)
− fn1n

(
v +

1
n

) ∥∥∥∥∥
Lα(Ω)

σ1(k)→∞
−−−−−−−→ 0, ∀α ≥ 1. (26)

Thirdly, we have wσ1(k) and w satisfying the equation

−

N∑
i=1

∂i

(
|∂iwσ1(k)|

pi−2∂iwσ1(k)

)
+

N∑
i=1

∂i

(
|∂iw|pi−2∂iw

)
= fn1n

(
vσ1(k) +

1
n

)
− fn1n

(
v +

1
n

)
. (27)

By selecting wσ1(k) − w as a test function in (27), we get

N∑
i=1

∫
Ω

[
|∂iwσ1(k)|

pi−2∂iwσ1(k) − |∂iw|pi−2∂iw
]
(∂iwσ1(k) − ∂iw)dx

=

∫
Ω

[
fn1n

(
vσ1(k) +

1
n

)
− fn1n

(
v +

1
n

)]
(wσ1(k) − w)dx.

By Hölder’s inequality, (8), (21) and (23), we have

N∑
i=1

∫
Ω

[
|∂iwσ1(k)|

pi−2∂iwσ1(k) − |∂iw|pi−2∂iw
]
(∂iwσ1(k) − ∂iw)dx

≤

∥∥∥∥∥∥ fn1n

(
vσ1(k) +

1
n

)
− fn1n

(
v +

1
n

) ∥∥∥∥∥∥
Lp
′

i (Ω)

∥wσ1(k) − w∥Lpi (Ω)

≤

∥∥∥∥∥∥ fn1n

(
vσ1(k) +

1
n

)
− fn1n

(
v +

1
n

) ∥∥∥∥∥∥
Lp
′

i (Ω)

∥∂i(wσ1(k) − w)∥Lpi (Ω)

≤ Cn

∥∥∥∥∥∥ fn1n

(
vσ1(k) +

1
n

)
− fn1n

(
v +

1
n

) ∥∥∥∥∥∥
Lp
′

i (Ω)

.

Consequently, from (26), we obtain

lim
σ1(k)→∞

N∑
i=1

∫
Ω

[
|∂iwσ1(k)|

pi−2∂iwσ1(k) − |∂iw|pi−2∂iw
]
∂i(wσ1(k) − w)dx = 0.

Finally, by following the same line of reasoning as in Lemma 2.4 of [15], we can extract a subsequence

(wσ2(k)) from (wσ1(k)) such that (wσ2(k)) converges to w in W1,−→p
0 (Ω). This establishes the continuity of S.
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Claim: S(Lp(Ω)) is relatively compact in Lp(Ω).
Using equations (21) and (22), we can deduce that

N∑
i=1

∫
Ω

|∂iw|pi dx =
N∑

i=1

∫
Ω

|∂iS(v)|pi dx ≤ R(n, |Ω|), ∀v ∈ Lp(Ω).

By Sobolev embedding, S(Lp(Ω)) can be shown to be compact in Lp(Ω).
As a result, through the utilization of the Schauder fixed point theorem on S, we establish the existence

of a fixed point un ∈ Lp(Ω). This fixed point is identified as a weak solution to (20) in W1,−→p
0 (Ω).

Moreover, taking φ = u−n = min{un, 0} in (19). Using the fact that fn1n

(
un +

1
n

)
+ µn ≥ 0, we obtain

N∑
i=1

∫
Ω

|∂iu−n |
pi dx ≤

∫
Ω

(
fn1n

(
un +

1
n

)
+ µn

)
u−n dx ≤ 0.

This leads to u−n = 0 almost everywhere in Ω, implying un ≥ 0.
Furthermore, for a fixed n, we have un belongs to L∞(Ω) (by [22, Théorème 4.2, page 215]) because the

right-hand side of (18) is in L∞(Ω) and this concludes the proof.

