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Abstract. In this article, we study a one-dimensional system of fully dynamic and electrostatic piezoelectric
beams with a magnetic effect in the presence of a viscoelastic damping term acting on the mechanical
equation. Under suitable assumptions on the kernel 1, we prove the global existence and uniqueness of the
solution by using the Faedo-Galerkin approximations. And by constructing a suitable Lyapunov functional,
we establish a general energy decay result. Furthermore, our result does not depend on any relationship
between system parameters.

1. Introduction

The term (piezoelectricity) comes from the Greek root (piezen), which means to press or squeeze.
Therefore, piezoelectricity is the result of a coupling between the mechanical and electrical properties of
a material. Thus, the term (piezoelectricity) designates the property exhibited by certain bodies of being
electrically polarized, i.e., of generating an electric field or potential, under the action of a mechanical
constraint. This is called the (direct piezoelectric effect), because the inverse piezoelectric effect is also
observed. An electric voltage applied to a material having piezoelectric properties leads to a modification
of the dimensions of this material. Piezoelectric materials such as quartz, barium titanate, and Rochelle salt
have the necessary capacity to transform mechanical energy into electro–magnetic energy under mechanical
stress. In 1880, this phenomenon was discovered by the brothers Pierre and Jacques Curie. Furthermore, the
latter is known as the direct piezoelectric effect. The same materials can convert electro–magnetic energy
to mechanical energy, a phenomenon known as the (converse piezoelectric effect), which was discovered
in 1881 by Gabriel Lippmann [22]. Furthermore, as mechanical energy is converted into electric energy,
a small portion of it is converted into magnetic energy [14]. This last energy has a relatively small effect
on the general dynamics, and there exist models that neglect magnetic effects such as piezoelectric beams.
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Furthermore, this magnetic contribution may limit the system’s performance; for example, the magnetic
effect can cause oscillations in the output, which leads to system instability in closed loops [15, 24]. In
addition, quartz was first used to develop imaging techniques. Perhaps the best–known example of the
application of the piezoelectric effect is found in the watch industry. Indeed, piezoelectricity is used to
manufacture watches–the famous quartz watches–and clocks. Thanks to the voltage provided by a battery,
the quartz crystal begins to vibrate, which allows time to be measured. In the modeling of piezoelectric
systems, three main effects and their interrelationships should be taken into account: mechanical, electrical,
and magnetic. Mechanical effects are generally modeled through Kirchhoff, Euler–Bernoulli, or Mindlin–
Timoshenko small displacement assumptions; see, for example, [23]. There are mainly three approaches for
including electrical and magnetic effects: electrostatic, quasi–static, and fully dynamic [21]. Electrostatic
and quasi–static approaches are widely employed; see, for example, [4, 8, 9]. These models totally ex-
clude magnetic effects and their coupling with electrical and mechanical effects. Although the mechanical
equations in an electrostatic approach are dynamic, the electrical effects are stationary. The quasi–static
approach still excludes magnetic effects, but electric charges have time dependence. The electromechanical
coupling is not dynamic. Morris et al. [14] using a variational approach to introduce the following coupled
model of piezoelectric beams with magnetic effects{

ρvtt − αvxx + γβpxx = 0, in (0,L) × (0,∞) ,
µptt − βpxx + γβvxx = 0, in (0,L) × (0,∞) , (1)

where the positive parameters ρ, α, γ, µ, β and L represent, respectively, the mass density, elastic stiffness,
piezoelectric coefficient, magnetic permeability, water resistance coefficient of the beam, and length of the
beam. Furthermore, the relationship is considered

α = α1 + γ
2β with α1 > 0. (2)

The system (1) is subjected to the following initial and boundary conditions
v (0, t) = p (0, t) = αvx (L, t) − γβpx (L, t) = 0,
βpx (L, t) − γβvx (L, t) = −V (t) /h,(
v, vt, p, pt

)
(x, 0) =

(
v0, v1, p0, p1

)
(x) ,

(3)

where V (t) is the voltage applied at the electrode, and h is the thickness of the beam. Ramos et al. [16]
studied the one–dimensional piezoelectric beams system with magnetic effects given by{

ρvtt − αvxx + γβpxx = 0, in (0,L) × (0,T) ,
µptt − βpxx + γβvxx = 0, in (0,L) × (0,T) ,

with the following initial and boundary conditions
v (0, t) = αvx (L, t) − γβpx (L, t) + ξ1

vt(L,t)
h = 0,

p (0, t) = βpx (L, t) − γβvx (L, t) + ξ2
pt(L,t)

h = 0,(
v, vt, p, pt

)
(x, 0) =

(
v0, v1, p0, p1

)
(x) ,

0 < t < T,
0 < t < T,
0 < x < L.

The authors established, using terms of feedback at the boundary, that the system is exponentially stable
regardless of any condition on the coefficients of the system, and exponential stability is equivalent to
exact observability at the boundary. Ramos et al. [17] considered the following piezoelectric beams with
magnetic effects{

ρvtt − αvxx + γβpxx + δvt = 0,
µptt − βpxx + γβvxx = 0,

in (0,L) × (0,T) ,
in (0,L) × (0,T) , (4)

and the system (4) is subjected to the following initial and boundary conditions:
v (0, t) = αvx (L, t) − γβpx (L, t) = 0,
p (0, t) = px (L, t) − γvx (L, t) = 0,(
v, vt, p, pt

)
(x, 0) =

(
v0, v1, p0, p1

)
(x) ,

0 ≤ t ≤ T,
0 ≤ t ≤ T,
0 ≤ x ≤ L.

(5)
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They show that irrespective of the model’s physical parameters, the dissipation produced by damping δvt
is strong enough to stabilize the system solution (4)–(5) exponentially. They also presented the results of
numerical simulations made using the explicit finite difference method. Freitas et al. in [7] studied the
following nonlinear piezoelectric beams system with magnetic effects and a delay term{

ρvtt − αvxx + γβpxx + f1
(
v, p

)
+ vt = h1,

µptt − βpxx + γβvxx + f2
(
v, p

)
+ µ1pt + µ2pt (x, t − τ) = h2,

where (x, t) ∈ (0,L)× (0,T), the functions f1
(
v, p

)
and f2

(
v, p

)
are nonlinear source terms, h1 and h2 represent

external forces, whereas vt and pt denote damping in displacement and magnetic current, respectively. This
system is subjected to the following initial and boundary conditions{ (

v, vt, p, pt
)

(x, 0) =
(
v0, v1, p0, p1

)
(x) ,

v (0, t) = vx (L, t) = p (0, t) = px (L, t) = 0,
x ∈ (0,L) ,
t ∈ (0,∞) .

