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Abstract. In this paper, we introduce one model named random connection model RG(n, α, β) defined as
follows: the vertex set isZn

2 , and two vertices u, v ∈ Zn
2 are adjacent with probability αn−H(u,v)βH(u,v), in which

H(u, v) is the Hamming distance between u and v, and α, β ∈ (0, 1) are some fixed constants. This model can
be regarded as the discrete counterpart of the random connection model which is given by Penrose (1991)
via the Euclidean distance. We obtain some phase transition properties of RG(n, α, β) with the help of some
asymptotic results by the First and Second moment arguments; and some possible generalizations of the
results mentioned in this paper are discussed in the last section.

1. Introduction

The stochastic Kronecker graph model was proposed by Leskovec et al. [7] basing on Kronecker matrix
multipications as a model that captures many properties of real-world networks. Fix integer n > 0, and
0 < α, β, γ < 1,we define a 2 × 2 matrix

P =
[
α β
β γ

]
.

The stochastic Kronecker graph K(n,P) is a graph whose vertex set is given by the set Zn
2 of all binary

strings of length n. For any vertex u we denote by uk its k-th digit. Then the probability that a pair of
vertices {u, v} are connected by an edge is

Pu,v =

n∏
k=1

Puk ,vk

independently of the presence or absence of any other edge. Compared with the classic Erdös-Rényi
random graphs, the stochastic Kronecker graphs are inhomogeneous graph model: the presence or absence
of an edge is relevant to its two endpoints. As a consequence, the properties of the stochastic Kronecker
graph K(n,P) is different from those of the classic Erdös-Rényi model.

As most of the results mentioned in this paper are asymptotic, and to make this paper more readable,
we list the standard asymptotic notation used in the sequel as follows:
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• f (n) = O(1(n)) : f ≤ K1 for sufficiently large n and some absolute positive constant K.

• f (n) = Ω(1(n)): if 1(n) = O( f (n)).

• f (n) = Θ(1(n)): if f (n) = O(1(n)) and f (n) = Ω(1(n)).

• w.h.p.: A sequence of events An, n = 1, 2, · · · , is said to occur with hi1h probability if limn→∞ P(An) = 1.

A lot of researches were done by a couple of authors since the stochastic Kronecker graph models was
first introduced. Mahdian and Xu [8] studied the connectivity, giant components, constant diameter and
also searchability of this models, mainly on the setting 0 < α ≤ β ≤ γ < 1; later Horn and Radcliffe [4]
managed to prove that the threshold of giant component without the restriction 0 < α ≤ β ≤ γ < 1; Radcliffe
and Young [10] also investigated the connectivity and giant component of stochastic Kronecker graphs via
k × k generating matrix; Very recently, Kang et at. [6] studied the degree distribution of this model and
showed that it does not feature a power law degree distribution for any parameters 0 ≤ α, β, γ ≤ 1 w.h.p..

We mention two results on connectivity and percolation properties of stochastic Kronecker graphs
related to our main theorems in Section 2.

Theorem 1.1 ([8]). For 0 < α ≤ β ≤ γ < 1. The necessary and sufficient condition for stochastic Kronecker graphs
to be connected w.h.p. is β + γ > 1 or γ = β = 1, α = 0.

Theorem 1.2 ([4]). The necessary and sufficient condition for stochastic Kronecker graphs to have a giant component
of size Θ(2n) w.h.p. is (α + γ)(β + γ) > 1, or (α + γ)(β + γ) = 1 and α + γ > β + γ.

In fact, the main task in [4] is to cancel the restriction on condition 0 ≤ α ≤ β ≤ γ ≤ 1 for the same
conclusion in [8].

In this paper, one new model named random connection graph, which can be regarded as some variant
of the stochastic Kronecker graphs mentioned in [7], is proposed and several interesting results are given.
In particular, we prove the transition property of the isolated vertices of this random graph, and also obtain
one result on percolation property for the components of this model.

The rest of this paper is organized as follows: our model and the main results are shown in Section 2;
and the main results are proved in Section 3. The paper is concluded with some discussion in Section 4.

2. One novel model and main result

In this section, we give our model first.