Lemma 3.2. Let un be a solution to problem (18). Then, for everyω ⊂⊂ Ω, there exists a constant Cω > 0 independent
of n such that

un(x) ≥ Cω > 0 a.e. x ∈ ω. (28)

Proof. Let vn be the unique weak solution of −
N∑

i=1
∂i

(
|∂ivn|

pi−2∂ivn

)
= fn1n

(
vn +

1
n

)
in Ω,

vn = 0 on ∂Ω.
(29)

By the strong maximum principle (see [9, Theorem 3.18]), since fn1n

(
vn +

1
n

)
≥ 0 and not identically zero,

we have vn ≥ Cω > 0 in any ω ⊂⊂ Ω for some constant Cω (see [17, Lemma 2.3 and Lemma 2.6]).
Demonstrating that un ≥ vn holds almost everywhere in Ω is straightforward. Suppose this is not the

case, meaning that un < vn in Ω. In such a scenario, we subtract the weak formulations (18) and (29) with
the test function vn − un > 0, we obtain

N∑
i=1

∫
Ω

(
|∂ivn|

pi−2∂ivn − |∂iun|
pi−2∂iun

)
∂i(vn − un)dx =

∫
Ω

fn
[
1n

(
vn +

1
n

)
− 1n

(
un +

1
n

)]
(vn − un)dx

−

∫
Ω

µn(vn − un)dx. (30)

Thanks to the well-known inequalities (see Appendix B)(
|∂ivn|

pi−2∂ivn − |∂iun|
pi−2∂iun

)
(∂ivn − ∂iun) ≥ |∂ivn − ∂iun|

pi , ∀i = 1, . . . ,N,

we get

N∑
i=1

∫
Ω

(
|∂ivn|

pi−2∂ivn − |∂iun|
pi−2∂iun

)
∂i(vn − un)dx ≥

N∑
i=1

∫
Ω

|∂i(vn − un)|pi dx. (31)

Thus, (30) and (31) provide∫
Ω

fn
[
1n

(
vn +

1
n

)
− 1n

(
un +

1
n

)]
(vn − un)dx −

∫
Ω

µn(vn − un)dx ≥
N∑

i=1

∫
Ω

|∂i(vn − un)|pi dx. (32)



H. Khelifi, R. Nesraoui / Filomat 38:27 (2024), 9435–9451 9444

Since un < vn and 1n is non-increasing function, then 1n

(
vn +

1
n

)
− 1n

(
un +

1
n

)
≤ 0, and given that fn and µn

are non-negative functions, we have∫
Ω

fn
[
1n

(
vn +

1
n

)
− 1n

(
un +

1
n

)]
(vn − un)dx −

∫
Ω

µn(vn − un)dx ≤ 0, (33)

Combining (32) and (33), we conclude

N∑
i=1

∫
Ω

|∂i(vn − un)|pi dx ≤ 0.

This leads to the conclusion that un ≥ vn almost everywhere in Ω, and consequently, this inequality
holds true within ω as well. Hence, we’ve shown that for any ω ⊂⊂ Ω, there’s a constant Cω such that
un ≥ vn > Cω > 0 almost everywhere in ω.

Throughout the ensuing discussion, let un ∈W1,−→p
0 (Ω) ∩ L∞(Ω) represent a solution to problem (18).

4. Proof of main results

4.1. Proof of Theorem 2.3

Step 1: A priori estimates
In the following lemma, we shall provide W1,−→p

0 (Ω)−estimates for the solutions un of problem (18).

Lemma 4.1. Under the assumptions of Theorem 2.3, there’s a fixed positive constant C not dependent on n, such that

∥Tk(un)∥−→q ≤ C, ∀k ≥ 1, (34)

∥∂iun∥
M

N(p−1)
p(N−1) pi (Ω)

≤ C, (35)

∥un∥−→q ≤ C, (36)

where qi <
N(p−1)
p(N−1) pi, ∀i = 1, . . . ,N.

Proof. We adopt the reasoning presented in [4] to prove this lemma. Let φ = Tk(un) (∀k ≥ 1) and use it as a
test function in (19), thus

N∑
i=1

∫
Ω

|∂iTk(un)|pi dx ≤
∫
Ω

fn1n

(
un +

1
n

)
Tk(un)dx +

∫
Ω

µnTk(un)dx, (37)