The authors proved that the dynamical system associated with the solution of the system possesses global
and exponential attractors. Freitas et al. in [6] considered the following semi–linear, partially–damped, and
fully–dynamic piezoelectric beam model{

ρvtt − αvxx + γβpxx + δvt + f (v) = 0,
µptt − βpxx + γβvxx = 0,

in (0,L) ×R+,
in (0,L) ×R+, (6)

and the system (6) is accompanied by the following boundary and initial conditions{ (
v, vt, p, pt

)
(x, 0) =

(
v0, v1, p0, p1

)
(x) ,

v (0, t) = vx (L, t) = p (0, t) = px (L, t) = 0,
x ∈ (0,L) ,
t ∈ (0,∞) , (7)

where δvt (δ > 0) is the frictional dissipation and f (v) is the nonlinear structural forcing. The authors
presented the major results for the long–time dynamics of (6)–(7). The initial result concerns the existence
of smooth global attractors with finite fractal dimension. The second result is about the upper semi–
continuity of attractors with respect to the magnetic permeability parameter µ → 0. Soufyane et al. [20]
studied the system (1) subjected to the nonlinear damping and nonlinear delay terms that work on the
mechanical equation. This work is a generalization of the recent result obtained by Ramos et al. [19]. The
authors established an energy decay rate using a perturbed energy method and some properties of convex
functions, as well as appropriate assumptions on the weight of the delay. Ramos et al., [18] considered
the one–dimensional piezoelectric beam model with second sound, that is, the model includes the thermal
effect given by Cattaneo’s law of heat conduction. The authors established the system’s well–posedness
using semigroup theory, and by exploiting the energy method with multiplier techniques, they showed
that the system is exponentially stable. In addition, this result is obtained without depending on any
relationship between the coefficients. Santos et al., [5] studied the system (1) by inserting the term past
history in the equation (1)1. The authors, by using the semigroup theory of linear operators, obtained the
existence and uniqueness of a solution and, by constructing an appropriate Lyapunov function, established
that the energy associated with the system is exponentially stable. On the other hand, in [1] Afilal et al.
studied the following piezoelectric beams with magnetic effects and localized damping{

ρvtt − αvxx + γβpxx + α (x) vt = 0, in (0,L) × (0,∞) ,
µptt − βpxx + γβvxx = 0, in (0,L) × (0,∞) . (8)

This system is accompanied by the following initial and boundary conditions:
(
v, vt, p, pt

)
(x, 0) =

(
v0, v1, p0, p1

)
(x) ,

v (0, t) = αvx (L, t) − γβpx (L, t) = 0,
p (0, t) = px (L, t) − γvx (L, t) = 0,

x ∈ (0,L) ,
t ∈ (0,∞) ,
t ∈ (0,∞) .

(9)
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The authors, by using a damping mechanism acting only on one component and on a small part of the
beam, established that the system (8)–(9) is exponentially stable. Other problems related to piezoelectric
systems can be found in the following references [2, 10–13, 21]. Motivated and inspired by the above works,
in this paper we consider the following system:

{
ρvtt − αvxx + γβpxx +

∫ t

0 1(t − s)vxx (s) ds = 0, in (0,L) × (0,∞) ,
µptt − βpxx + γβvxx = 0, in (0,L) × (0,∞) .

(10)

This system is accompanied by the following initial and boundary conditions:(
v, vt, p, pt

)
(x, 0) =

(
v0, v1, p0, p1

)
(x) ,

v (0, t) = vx (L, t) = p (0, t) = px (L, t) = 0,
x ∈ (0,L) ,
t ∈ (0,∞) , (11)

where v = v (x, t) is the longitudinal displacement of the center line and p = p (x, t) is the total load of the
electric displacement along the transverse direction at each point x. v0, v1, p0 and p1 are the initial data
that are assumed to belong to a suitable functional space. The coefficients ρ, α, γ, µ and β are constitutive
constants, which are positive. Throughout this article, we will suppose that (2) is satisfied and the relaxation
function 1meets the following assumptions:

(H1) 1 : [0,∞)→ [0,∞) is a non–increasing differentiable function such that

1 (0) > 0, α1 −

∫
∞

0
1 (s) ds = α1 − 10 > 0. (12)

(H2) There exists a non–increasing differentiable function ϑ : [0,∞)→ (0,∞) satisfying

1′(t) ≤ −ϑ (t) 1(t),∀t ∈ R+. (13)

Moreover, along this paper, we use the following notation:

(
1 ◦ vx

)
(t) =

∫ L

0

∫ t

0
1 (t − s) (vx (t) − vx (s))2 dsdx.

The outline of this paper is as follows: In Section 2, we state and prove the well–posedness of the problem
(10)–(11). In Section 3, we state and prove our stability result. Finally, in Section 4, the electrostatic/quasi–
static equations are investigated for general energy decay.

2. The Global Well-Posedness of the Problem

In this section, by using the classical Faedo–Galerkin approximations, we will prove the existence and
uniqueness of solutions for (10)–(11). To achieve this, we use the Sobolev space H̃1 (0,L) and the standard
Lebesgue space L2 (0,L) ,with their usual scalar products and norms. Let us define the spaceH as follows:

H =H̃1 (0,L) × L2 (0,L) × H̃1 (0,L) × L2 (0,L) ,

where

H̃1 (0,L) =
{
u ∈ H1 (0,L) : u(0) = 0

}
,

and

H̃2 (0,L) =
{
u ∈ H2 (0,L) : ux(L) = 0

}
.

Obtaining the well–posedness of (10)–(11) is provided by the following theorem.
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Theorem 2.1. Let (v0, v1) ,
(
p0, p1

)
∈ H̃1 (0,L) × L2 (0,L) be given. Assume that 1 satisfies hypothesis (H1). Then,

problem (10)–(11) has a unique global strong solution

v, p ∈ C
(
R+; H̃2 (0,L) ∩ H̃1 (0,L)

)
∩ C1

(
R+; H̃1 (0,L)

)
∩ C2

(
R+; L2 (0,L)

)
. (14)

Proof. The proof is given by the Faedo–Galerkin method.
Step 1. Approximate problem. Let

{
ω j

}∞
j=1

be an orthogonal basis in H̃2 (0,L)∩H̃1 (0,L) which is orthonormal

in L2 (0,L), and also
{
ω j

}∞
j=1

constituted by the eigenfunctions of the operator −∂xx(.), to the eigenvalue
{
λ j

}
,

that is

−∂xxω j = λ jω j , 1 ≤ j ≤ n.

Now, for every integer n ∈N, we define the finite–dimensional subspace by

Vn := span {ω1, ω2, ..., ωn} , n ≥ 1.