Definition 2.1 (Random connection model). Suppose n is fixed. Fix two parameters α, β ∈ [0, 1]. A random
connection model RG(n, α, β) is a random graph with vertex set Zn

2 , where two vertices u, v ∈ Zn
2 are connected by

an edge with probability αn−H(u,v)βH(u,v) independently with all other pairs, in which H(u, v) is the hamming distance
between u and v.

From the definition above, the probability that two vertices u, v ∈ Zn
2 are neighbors is only dependent

on the discrete distance of these two vertices. From this point of view, we can consider this model as the
discrete counterpart of random connection model proposed by Penrose [9]: the probability that two vertices
x, y ∈ Rd are neighbors is 1(|y − x|) for some proper function 1 and | · | is the Euclidean distance in Rd.

However, there are no obvious same coupling in our random connection model in general, but it does
have some interesting properties. One of the interesting observations goes as follows:

• If H(u, v) ≥ H(u,w) and α ≥ β, then
P[u ∼ w] ≥ P[u ∼ v].

It has intuitive explanation: the smaller the distance between two vertices are, the more likely they
are neighbors.
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• If H(u, v) ≥ H(u,w) and β ≥ α, then

P[u ∼ w] ≤ P[u ∼ v].

It has intuitive explanation: the larger the distance between two vertices are, the more likely they are
neighbors.

In other words, both the distance and the parameters matter for the structures of this graph.
It turns out that this model also enjoys some phase transition property. To be more precise, we obtained

the phase transition of the isolated vertices in random connection model RG(n, α, β).

Theorem 2.2. Let 0 < β ≤ α < 1 andP be the property that a graph RG(n, α, β) contains at least one isolated vertex.
Then

lim
n→∞
P

(
RG(n, α, β) ∈ P

)
=

0 if α + β > 1,
1 if α + β < 1.

Moreover, comparing our model with the classic Erdös-Rényi random graph model G(n, p), we can
easily get the following result regarding to the ”large component”:

Theorem 2.3. The random connection graph RG(n, α, β) will only have components of size n w.h.p.when max{α, β} <
1/2; The random connection graph RG(n, α, β) will have one giant component of size same order as 2n w.h.p. when
min{α, β} > 1/2.

3. Proof of the main results

3.1. Proof of Theorem 2.2

We will prove Theorem 2.2 in this section by several steps. The main idea goes as follows: we first
estimate the probability that one vertex is isolated, and then we can prove the theorem by First and Second
Moment arguments.

3.1.1. Estimation of the probability of the isolation
Proposition 3.1. The expected degree of a vertex u in RG(n, α, β) is d(u) = (α + β)n.

Proof. Fix a vertex u ∈ Zn
2 , we then define 2n random variables as follows:

Xv =

1 if v ∼ u,
0 otherwise.

Let D(u) be the degree of u, then

D(u) =
∑
v∈Zn

2

Xv

With

E(Xv) = P(u ∼ v) = αn−H(u,v)βH(u,v)



A. Li et al. / Filomat 38:27 (2024), 9493–9500 9496

and the linearity of expectation, we can get the expected degree d(u) of u as follows:

d(u) = E(D(u)) =
∑
v∈Zn

2

αn−H(u,v)βH(u,v)

= αn
∑
v∈Zn

2

(
β

α

)H(u,v)

= αn
n∑

k=0

(
n
k

) (
β

α

)k

= αn
(
1 +
β

α

)n

= (α + β)n.

(1)

Before showing the proof, we first give one result on the probability of being isolated for one vertex. Fix
a vertex v ∈ Zn

2 , we then define one random variable as follows

Iv =

1 if v is an isolated vertex in RG(n, α, β),
0 otherwise.

Lemma 3.2. For fixed u ∈ Zn
2 , we have

P(Iu = 1) =
n∏

i=0

(
1 − αn(

β

α
)i
)(n

i)

Proof. With the definition of RG(n, α, β), u is one isolated vertex iff all other vertices(including itself) have
no edge with it. The probability that a vertex v with distance H(u, v) = k from u does not connect with v is(
1 − αn( βα )k

)
. All these events are independent with each other, so we consider this issue regarding all the

2n vertices, we have that the probability that the vertex u is isolated should be

n∏
i=0

(
1 − αn(

β

α
)i
)(n

i)
.