Using (4) and (5) in the right hand side of (37) and the fact that

Tk(un)(
un +

1
n

)γ ≤ un(
un +

1
n

)γ = uγnu1−γ
n(

un +
1
n

)γ ≤ u1−γ
n ,
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we have∫
Ω

fn1n

(
un +

1
n

)
Tk(un)dx +

∫
Ω

µnTk(un)dx ≤M
∫{

un+
1
n<t

} fnTk(un)(
un +

1
n

)γ dx +M
∫{

un+
1
n>t

} fnTk(un)(
un +

1
n

)θ dx

+max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} fnTk(un)dx + k∥µn∥L1(Ω)

≤M
∫{

un+
1
n<t

} f
(
un +

1
n

)1−γ

dx +M
∫{

un+
1
n>t

} k f(
un +

1
n

)θ dx

+ k max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} f dx + Ck

≤

Mkt1−γ +
kM

t
θ
+ k max

t∈[t,t]
h(t)

 ∥ f ∥L1(Ω) + Ck

≤ Ck. (38)

By (37) and (38) we obtain∫
Ω

|∂iTk(un)|pi dx ≤ Ck, ∀i = 1, . . . ,N. (39)

Hence, from (39), we obtain (34).

Now, we prove that (∂iun) is bounded in M
N(p−1)
p(N−1) pi (Ω). For δ ≥ 1 and any k ≥ 1, we get

meas{|∂iun| > δ} ≤ meas{|∂iun| > δ, un ≤ k} +meas{|∂iun| > δ, un > k}
≤ meas{|∂iun| > δ, un ≤ k} +meas{un > k}.

Now, using (39) on the right-hand side of the previous inequality, and the anisotropy inequality (6) we get

meas{|∂iun| > δ} ≤

∫
{un≤k}

(
|∂iun|

δ

)pi

dx +
1

kp⋆

∫
{un>k}

Tk(un)p⋆dx

≤
1
δpi

∫
Ω

|∂iTk(un)|pi dx +
1

kp⋆

∫
Ω

Tk(un)p⋆dx

≤
C
δpi

k +
1

kp⋆

 N∏
i=1

(∫
Ω

|∂iTk(un)|pi dx
) 1

Npi


p⋆

≤
C
δpi

k + C
1

kp⋆

 N∏
i=1

k
1

Npi


p⋆

≤
C
δpi

k + Ck−p⋆
(
1− 1

p

)
. (40)

On choosing k = δ
N−p
Np−p pi in (40), we obtain

meas{|∂iun| > δ} ≤ Cδ−
N(p−1)
p(N−1) pi , ∀δ ≥ 1, ∀i = 1, . . . ,N.

Consequently, we have established the boundedness of (∂iun) in M
N(p−1)
p(N−1) pi (Ω), which, in turn, leads by the

property stated in (9) to the conclusion that (un) is bounded in W1,−→q
0 (Ω) with qi <

N(p−1)
p(N−1) pi, ∀i = 1, . . . ,N.

This finishes the proof of Lemma 4.1.
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Step 2: Passage to the limit
Referencing Lemma 4.1, we ascertain the existence of a subsequence (un), also denoted as (un), and a

measurable function u belonging to W1,−→q
0 (Ω), such that

un ⇀ u weakly in W1,−→q
0 (Ω) and a.e. in Ω, (41)

for every qi <
N(p−1)
p(N−1) pi. Now, adapting the approach of the proof of Lemma 5.1 in [24], we can show that

there exists a subsequence (still denoted (un)) such that for all i = 1, . . . ,N

∂iun → ∂iu a.e. in Ω. (42)

Via (41), (42), and the Lebesgue dominated convergence theorem, we achieve the following for allφ ∈ C1
c (Ω)

lim
n→∞

N∑
i=1

∫
Ω

|∂iun|
pi−2∂iun∂iφdx =

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iφdx. (43)

On the other hand by Lemma 3.2, we have∫
Ω

∣∣∣∣∣ fn1n

(
un +

1
n

)
φ

∣∣∣∣∣dx ≤M
∫{

un+
1
n<t

} fn|φ|(
un +

1
n

)γ dx +M
∫{

un+
1
n>t

} fn|φ|(
un +

1
n

)θ dx

+max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} fn|φ|dx

≤

(
M

Cγω
+

M
Cθω
+ C

)
∥φ∥L∞(Ω)∥ f ∥L1(Ω)

where, C > 0 and ω = {x ∈ Ω : φ(x) , 0}. Consequently,

the sequence
(

fn1n

(
un +

1
n

)
φ
)

is bounded in L1(Ω). (44)

By (41), (44) and the Lebesgue’s theorem, we obtain

lim
n→∞

∫
Ω

fn1n

(
un +

1
n

)
φdx =

∫
Ω

f1(u)φdx, ∀φ ∈ C1
c (Ω). (45)

Using the convergence results (43), (45) and µn ⇀ µ inM(Ω), we can then take the limit as n→ +∞ in the
identities (19) for all φ ∈ C1

c (Ω). This yields (15). So, the proof of Theorem 2.3 has now been completed.