If the initial data
(
v0, v1, p0, p1

)
∈ H , we are looking for functions hn

j , L
n
j ∈ C2 ([0,T]) , such that the following

approximations are satisfied

vn (x, t) :=
n∑

j=1

hn
j (t)ω j (x) , pn (x, t) :=

n∑
j=1

Ln
j (t)ω j (x) , (15)

check the following approximate problem in Vn
ρ
(
vn

tt,u
)
+ α

(
vn

x ,ux
)
− γβ

(
pn

x ,ux
)
−

(∫ t

0 1
(t − s) vn

x (s) ds,ux

)
= 0, ∀u ∈ Vn,

µ
(
pn

tt, v
)
+ β

(
pn

x , vx
)
− γβ

(
vn

x , vx
)
= 0, ∀v ∈ Vn,

vn (., 0) = vn
0 , vn

t (., 0) = vn
1 , pn (., 0) = pn

0 , pn
t (., 0) = pn

1 ,

(16)

and 

vn
0 :=

∑n
j=1

(
v0, ω j

)
L2(0,L)

ω j −→
n→∞

v0 strongly in H̃1 (0,L) ,

vn
1 :=

∑n
j=1

(
v1, ω j

)
L2(0,L)

ω j −→
n→∞

v1 strongly in L2 (0,L) ,

pn
0 :=

∑n
j=1

(
p0, ω j

)
L2(0,L)

ω j −→
n→∞

p0 strongly in H̃1 (0,L) ,

pn
1 :=

∑n
j=1

(
p1, ω j

)
L2(0,L)

ω j −→
n→∞

p1 strongly in L2 (0,L) .

(17)

This brings us to a system of linear ordinary differential equations (ODEs) with these two unknown
functions, hn

j and Ln
j . The application of the basic ODE theory yields the existence of a unique C2–solution

(hn
j ,L

n
j ) on the maximal interval [0, tn) for all n ≥ 1. Then, thanks to the next a priori estimates that follow, it

implies that, in fact, tn = T for any T > 0.
First a priori estimate. Let u = vn

t in (16)1, v = pn
t in (16)2, and adding the obtained results, we get

d
dt

1
2

∫ L

0

[
ρ
∣∣∣vn

t

∣∣∣2 + µ ∣∣∣pn
t

∣∣∣2 + α1

∣∣∣vn
x

∣∣∣2 + β ∣∣∣γvn
x − pn

x

∣∣∣2] dx −
∫ L

0
vn

tx

∫ t

0
1 (t − s) vn

x (s) dsdx = 0. (18)

Then

−

∫ L

0
vn

tx

∫ t

0
1 (t − s) vn

x (s) dsdx =
∫ L

0
vn

tx

∫ t

0
1 (t − s)

(
vn

x (t) − vn
x (s)

)
dsdx −

∫ t

0
1(s)ds

∫ L

0
vn

txvn
xdx

=
1
2

d
dt

(
1 ◦ vn

x
)
−

1
2

d
dt

∫ t

0
1 (s) ds

∫ L

0

∣∣∣vn
x

∣∣∣2 dx

−
1
2
(
1′ ◦ vn

x
)
+

1
2
1(t)

∫ L

0

∣∣∣vn
x

∣∣∣2 dx, (19)
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substituting (19) in (18), we obtain

d
dt

1
2

[∫ L

0

(
ρ
∣∣∣vn

t

∣∣∣2 + µ ∣∣∣pn
t

∣∣∣2 + [
α1 −

∫ t

0
1 (s) ds

] ∣∣∣vn
x

∣∣∣2 + β ∣∣∣γvn
x − pn

x

∣∣∣2) dx +
(
1 ◦ vn

x
)]

=
1
2
(
1′ ◦ vn

x
)
−

1
2
1(t)

∫ L

0

∣∣∣vn
x

∣∣∣2 dx ≤ 0.

For any n ≥ 1 and t ≥ 0, integration over (0, t) yields

1
2

[∫ L

0

(
ρ
∣∣∣vn

t

∣∣∣2 + µ ∣∣∣pn
t

∣∣∣2 + [
α1 −

∫ t

0
1 (s) ds

] ∣∣∣vn
x

∣∣∣2 + β ∣∣∣γvn
x − pn

x

∣∣∣2) dx +
(
1 ◦ vn

x
)]

≤
1
2

∫ L

0

[
ρ
∣∣∣vn

1

∣∣∣2 + µ ∣∣∣pn
1

∣∣∣2 + [
α1 −

∫ t

0
1 (s) ds

] ∣∣∣∣(vn
0

)
x

∣∣∣∣2 + β ∣∣∣∣γ (vn
0

)
x
−

(
pn

0

)
x

∣∣∣∣2] dx.

Now, according (17) the following sequences
(
vn

0

)
n∈N
,
(
vn

1

)
n∈N
,
(
pn

0

)
n∈N
,
(
pn

1

)
n∈N

converge, then we can find
a positive constant C independent of n such that

1
2

[∫ L

0

(
ρ
∣∣∣vn

t

∣∣∣2 + µ ∣∣∣pn
t

∣∣∣2 + [
α1 −

∫ t

0
1 (s) ds

] ∣∣∣vn
x

∣∣∣2 + β ∣∣∣γvn
x − pn

x

∣∣∣2) dx +
(
1 ◦ vn

x
)]

≤
1
2

∫ L

0

[
ρ
∣∣∣vn

1

∣∣∣2 + µ ∣∣∣pn
1

∣∣∣2 + [
α1 −

∫ t

0
1 (s) ds

] ∣∣∣∣(vn
0

)
x

∣∣∣∣2 dx + β
∣∣∣∣γ (vn

0

)
x
−

(
pn

0

)
x

∣∣∣∣2] dx (20)

≤ C.

Then tn = T, for all T > 0.
Second a priori estimate. From (15), as hn

j , L
n
j ∈ C2 ([0,T]) , and as{

ω j

}∞
j=1
⊂ H̃2 (0,L) ∩ H̃1 (0,L) ⊂ H1 (0,L) ↪→ C (0,L) ,

with (↪→) representing the continuous embedding. Then we have

vn, pn
∈ C2

(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
, (21)

and according to (21), we can get∫ L

0

(∣∣∣vn
xx (x, t)

∣∣∣2 + ∣∣∣pn
xx (x, t)

∣∣∣2) dx < ∞, ∀t ∈ [0,T] . (22)

Step 3: The limit process.
By exploiting (20)–(21), we arrive at

(vn)n∈N∗ is bounded in L∞
(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
,(

vn
t

)
n∈N∗

is bounded in L∞
(
0,T; L2 (0,L)

)
,(

pn)
n∈N∗ is bounded in L∞

(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
,(

pn
t

)
n∈N∗

is bounded in L∞
(
0,T; L2 (0,L)

)
.