Then we give some asymptotic result when n is sufficiently large for the probability mentioned above:

Lemma 3.3. For large n, the probability that one vertex u be isolated is

P(Iu = 1) ∼ e−(α+β)n

Proof. For fixed u ∈ Zn
2 , we have the following result:

P(Iu = 1) =
n∏

i=0

(
1 − αn(

β

α
)i
)(n

i)
= exp

 n∑
k=0

(
n
k

)
log

(
1 − αn(

β

α
)k
)
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Then we have

n∑
k=0

(
n
k

)
log

(
1 − αn(

β

α
)k
)
∼

n∑
k=0

(
n
k

)
(−αn(

β

α
)k)

= −αn
n∑

k=0

(
n
k

)
(
β

α
)k

= −αn
n∑

k=0

(
n
k

)
(
β

α
)k1n−k

= −αn(1 +
β

α
)n

= −(α + β)n

(2)

In other words, the probability for a vertex to be an isolated one is approximately

exp

 n∑
k=0

(
n
k

)
log

(
1 − αn(

β

α
)k
) ∼ e−(α+β)n

3.1.2. Proof of Theorem 2.2
Then we show some classical techniques named First Moment Method and Second Moment Method

which will be used in the following proof, see [1] for more information.

Lemma 3.4 (First Moment Method). Let X be a non-negative integer valued random variable. Then

P(X > 0) ≤ EX.

Lemma 3.5 (Second Moment Method). Let X be a non-negative integer valued random variable. Then

P(X > 0) ≥
(EX)2

EX2 = 1 −
Var X
EX2 .

It is time to to give the proof of Theorem 2.2.

Proof of Theorem 2.2: We first show the first part of Theorem 2.2 by the First Moment argument: the
random graph will have no isolated vertex w.h.p. when α + β > 1.

Let X0 be the number of isolated vertices in the random connection model RG(n, α, β). Then X0 can be
represented as the sum of indicator random variables

X0 =
∑
v∈Zn

2

Iv

where

Iv =

1 if v is an isolated vertex in RG(n, α, β),
0 otherwise.
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So

E(X0) =
∑
v∈Zn

2

EIv

=
∑
v∈Zn

2

P(Iv = 1)

∼

∑
v∈Zn

2

e−(α+β)n

=
2n

e(α+β)n → 0.

(3)

The First Moment Method implies that X0 = 0 w.h.p. Which means, there are no isolated vertices at all as
n→∞when α + β > 1.

Then we bound the second moment of X0 as follows:

EX2
0 = E(

∑
v∈Zn

2

Iv)2

=
∑

v,u∈Zn
2

E(IuIv)

=
∑

v,u∈Zn
2

P(Iu = 1, Iv = 1)

=
∑
u,v

P(Iu = 1, Iv = 1) +
∑
u=v

P(Iu = 1, Iv = 1)

=
∑
u,v

P(Iu = 1, Iv = 1) + EX0

=
∑
u,v

P(Iu = 1|Iv = 1)P(Iv = 1) + EX0

=
∑
u,v

n∑
k=1

P(Iu = 1,H(u, v) = k|Iv = 1)P(Iv = 1) + EX0 (Condition on the distance H(u, v))

=
∑
u,v

n∑
k=1

P(Iu = 1|H(u, v) = k, Iv = 1)P(H(u, v) = k|Iv = 1)P(Iv = 1) + EX0

(4)

We then consider the events (H(u, v) = k|Iv = 1) and (Iu = 1|H(u, v) = k, Iv = 1) separately.

(i) (H(u, v) = k|Iv = 1): Given v, H(u, v) = k means u is one of the
(n

k
)

vertices which has a distance of k
with v (it does not depend on whether v is isolated or not), i.e.,

P(H(u, v) = k|Iv = 1) =

(n
k
)

2n .

(ii) (Iu = 1|H(u, v) = k, Iv = 1): Given that v is isolated and u has a distance k with v,u is an isolated vertex
means that all other n − 1 verties (except v, since v connects with no vertex ) donot have edges with u
at all. By Lemma 3.2, we have

P(Iu = 1|H(u, v) = k, Iv = 1) =

∏n
i=0

(
1 − αn( βα )i

)(n
i)

1 − αn( βα )k
.