4.2. Proof of Theorem 2.4
Step 1: A priori estimates:

In view of the extraordinary singularity of this case, it’s possible to obtain local estimates of un. We intend to

provide a global estimation of
(
T

γ+pi−1
pi

k (un)
)

in W1,−→p
0 (Ω), aiming to attribute meaning to the boundary values

of u, albeit in a weaker manner than in the context of the trace sense.

Lemma 4.2. Under the assumptions of Theorem 2.4, there exists a positive constant C independent of n, such that∥∥∥∥∥T
γ+pi−1

pi
k (un)

∥∥∥∥∥−→p ≤ C, ∀k ≥ 1, (46)

∥un∥W1,−→q
loc (Ω)

≤ C, (47)

where qi give as in (17).
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Proof. Choosing φ = Tγk (un) for all k ≥ 1 as the test function in (19), we get

I1 = γ
N∑

i=1

∫
Ω

|∂iun|
pi−2∂iun∂iTk(un)Tγ−1

k (un)dx =
∫
Ω

fn1n

(
un +

1
n

)
Tγk (un)dx +

∫
Ω

µnTγk (un)dx = I2. (48)

By the definition of Tk(un) and since γ ≥ 1, we estimate the term I1 of (48) as

I1 = γ
N∑

i=1

∫
Ω

|∂iTk(un)|pi Tγ−1
k (un)dx

= γ
N∑

i=1

(
pi

γ + pi − 1

)pi ∫
Ω

∣∣∣∣∣∂iT
γ+pi−1

pi
k (un)

∣∣∣∣∣pi

dx

≥
γp1

γ + p1 − 1

N∑
i=1

∫
Ω

∣∣∣∣∣∂iT
γ+pi−1

pi
k (un)

∣∣∣∣∣pi

dx. (49)

For I2, using (4), (5) and the fact that

Tγk (un)(
un +

1
n

)γ ≤ uγn(
un +

1
n

)γ ≤ 1,

we have

I2 ≤M
∫{

un+
1
n<t

} fnTγk (un)(
un +

1
n

)γ dx +M
∫{

un+
1
n>t

} fnTγk (un)(
un +

1
n

)θ dx +max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} fnTγk (un)dx + kγ
∫
Ω

µndx

≤M
∫{

un+
1
n<t

} f dx +
Mkγ

t
θ

∫{
un+

1
n>t

} f dx + kγ max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} f dx + kγ∥µn∥L1(Ω)

≤

[(
M +

M

t
θ
+ C

)
∥ f ∥L1(Ω) + ∥µn∥L1(Ω)

]
kγ. (50)

Upon merging the inequalities presented in (49) and (50), we arrive at∫
Ω

∣∣∣∣∣∂iT
γ+pi−1

pi
k (un)

∣∣∣∣∣pi

dx ≤ Ckγ, ∀i = 1, . . . ,N. (51)

Hence (51) yields (46).
We prove the estimate (47) through two stages.

Stage 1: We prove that G1(un) is bounded in W1,−→q
0 (Ω) for every qi <

N(p−1)
p(N−1) pi.