(23)

By applying the Aubin–Lions–Simon theorem (theorem II.5.16, [3]), because{
The embedding of H̃1 (0,L) in L2 (0,L) is continuous,
The embedding of H̃2 (0,L) ∩ H̃1 (0,L) in H̃1 (0,L) is compact.
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Then, we can find that the embedding of E∞,∞ and Ẽ∞,∞ in C(0,T; H̃1 (0,L)) is compact, with

E∞,∞ =

{
vn/ vn

∈ L∞
(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
, vn

t =
dvn

dt
∈ L∞

(
0,T; L2 (0,L)

)}
,

and

Ẽ∞,∞ =

{
pn/ pn

∈ L∞
(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
, pn

t =
dpn

dt
∈ L∞

(
0,T; L2 (0,L)

)}
.

We conclude from (23) that (vn)n∈N∗ and
(
pn)

n∈N∗ are bounded in E∞,∞, Ẽ∞,∞ respectively. Then there
exist

(
vk

)
k∈N∗

and
(
pk

)
k∈N∗

two subsequences of (vn)n∈N∗ and
(
pn)

n∈N∗ , respectively, such that

vk k→∞
−→ v and pk k→∞

−→ p strongly in C(0,T; H̃1 (0,L)). (24)

Now, we define the operatorA = ∂xx (.) as follows

A : H2 (0,L) ⊂ H1 (0,L)→ L2 (0,L) withAvk=vk
xx and Apk=pk

xx,

since

Avk=vk
xx = γ1vk andApk=pk

xx = γ2pk,

such that γ1 and γ2 are both eigenvalues of the operator ∂xx (.) ,we can now conclude from (24) that vk
xx = γ1vk k→∞

−→ γ1v = ξ1 strongly in C(0,T; L2 (0,L)),

pk
xx = γ2pk k→∞

−→ γ2p = ξ2 strongly in C(0,T; L2 (0,L)).
(25)

According to (24) and (25) and as the operator ∂xx (.) is closed, we directly get

v ∈ H2 (0,L) with ξ1 = vxx and p ∈ H2 (0,L) with ξ2 = pxx.

Then, we obtain

vk k→∞
−→ v and pk k→∞

−→ p strongly in C
(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
. (26)

Now from (21) and (26), we conclude that

v, p ∈ C
(
0,T; H̃2 (0,L) ∩ H̃1 (0,L)

)
. (27)

By using (21) and (24), and exploiting the theorem of dominated convergence, we arrive at
∥∥∥vk

t − vt

∥∥∥
W =

∥∥∥ d
dt v

k
− vt

∥∥∥
W

k→∞
−→ 0,∥∥∥pk

t − pt

∥∥∥
W =

∥∥∥ d
dt p

k
− pt

∥∥∥
W

k→∞
−→ 0,

where W = C(0,T; H̃1 (0,L)), then we conclude that

vk
t

k→∞
−→ vt and pk

t
k→∞
−→ pt strongly in X = C(0,T; H̃1 (0,L)), ∀T > 0. (28)

Now, from (21) and (28), we conclude that

v, p ∈ C1
(
0,T; H̃1 (0,L)

)
. (29)
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Finally, by exploiting (21) and (24) and using the theorem of dominated convergence, we get
∥∥∥vk

tt − vtt

∥∥∥
Y =

∥∥∥ d2

dt2 vk
− vtt

∥∥∥
Y

k→∞
−→ 0,∥∥∥pk

tt − ptt

∥∥∥
Y =

∥∥∥ d2

dt2 pk
− ptt

∥∥∥
Y

k→∞
−→ 0,

where Y = C(0,T; L2 (0,L)), then we deduce that

vk
tt

k→∞
−→ vtt and pk

tt
k→∞
−→ ptt strongly in C(0,T; L2 (0,L)). (30)

Now from (21) and (30), we conclude that

v, p ∈ C2
(
0,T; L2 (0,L)

)
. (31)

Then by passing the limit in (16)–(17) and exploiting (27), (29) and (31), we deduce that, the problem (10)–
(11) has a strong solution that satisfies (14). For the uniqueness of the solution, we suppose that

(
v, p

)
and(

v1, p1
)

are two pairs of strong solutions to problem (10)–(11), then the pair (V,P) =
(
v − v1, p − p1

)
satisfies

ρVtt − αVxx + γβPxx +
∫ t

0 1(t − s)Vxx (s) ds = 0,
µPtt − βPxx + γβVxx = 0,
(V,Vt,P,Pt) (x, 0) = 0,
V (0, t) = Vx (L, t) = P (0, t) = Px (L, t) = 0,

in (0,L) × (0,∞) ,
in (0,L) × (0,∞) ,
x ∈ (0,L) ,
t ∈ (0,∞) .

(32)

Multiplying (32)1 by Vt and (32)2 by Pt, then integration by parts over (0,L) and the boundary conditions,
and thanks to a method similar to that used in the first a priori estimate, we obtain

d
dt

1
2

[
ρ ∥Vt∥

2
2 + µ ∥Pt∥

2
2 +

[
α1 −

∫ t

0
1 (s) ds

]
∥Vx∥

2
2 + β

∥∥∥γVx − Px

∥∥∥2

2
+

(
1 ◦Vx

)]
=

1
2
(
1′ ◦Vx

)
−

1
2
1(t) ∥Vx∥

2
2 ≤ 0.

Now, by integrating over (0, t) ,we get

ρ ∥Vt∥
2
2 + µ ∥Pt∥

2
2 +

[
α1 −

∫ t

0
1 (s) ds

]
∥Vx∥

2
2 + β

∥∥∥γVx − Px

∥∥∥2

2
+

(
1 ◦Vx

)
≤ 0,

this implies that

(V,P) =
(
v − v1, p − p1

)
= (0, 0).

Finally, we get(
v, p

)
=

(
v1, p1

)
.

As a result, problem (10)–(11) has a unique strong solution. The proof of the theorem is finished.

3. General decay

In this section, we state and prove a general decay result for system (10)–(11) using the energy method.
We define the following energy functional:

E (t) :=
1
2

∫ L

0

[
ρv2

t +

(
α1 −

∫ t

0
1 (s) ds

)
v2

x + µp2
t + β

(
γvx − px

)2
]

dx +
1
2
(
1 ◦ vx

)
. (33)

The main result of this section is the following theorem.
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Theorem 3.1. Assume that (H1) and (H2) hold. Then, the energy functional defined by (33) satisfies

E (t) ≤ λ0e−λ1
∫ t

0 ϑ(s)ds, ∀t ≥ 0, (34)

where λ0 and λ1 are positive constants. To achieve our goal, we need the following lemmas.