Combining all the corresponding formulas into equation 4, we get
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EX2
0 =

∑
u,v

n∑
k=1

∏n
i=0

(
1 − αn( βα )i

)(n
i)

1 − αn( βα )k

(n
k
)

2n P(Iv = 1) + EX0

∼

∑
u,v

n∑
k=1

e−(α+β)n

e−αn( βα )k

(n
k
)

2n e−(α+β)n
+ EX0 (By Lemma 3.3 and 1 − x ∼ e−x when x→ 0)

=
∑
u,v

1
e(α+β)2n

1
2n

n∑
k=1

(
n
k

)
eα

n( βα )k
+ EX0

≤

∑
u,v

1
e(α+β)2n

1
2n

n∑
k=1

(
n
k

)
eα

n
+ EX0 (Since β ≤ α)

∼

∑
u,v

1
e(α+β)2n

1
2n

n∑
k=1

(
n
k

)
+ EX0 (Since α < 1 and let n be large enough)

≤
4n

e(α+β)2n + EX0

= (1 + o(1))(EX0)2 + EX0.

(5)

Then, by the Second Moment Method, we have

P(X0 > 0) ≥
(EX0)2

EX2
0

≥
(EX0)2

1 + o(1)((EX0)2) + EX0

=
1

(1 + o(1)) + (EX0)−1

= 1 − o(1),

(6)

since EX0 → ∞ as n→ ∞ when (α + β) < 1, which is easy to check from equation 3. Hence P(X0 > 0)→ 1
when (α + β) < 1 as n → ∞. In other words, there will be some isolated vertices in RG(n, α, β) w.h.p when
α + β < 1.

■

3.2. Proof of Theorem 2.3

Our proof will be based on some corresponding results on the percolation property of the classic Erdös-
Rényi random graph model G(n, p).

Proof of Theorem 2.3: For the classic Erdös-Rényi random graph model G(n, p), the critical probability is
pc = 1/n for the following percolation property:

• For p < pc, all connected components will have size O(ln n).

• For p > pc, there is precisely one infinite component called giant component of size Ω(n).

The complicated proof can be checked in several great books, see [2, 3, 5].
For any two fixed u, v ∈ Zn

2 , we have

min{αn, βn
} ≤ P[u ∼ v] = αn−H(u,v)βH(u,v)

≤ max{αn, βn
}.
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Of course, for a fixed triplet (u, v,w) of vertices ofZn
2 , H(u,w),H(v,w),H(u, v) are not independent, which

is different from the classic Erdös-Rényi random graph model G(n, p). However, we can have the following
observation:

min{αn, βn
} ≤ P[u ∼ v|u ∼ w, v ∼ w] ≤ max{αn, βn

}.

In other words, the event u and v have common neighbor w only means the probability of u and v being
adjacent will be larger or smaller depending on the value of α and β, but this probability can be bounded.

One can get easily that

• P[u ∼ v] < 1
2n and P[u ∼ v|u ∼ w, v ∼ w] < 1

2n when max{α, β} < 1/2;

• P[u ∼ v] > 1
2n and P[u ∼ v|u ∼ w, v ∼ w] > 1

2n when min{α, β} > 1/2.

Comparing with the percolation property of classical Erdös-Rényi random graph G(Zn
2 , p) when p < 1

2n and
p > 1

2n respectively, we complete our proof. ■

4. Discussion

This paper proposes one novel random connection model and gives proofs of some phase transition
properties of this model. Though it can be considered as one special case of the classic stochastic Kronecker
graph models proposed by Leskovec et al. [7] basing on Kronecker matrix multipications as a model that
captures many properties of real-world networks, some of the results appeared already for classic stochastic
Kronecker graphs can not be transferred into this special case trivially. There are many interesting properties
related to RG(n, α, β) which can be explored in the future. We just mention one interesting conjecture as
follows which can be considered as the strong version of Theorem 2.3:

Conjecture 4.1. The random connection graph RG(n, α, β) will only have components of size n w.h.p.when α+β < 1;
The random connection graph RG(n, α, β) will have one giant component of size same order as 2n w.h.p. whenα+β > 1.
In other words, the critical value of the giant component of RG(n, α, β) is α + β = 1.
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