To establish this, it is sufficient to demonstrate that ∂iG1(un) is bounded in the Marcinkiewicz space

M
N(p−1)
p(N−1) pi (Ω). Let h > 0, we have

{|∂iun| > h,un > 1} = {|∂iun| > h, 1 < un ≤ k + 1} ∪ {|∂iun| > h,un > k + 1}
⊂ {|∂iun| > h, 1 < un ≤ k + 1} ∪ {un > k + 1},

which implies that

meas{|∂iun| > h,un > 1} ≤ meas{|∂iun| > h, 1 < un ≤ k + 1} +meas{un > k + 1}. (52)
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To estimate (52), we use φ = Tk(G1(un)) as the test function in (19), where k ≥ 1. Upon examination, it
becomes evident that ∂iTk(G1(un)) = ∂iun only holds true for 1 < un ≤ k + 1; otherwise, this value is zero.
Additionally, Tk(G1(un)) = 0 when un ≤ 1. With these considerations, we arrive at∫

Ω

|∂iTk(G1(un))|pi dx ≤
∫
Ω

fn1n

(
un +

1
n

)
Tk(G1(un))dx +

∫
Ω

µnTk(G1(un))dx

≤M
∫{

un+
1
n<t

} fnTk(G1(un))(
un +

1
n

)γ dx +M
∫{

un+
1
n>t

} fnTk(G1(un))(
un +

1
n

)θ dx

+max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} fnTk(G1(un))dx +
∫
Ω

µnTk(G1(un))dx

≤Mk
∫{

un+
1
n<t

} f(
1 + 1

n

)γ dx +
Mk

t
θ

∫{
un+

1
n>t

} f dx

+ k max
t∈[t,t]

h(t)
∫{

t≤un+
1
n≤t

} f dx + k∥µn∥L1(Ω)

≤

[(
M +

M

t
θ
+ C

)
∥ f ∥L1(Ω) + ∥µn∥L1(Ω)

]
k

≤ Ck, ∀i = 1, . . . ,N. (53)

By (53), we have

meas{|∂iun| > h, 1 < un ≤ k + 1} ≤
∫
{1<un<k+1}

(
|∂iun|

h

)pi

dx

=
1

hpi

∫
{1<un<k+1}

|∂iTk(G1(un))|pi dx

≤
Ck
hpi
, ∀i = 1, . . . ,N. (54)

On the other hand, by computing the piN-th root of each side of the inequality (51), we deduce

N∏
i−1

(∫
Ω

∣∣∣∣∣∂iT
γ+pi−1

pi
k (un)

∣∣∣∣∣pi

dx
) 1

Npi

≤ Ck
γ

N∑
i=1

1
Npi = Ck

γ
p .

We invoke (6) with r = p⋆, to derive

∫
Ω

∣∣∣∣∣T γ+pi−1
pi

k (un)
∣∣∣∣∣p⋆


p

p⋆

≤ Ckγ. (55)

By limiting the integral on the left-hand side of (55) to the set where {un > k + 1}, we get

k
p(γ+pi−1)

pi meas{un > k + 1} ≤
(∫
{un>k}

k
γ+pi−1

pi
p⋆
) p

p⋆

≤

∫
Ω

∣∣∣∣∣T γ+pi−1
pi

k (un)
∣∣∣∣∣p⋆


p

p⋆

≤ Ckγ,

hence

meas{un > k + 1}N =
N∏

i=1

meas{un > k + 1} ≤ C
N∏

i=1

k
−

(
γ+γ

p
pi
+p− p

pi

)
≤ Ck

−

(
Nγ+Nγp

N∑
i=1

1
Npi
+Np−Np

N∑
i=1

1
Npi

)
≤ k−

N2(p−1)
N−p ,
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this inequality implies that

meas{un > k + 1} ≤ Ck−
N(p−1)

N−p . (56)

Consequently, (un) is bounded in M
N(p−1)

N−p , leading to the conclusion that (G1(un)) is similarly bounded in

M
N(p−1)

N−p . Now from (52), (54) and (56), we have

meas{|∂iun| > h,un > 1} ≤
Ck
hpi
+ Ck−

N(p−1)
N−p , ∀k ≥ 1, ∀i = 1, . . . ,N. (57)

Minimizing the right-hand side of (57) with respect to k, we obtain

meas{|∂iun| > h,un > 1} ≤ Ch−
N(p−1)
p(N−1) pi , ∀k ≥ 1, ∀i = 1, . . . ,N.

We thus proved that (∂iun) = (∂iG1(un)) is bounded in M
N(p−1)
p(N−1) pi . Hence, by the property in (9), we can infer

that (G1(un)) is bounded in W1,−→q
0 (Ω) where qi ≤

N(p−1)
p(N−1) pi,∀i = 1, . . . ,N.

Stage 2: We show that (T1(un)) is bounded in W1,−→p
loc (Ω).