Lemma 3.2. The energy functional defined by (33) satisfies

E′ (t) =
1
2
(
1′ ◦ vx

)
−

1
2
1 (t)

∫ L

0
v2

xdx ≤
1
2
(
1′ ◦ vx

)
≤ 0. (35)

Proof. Multiplying (10)1 by vt and (10)2 by pt, then integration by parts over (0,L) and the boundary
conditions, we obtain

1
2

d
dt

∫ L

0

[
ρv2

t + µp2
t + α1v2

x + β
(
γvx − px

)2
]

dx −
∫ L

0
vtx

∫ t

0
1(t − s)vx (x, s) dsdx = 0. (36)

Meanwhile, estimate the last term of (36) as follows

−

∫ L

0
vxt

∫ t

0
1(t − s)vx (x, s) dsdx =

∫ L

0
vtx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx −

∫ t

0
1(s)ds

∫ L

0
vtxvxdx (37)

=
1
2

d
dt

(
1 ◦ vx

)
−

1
2

d
dt

∫ t

0
1(s)ds

∫ L

0
v2

xdx −
1
2
(
1′ ◦ vx

)
+

1
2
1 (t)

∫ L

0
v2

xdx.

Simple substitution of (37) into (36) gives (35).

Lemma 3.3. Let
(
v, p

)
be the solution of system (10)–(11). Then the functional

F1 (t) := ρ
∫ L

0
vtvdx + γµ

∫ L

0
ptvdx,

satisfies, for all ε1 > 0, the estimate

F′1 (t) ≤ −
α0

2

∫ L

0
v2

xdx +
(
ρ +
γ2µ2

4ε1

) ∫ L

0
v2

t dx + ε1

∫ L

0
p2

t dx + C1
(
1 ◦ vx

)
, (38)

where

α0 = α1 −

∫ t

0
1(s)ds > 0, C1 =

1
2α0

(∫ t

0
1(s)ds

)
.

Proof. Taking the derivative of F1, using (10) and integrating by parts over (0,L) and using the boundary
conditions in (11), we get

F′1 (t) = −α1

∫ L

0
v2

xdx +
∫ L

0
vx

∫ t

0
1(t − s)vx (x, s) dsdx + ρ

∫ L

0
v2

t dx + γµ
∫ L

0
ptvtdx. (39)

Using Young’s and Cauchy–Schwarz inequalities, it gives∫ L

0
vx

∫ t

0
1(t − s)vx (x, s) dsdx =

∫ t

0
1(s)ds

∫ L

0
v2

xdx −
∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx

≤

(
δ1 +

∫ t

0
1(s)ds

) ∫ L

0
v2

xdx +
1

4δ1

(∫ t

0
1(s)ds

)
1 ◦ vx, (40)
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γµ

∫ L

0
ptvtdx ≤ ε1

∫ L

0
p2

t dx +
γ2µ2

4ε1

∫ L

0
v2

t dx. (41)

By substituting (40) and (41) into (39), we find

F′1 (t) ≤ −
(
α1 − δ1 −

∫ t

0
1(s)ds

) ∫ L

0
v2

xdx +
(
ρ +
γ2µ2

4ε1

) ∫ L

0
v2

t dx + ε1

∫ L

0
p2

t dx +
1

4δ1

(∫ t

0
1(s)ds

)
1 ◦ vx.

Let α0 = α1 −
∫ t

0 1(s)ds > 0, and letting δ1 =
α0

2
, gives (38).

Lemma 3.4. Let
(
v, p

)
be the solution of the system (10)–(11). Then the functional

F2 (t) := −ρ
∫ L

0
vt

∫ t

0
1(t − s) (v (t) − v (s)) dsdx,

satisfies, for all ε2 > 0, the estimate

F′2(t) ≤ −
ρc0

2

∫ L

0
v2

t dx + ε2

∫ L

0
v2

xdx + ε2

∫ L

0

(
γvx − px

)2 dx + C2 (ε2)
(
1 ◦ vx

)
−
ρ1(0)
2c0

(
1′ ◦ vx

)
, (42)

where

c0 =

∫ t0

0
1(s)ds, C2 (ε2) =

 α2
1

2ε2
+

1
2ε2

(∫ t

0
1(s)ds

)2

+
γ2β2

4ε2
+ 1

 ∫ t

0
1(s)ds.

Proof. By differentiating F2, then using (10)1, integrating by parts over (0,L) and using the boundary
conditions in (11), we find

F′2(t) = −ρ
∫ t

0
1(s)ds

∫ L

0
v2

t dx + α1

∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx

−

∫ L

0

∫ t

0
1(t − s)vx (s) ds

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx

+ γβ

∫ L

0

(
γvx − px

) ∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx − ρ

∫ L

0
vt

∫ t

0
1′(t − s) (v (t) − v (s)) dsdx. (43)

Using Young’s, Cauchy–Schwarz and Poincaré’s inequalities. So, for any ε2 > 0, we obtain

α1

∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx ≤

ε2

2

∫ L

0
v2

xdx +
α2

1

2ε2

∫ L

0

(∫ t

0
1(t − s) (vx (t) − vx (s)) ds

)2

dx

≤
ε2

2

∫ L

0
v2

xdx +

 α2
1

2ε2

∫ t

0
1(s)ds

 1 ◦ vx, (44)

−

∫ L

0

∫ t

0
1(t − s)vx (s) ds

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx

= −

∫ t

0
1(s)ds

∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx +

∫ L

0

(∫ t

0
1(t − s) (vx (t) − vx (s)) ds

)2

dx

≤
ε2

2

∫ L

0
v2

xdx +

 1
2ε2

(∫ t

0
1(s)ds

)3

+

∫ t

0
1(s)ds

 1 ◦ vx, (45)
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−ρ

∫ L

0
vt

∫ t

0
1′(t − s) (v (t) − v (s)) dsdx ≤ ρδ2

∫ L

0
v2

t dx −
ρ1(0)
4δ2
1′ ◦ vx. (46)

Using similar calculations as in (44), we obtain

γβ

∫ L

0

(
γvx − px

) ∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx ≤ ε2

∫ L

0

(
γvx − px

)2 dx +
(
γ2β2

4ε2

∫ t

0
1(s)ds

)
1 ◦ vx. (47)

Inserting (44)–(47) into (43), we end up with

F′2(t) ≤ −
(
ρ

∫ t

0
1(s)ds − ρδ2

) ∫ L

0
v2

t dx + ε2

∫ L

0
v2

xdx + ε2

∫ L

0

(
γvx − px

)2 dx

+

 α2
1

2ε2
+

1
2ε2

(∫ t

0
1(s)ds

)2

+ 1 +
γ2β2

4ε2

 ∫ t

0
1(s)ds

 1 ◦ vx −
ρ1(0)
4δ2
1′ ◦ vx. (48)

Using assumption (H1), for any t ≥ t0 > 0, we have

c0 =

∫ t0

0
1(s)ds ≤

∫ t

0
1(s)ds.