Demonstrating this claim requires a thorough examination of how un behaves for small values across
different values of n. We have already proved in Lemma 3.2 that un ≥ Cω > 0 on ω ⊂⊂ Ω. Upon utilizing
φ = Tγ1 (un) as a test function in equation (19), the outcome is

γ
N∑

i=1

∫
Ω

|∂iun|
pi−2∂iun∂iT1(un)∂iT

γ−1
1 (un)dx =

∫
Ω

fn1n

(
un +

1
n

)
Tγ1 (un)dx +

∫
Ω

µnTγ1 (un)dx.

In the same way as the proof followed in (50), we find∫
Ω

|∂iun|
pi−2∂iun∂iT1(un)Tγ−1

1 (un)dx ≤ C, ∀i = 1, . . . ,N. (58)

We observe that∫
Ω

|∂iun|
pi−2∂iun∂iT1(un)Tγ−1

1 (un)dx ≥
∫
ω
|∂iT1(un)|pi Tγ−1

1 (un)dx

≥ Cγ−1
ω

∫
ω
|∂iT1(un)|pi dx, ∀i = 1, . . . ,N. (59)

Therefore, from (58) and (59), we obtain∫
ω
|∂iT1(un)|pi dx ≤ C, ∀i = 1, . . . ,N.

The previous estimate implies that (T1(un)) is bounded in W1,−→p
loc (Ω). Since un = G1(un)+T1(un) we obtain the

estimate (47). This completes the proof of Lemma 4.2.

Step 2: Passage to the limit.

Thanks to Lemmata 4.2, the sequence
(
T

γ+pi−1
pi (un)

)
is bounded in W1,−→p

0 (Ω) and (un) is bounded in W1,−→q
loc (Ω).

By applying the same proof methodology as used in Theorem 2.3, we can pass to the limit as n → +∞ in
the identities (19) for all φ ∈ C1

c (Ω) to establish (15).
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Appendix A (Proof of the existence and uniqueness of the problem (20))

Step 1: Existence.

As (µn) is a sequence of smooth functions, i.e., µn ∈ L∞(Ω), and since fn1n

(
|v| + 1

n

)
∈ L∞(Ω), the right-

hand side of (20) is in L∞(Ω). Therefore, by the well-known existence results stated in [8, Theorem 2.1 (i)],

there exists a weak solution w ∈W1,−→p
0 (Ω) ∩ L∞(Ω) to problem (20).

Step 2: Uniqueness.

Suppose that the problem (20) has two solutions w1 and w2. Then, we have

N∑
i=1

∫
Ω

|∂iw1|
pi−2∂iw1∂iφdx =

∫
Ω

(
fn1n

(
|v| +

1
n

)
+ µn

)
φdx, ∀φ ∈W1,−→p

0 (Ω),

N∑
i=1

∫
Ω

|∂iw2|
pi−2∂iw2∂iφdx =

∫
Ω

(
fn1n

(
|v| +

1
n

)
+ µn

)
φdx, ∀φ ∈W1,−→p

0 (Ω).

For the test function φ = w1 − w2, we obtain

N∑
i=1

∫
Ω

(
|∂iw1|

pi−2∂iw1 − |∂iw2|
pi−2∂iw2

)
(∂iw1 − ∂iw2) dx = 0.

Thanks to the inequalities (see Appendix B)(
|∂iw1|

pi−2∂iw1 − |∂iw2|
pi−2∂iw2

)
(∂iw1 − ∂iw2) ≥ |∂iw1 − ∂iw2|

pi , ∀i = 1, . . . ,N,

we get

N∑
i=1

∫
Ω

|∂i(w1 − w2)|pi dx ≤ 0,

which implies that w1 = w2.

Appendix B

If p > 2, thanks to the symmetry, we prove the inequality(
|x|p−2x − |y|p−2y

)
(x − y) ≥ |x − y|p,

in the case (
xp−1
− yp−1

)
(x − y) ≥ (x − y)p, x > y > 0,

which is equivalent to ensuring the positivity of

ψ(x) =
(
xp−1
− yp−1

)
− (x − y)p−1

≥ 0, x > y > 0.

The function ψ(x) is positive because it is increasing and ψ(y) = 0.
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