Consequently, by taking δ2 =
c0

2
we obtain (42).

Lemma 3.5. Let
(
v, p

)
be the solution of the system (10)–(11). Then the functional

F3 (t) := ρ
∫ L

0
vt

(
γv − p

)
dx + γµ

∫ L

0
pt

(
γv − p

)
dx,

satisfies, for all ε3 > 0, the estimate

F′3 (t) ≤ −
γµ

2

∫ L

0
p2

t dx + C3

∫ L

0
v2

t dx + C4 (ε3)
∫ L

0
v2

xdx + ε3

∫ L

0

(
γvx − px

)2 dx + C5 (ε3)
(
1 ◦ vx

)
, (49)

where

C3 = γρ + γ
3µ +

ρ2

γµ
, C4 (ε3) =

α2
1

2ε3
+

1
ε3

(∫ t

0
1(s)ds

)2

, C5 (ε3) =
1
ε3

(∫ t

0
1(s)ds

)
.

Proof. Taking the derivative of F3, using (10) and integration by parts over (0,L), we obtain

F′3 (t) = −α1

∫ L

0
vx

(
γvx − px

)
dx +

∫ L

0

(
γvx − px

) ∫ t

0
1(t − s)vx (x, s) dsdx

+ γρ

∫ L

0
v2

t dx − γµ
∫ L

0
p2

t dx + γ2µ

∫ L

0
vtptdx − ρ

∫ L

0
vtptdx. (50)

Using Young’s inequality, we get for ε3 > 0

−α1

∫ L

0
vx

(
γvx − px

)
dx ≤

α2
1

2ε3

∫ L

0
v2

xdx +
ε3

2

∫ L

0

(
γvx − px

)2 dx, (51)

∫ L

0

(
γvx − px

) ∫ t

0
1(t − s)vx (x, s) dsdx ≤

ε3

2

∫ L

0

(
γvx − px

)2 dx +
1

2ε3

∫ L

0

(∫ t

0
1(t − s)vx (x, s) ds

)2

dx

≤
ε3

2

∫ L

0

(
γvx − px

)2 dx +
1
ε3

(∫ t

0
1(s)ds

)2 ∫ L

0
v2

xdx +
1
ε3

(∫ t

0
1(s)ds

)
1 ◦ vx, (52)
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γ2µ

∫ L

0
vtptdx ≤

γµ

4

∫ L

0
p2

t dx + γ3µ

∫ L

0
v2

t dx, (53)

−ρ

∫ L

0
vtptdx ≤

γµ

4

∫ L

0
p2

t dx +
ρ2

γµ

∫ L

0
v2

t dx. (54)

Inserting (51)–(54) into (50), we get (49).

Lemma 3.6. Let
(
v, p

)
be the solution of system (10)–(11). Then the functional

F4 (t) := µ
∫ L

0
ptpdx,

satisfies,

F′4(t) ≤ −
β

2

∫ L

0

(
γvx − px

)2 dx +
γ2β

2

∫ L

0
v2

xdx + µ
∫ L

0
p2

t dx. (55)

Proof. By differentiating F4, using (10)2 and integrating by parts over (0,L) and using the boundary condi-
tions in (11), we have

F′4(t) = −β
∫ L

0

(
γvx − px

)2 dx + γβ
∫ L

0
vx

(
γvx − px

)
dx + µ

∫ L

0
p2

t dx. (56)

Using Young’s inequality, we obtain

γβ

∫ L

0
vx

(
γvx − px

)
dx ≤

γ2β

2

∫ L

0
v2

xdx +
β

2

∫ L

0

(
γvx − px

)2 dx. (57)

Inserting (57) into (56), we get (55).

Now, we are ready to prove a general decay result.

Proof. (Of Theorem 3.1) Let

L (t) := NE (t) +
4∑

i=1

NiFi(t), ∀t ≥ 0, (58)

where N, N1, N2, N3 and N4 are positive real numbers to be chosen appropriately later. By simple routine
computations, applying Young’s, Poincaré’s, and Cauchy–Schwarz inequalities, it follows that L ∼ E in the
sense that there exist two positive constants, c1 and c2, such that

c1E (t) ≤ L (t) ≤ c2E (t) , ∀t ≥ 0. (59)

Now, taking the derivative of (58) and recalling (35), (38), (42), (49) and (55), we obtain

L′ (t) ≤ −
(
ρc0

2
N2 −

(
ρ +
γ2µ2

4ε1

)
N1 − C3N3

) ∫ L

0
v2

t dx

−

(
α0

2
N1 − ε2N2 − C4 (ε3) N3 −

γ2β

2
N4

) ∫ L

0
v2

xdx

−

(γµ
2

N3 − ε1N1 − µN4

) ∫ L

0
p2

t dx

−

(
β

2
N4 − ε2N2 − ε3N3

) ∫ L

0

(
γvx − px

)2 dx

+ (N1C1 +N2C2 (ε2) +N3C5 (ε3))
(
1 ◦ vx

)
+

(
N
2
−
ρ1(0)
2c0

N2

) (
1′ ◦ vx

)
.
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By considering

εi =
1

Ni
, i = 1, 2, 3,

we arrive at

L′ (t) ≤ −η1

∫ L

0
v2

t dx − η2

∫ L

0
v2

xdx − η3

∫ L

0
p2

t dx − η4

∫ L

0

(
γvx − px

)2 dx + η5
(
1 ◦ vx

)
+ η6

(
1′ ◦ vx

)
, (60)

where

η1 =
ρc0

2
N2 −

(
ρ +

γ2µ2N1

4

)
N1 −

(
γρ + γ3µ +

ρ2

γµ

)
N3,

η2 =
α0

2
N1 −

(
α2

1
2 +

(∫ t

0 1(s)ds
)2)

N2
3 −

γ2β
2 N4 − 1,

η3 =
γµ
2 N3 − µN4 − 1,

η4 =
β
2 N4 − 2,

η5 =
(
α2

1N2

2 + N2
2

(∫ t

0 1(s)ds
)2
+
γ2β2N2

4 + 1
)

N2

∫ t

0 1(s)ds +
(

N1
2α0
+N2

3

) ∫ t

0 1(s)ds,

η6 =
N
2
−
ρ1(0)
2c0

N2.

At this stage, we choose our different constants. First, choosing N4 large enough such that

η4 =
β

2
N4 − 2 > 0.

Then, we pick N3 large enough such that

η3 =
γµ

2
N3 − µN4 − 1 > 0.

Furthermore, we choose N1 large enough so that

η2 =
α0

2
N1 −

α2
1

2
+

(∫ t

0
1(s)ds

)2 N2
3 −
γ2β

2
N4 − 1 > 0.

After that, we choose N2 large enough so that

η1 =
ρc0

2
N2 −

(
ρ +
γ2µ2N1

4

)
N1 −

(
γρ + γ3µ +

ρ2

γµ

)
N3 > 0.

Finally, we choose N very large enough so that

η6 =
N
2
−
ρ1(0)
2c0

N2 > 0.

Consequently, there exist some positive constants, k1 and k2, such that

L′ (t) ≤ −k1E (t) + k2
(
1 ◦ vx

)
, ∀t ≥ 0. (61)

By multiplying (61) by ϑ (t), we get

ϑ (t) L′ (t) ≤ −k1ϑ (t) E (t) + k2ϑ (t)
(
1 ◦ vx

)
, ∀t ≥ 0. (62)
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Now, by using assumption (H2), we have the following estimate

ϑ (t)
(
1 ◦ vx

)
= ϑ (t)

∫ L

0

∫ t

0
1 (t − s) (vx (t) − vx (s))2 dsdx ≤

∫ L

0

∫ t

0
ϑ (t − s) 1 (t − s) (vx (t) − vx (s))2 dsdx

≤ −

∫ L

0

∫ t

0
1′ (t − s) (vx (t) − vx (s))2 dsdx = −

(
1′ ◦ vx

)
≤ −2E′ (t) .

Thus, (62) becomes

ϑ (t) L′ (t) ≤ −k1ϑ (t) E (t) − 2k2E′ (t) , ∀t ≥ 0,

which can be rewritten as

(ϑ (t) L (t) + 2k2E (t))′ − ϑ′ (t) L (t) ≤ −k1ϑ (t) E (t) , ∀t ≥ 0,

next, from the fact that ϑ′ (t) ≤ 0, we find

(ϑ (t) L (t) + 2k2E (t))′ ≤ −k1ϑ (t) E (t) , ∀t ≥ 0.

Through (59), we easily arrive at

L(t) = (ϑ (t) L (t) + 2k2E (t)) ∽ E (t) . (63)

Consequently, we have

L
′(t) ≤ −λ1ϑ (t)L(t), ∀t ≥ 0, (64)

for some positive constant λ1. By integrating (64) over (0, t), we get

L(t) ≤ L(0)e−λ1
∫ t

0 ϑ(s)ds, ∀t ≥ 0. (65)

Consequently, (34) is established by combining (65) and (63). The proof is complete.

4. General decay result for the electrostatic/quasi–static equations

Because Maxwell’s equations neglect the magnetic effects, the electrostatic equations are given as follows
ρvtt − α1vxx +

∫ t

0 1(t − s)vxx (s) ds = 0,
v (0, t) = vx (L, t) = 0,
(v, vt) (x, 0) = (v0, v1) (x) ,

in (0,L) × (0,∞) ,
t ∈ (0,∞) ,
x ∈ (0,L) .

(66)

The energy of (66) has been defined by

E (t) :=
1
2

∫ L

0

[
ρv2

t +

(
α1 −

∫ t

0
1 (s) ds

)
v2

x

]
dx +

1
2
(
1 ◦ vx

)
, (67)

and it satisfies

E
′ (t) =

1
2
(
1′ ◦ vx

)
−

1
2
1 (t)

∫ L

0
v2

xdx ≤
1
2
(
1′ ◦ vx

)
≤ 0, ∀t ≥ 0. (68)

Theorem 4.1. Assume that (H1) and (H2) hold. Then, the energy functional defined by (67) satisfies

E (t) ≤ Υ0e−Υ1
∫ t

0 ϑ(s)ds, ∀t ≥ 0, (69)

where Υ0 and Υ1 are positive constants. To achieve our goal, we need the following lemmas.



H. Messaoudi et al. / Filomat 38:27 (2024), 9475–9492 9489

Lemma 4.2. Let v be the solution of system (66). Then the functional

F1 (t) := ρ
∫ L

0
vtvdx,

satisfies,

F
′

1 (t) ≤ −
α0

2

∫ L

0
v2

xdx + ρ
∫ L

0
v2

t dx + C1
(
1 ◦ vx

)
, (70)

where

α0 = α1 −

∫ t

0
1(s)ds > 0, C1 =

1
2α0

(∫ t

0
1(s)ds

)
.

Proof. Taking the derivative of F1, using (66) and integrating by parts over (0,L) and using the boundary
conditions in (66)2, we get

F
′

1 (t) = −α1

∫ L

0
v2

xdx +
∫ L

0
vx

∫ t

0
1(t − s)vx (x, s) dsdx + ρ

∫ L

0
v2

t dx. (71)

Using Young’s and Cauchy–Schwarz inequalities, it gives∫ L

0
vx

∫ t

0
1(t − s)vx (x, s) dsdx =

∫ t

0
1(s)ds

∫ L

0
v2

xdx −
∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx

≤

(
δ1 +

∫ t

0
1(s)ds

) ∫ L

0
v2

xdx +
1

4δ1

(∫ t

0
1(s)ds

)
1 ◦ vx. (72)

By substituting (72) into (71), we get

F
′

1 (t) ≤ −
(
α1 − δ1 −

∫ t

0
1(s)ds

) ∫ L

0
v2

xdx + ρ
∫ L

0
v2

t dx +
1

4δ1

(∫ t

0
1(s)ds

)
1 ◦ vx.

Let α0 = α1 −
∫ t

0 1(s)ds > 0, and letting δ1 =
α0

2
, gives (70).

Lemma 4.3. Let v be the solution of the system (66). Then the functional

F2 (t) := −ρ
∫ L

0
vt

∫ t

0
1(t − s) (v (t) − v (s)) dsdx,

satisfies, for all ε2 > 0, the estimate

F
′

2 (t) ≤ −
ρc0

2

∫ L

0
v2

t dx + ε2

∫ L

0
v2

xdx + C2 (ε2)
(
1 ◦ vx

)
−
ρ1(0)
2c0

(
1′ ◦ vx

)
, (73)

where

c0 =

∫ t0

0
1(s)ds, C2 (ε2) =

 α2
1

2ε2
+

1
2ε2

(∫ t

0
1(s)ds

)2

+ 1

 ∫ t

0
1(s)ds.

Proof. By differentiating F2, then using (66), integrating by parts over (0,L) and using the boundary condi-
tions, we get

F
′

2 (t) = −ρ
∫ t

0
1(s)ds

∫ L

0
v2

t dx + α1

∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx (74)

−

∫ L

0

∫ t

0
1(t − s)vx (s) ds

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx − ρ

∫ L

0
vt

∫ t

0
1′(t − s) (v (t) − v (s)) dsdx.
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Using Young’s, Cauchy–Schwarz and Poincaré’s inequalities. So, for any ε2 > 0, we obtain

α1

∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx (75)

≤
ε2

2

∫ L

0
v2

xdx +
α2

1

2ε2

∫ L

0

(∫ t

0
1(t − s) (vx (t) − vx (s)) ds

)2

dx

≤
ε2

2

∫ L

0
v2

xdx +

 α2
1

2ε2

∫ t

0
1(s)ds

 1 ◦ vx,

−

∫ L

0

∫ t

0
1(t − s)vx (s) ds

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx (76)

= −

∫ t

0
1(s)ds

∫ L

0
vx

∫ t

0
1(t − s) (vx (t) − vx (s)) dsdx +

∫ L

0

(∫ t

0
1(t − s) (vx (t) − vx (s)) ds

)2

dx

≤
ε2

2

∫ L

0
v2

xdx +

 1
2ε2

(∫ t

0
1(s)ds

)3

+

∫ t

0
1(s)ds

 1 ◦ vx,

−ρ

∫ L

0
vt

∫ t

0
1′(t − s) (v (t) − v (s)) dsdx ≤ ρδ2

∫ L

0
v2

t dx −
ρ1(0)
4δ2
1′ ◦ vx. (77)

Inserting (75)–(77) into (74), we end up with

F
′

2 (t) ≤ −
(
ρ

∫ t

0
1(s)ds − ρδ2

) ∫ L

0
v2

t dx + ε2

∫ L

0
v2

xdx +

 α2
1

2ε2
+

1
2ε2

(∫ t

0
1(s)ds

)2

+ 1

 ∫ t

0
1(s)ds

 1 ◦ vx

−
ρ1(0)
4δ2
1′ ◦ vx.

Using assumption (H1), for any t ≥ t0 > 0, we have

c0 =

∫ t0

0
1(s)ds ≤

∫ t

0
1(s)ds.

Consequently, by taking δ2 =
c0

2
we obtain (73).

Now, for N̂ sufficiently large, we build the functional of Lyapunov L̂ as follows:

L̂ (t) := N̂E (t) +
2∑

i=1

N̂iFi(t), ∀t ≥ 0, (78)

where N̂, N̂1, and N̂2, are positive real numbers to be chosen appropriately later. By using the same
calculations used in the proof of theorem 3.1. It is clear that L̂ ∼ E.

Now, taking the derivative of (78) and recalling (68), (70), and (73), we obtain

L̂′ (t) ≤ −
(ρc0

2
N̂2 − ρN̂1

) ∫ L

0
v2

t dx −
(
α0

2
N̂1 − ε2N̂2

) ∫ L

0
v2

xdx +
(
N̂1C1 + N̂2C2 (ε2)

) (
1 ◦ vx

)
+

 N̂
2
−
ρ1(0)
2c0

N̂2

 (1′ ◦ vx
)
.
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By taking ε2 =
1

N̂2
,we arrive at

L̂′ (t) ≤ −ζ1

∫ L

0
v2

t dx − ζ2

∫ L

0
v2

xdx + ζ3
(
1 ◦ vx

)
+ ζ4

(
1′ ◦ vx

)
,

where

ζ1 =
ρc0

2
N̂2 − ρN̂1,

ζ2 =
α0

2
N̂1 − 1,

ζ3 =
(
α2

1N̂2

2 + N̂2
2

(∫ t

0 1(s)ds
)2
+ 1

)
N̂2

∫ t

0 1(s)ds + N̂1
2α0

∫ t

0 1(s)ds,

ζ4 =
N̂
2
−
ρ1(0)
2c0

N̂2.

At this stage, we choose our different constants. First, choosing N̂1 large enough such that

ζ2 =
α0

2
N̂1 − 1 > 0.

Then, we pick N̂2 large enough such that

ζ1 =
ρc0

2
N̂2 − ρN̂1 > 0.

Finally, we choose N̂ very large enough so that

ζ4 =
N̂
2
−
ρ1(0)
2c0

N̂2 > 0.

Consequently, there exist some positive constants, k̂1 and k̂2, such that

L̂′ (t) ≤ −̂k1E (t) + k̂2
(
1 ◦ vx

)
, ∀t ≥ 0. (79)

By multiplying (79) by ϑ (t), we get

ϑ (t) L̂′ (t) ≤ −̂k1ϑ (t)E (t) + k̂2ϑ (t)
(
1 ◦ vx

)
, ∀t ≥ 0. (80)

Now, by using assumption (H2), we have the following estimate

ϑ (t)
(
1 ◦ vx

)
= ϑ (t)

∫ L

0

∫ t

0
1 (t − s) (vx (t) − vx (s))2 dsdx ≤

∫ L

0

∫ t

0
ϑ (t − s) 1 (t − s) (vx (t) − vx (s))2 dsdx

≤ −

∫ L

0

∫ t

0
1′ (t − s) (vx (t) − vx (s))2 dsdx = −

(
1′ ◦ vx

)
≤ −2E′ (t) .

Thus, (80) becomes

ϑ (t) L̂′ (t) ≤ −̂k1ϑ (t)E (t) − 2̂k2E
′ (t) , ∀t ≥ 0,

which can be rewritten as(
ϑ (t) L̂ (t) + 2̂k2E (t)

)′
− ϑ′ (t) L̂ (t) ≤ −̂k1ϑ (t)E (t) , ∀t ≥ 0,

next, from the fact that ϑ′ (t) ≤ 0, we find(
ϑ (t) L̂ (t) + 2̂k2E (t)

)′
≤ −̂k1ϑ (t)E (t) , ∀t ≥ 0.
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Through L̂ ∼ E, we easily arrive at

L̂(t) =
(
ϑ (t) L̂ (t) + 2̂k2E (t)

)
∽ E (t) . (81)

Consequently, we have

L̂
′(t) ≤ −Υ1ϑ (t) L̂(t), ∀t ≥ 0, (82)

for some positive constant Υ1. By integrating (82) over (0, t), we get

L̂(t) ≤ L̂(0)e−Υ1
∫ t

0 ϑ(s)ds, ∀t ≥ 0. (83)

Consequently, (69) is established by combining (83) and (81). The proof is complete.
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