Filomat 38:27 (2024), 9507–9517 https://doi.org/10.2298/FIL2427507W

Published by Faculty of Sciences and Mathematics, University of Nis, Serbia ˇ Available at: http://www.pmf.ni.ac.rs/filomat

*W***-core inverses in a ring with involution**

Yue Wanga,[∗] **, Xinran Wang^a , Junchao Wei^a**

^aSchool of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

Abstract. In this paper, we shall give some new properties and characterizations of *w*-core inverses in a unital ∗-ring, providing a new construction method of group inverse and Moore-Penrose inverse. We also present several new constructions of *w*-core invertible elements.

1. Introduction

The idea of the core inverse has been intensively studied by a number of academics. It was initially proposed by Baksalary and Trenkler in the context of complex matrices [\[1\]](#page-10-0) and then expanded by Rakic et ´ al. [\[21\]](#page-10-1) to the case of elements in rings with involution. Subsequently, the core inverse was extended to several new classes of generalized inverses such as the core-EP inverse of square complex matrices [\[20\]](#page-10-2), the DMP inverse of square complex matrices [\[14\]](#page-10-3), the pseudo core inverse of ∗-ring elements [\[4\]](#page-10-4) and the e-core inverse of ∗-ring elements [\[16\]](#page-10-5). Moreover, their characteristics and properties have been investigated which one can refer to [\[3,](#page-10-6) [23](#page-10-7)[–25\]](#page-10-8) and the references therein.

Recently, Zhu et al. [\[26\]](#page-10-9) introduced a new type of generalized inverses, called the *w*-core inverse, extending Moore-Penrose inverses, core inverses and core-EP inverses. Jin et al. [\[9\]](#page-10-10) gave some new characterizations on *w*-core inverses in a unital ∗-ring *R*. Yang and Zhu [\[22\]](#page-10-11) established necessary and sufficient conditions for the existence of the *w*-core inverse of a regular element by units in a unital ∗-ring *R* and derived the existence criterion of the *w*-core inverse of the product of three elements, which were employed into 2×2 matrices over a ring as applications. Moreover, Zhu et al. [\[27\]](#page-10-12) defined one-sided versions of '*w*-core inverse', right *w*-core invertible, and gave several characterizations for this type of generalized inverses. They also presented the relationships among the right *w*-core inverses, right inverses along an element, right (*b*, *c*)-inverses and right annihilator (*b*, *c*)-inverses.

Motivated by these results, this paper mainly provides some novel methods to characterize *w*-core inverse in ∗-ring and apply its properties to construct the relationship among the group inverse, Moore-Penrose inverse and EP elements. The rest of this paper is organized as follows. In [Section 2,](#page-1-0) we give some properties of *w*-core inverses and establish the characterizations of EP elements. Let $a \in R^* \cap R^*$. It is shown that $a \in R^{EP}$ if and only if $a(a^+)^* \in R^{EP}$ if and only if $a(a^+)^*(a^*)^*a \in R^{EP}$. We also provide one new way to construct the group inverse of finite product of an element and its generalized inverses. In [Section 3,](#page-7-0)

Communicated by Dijana Mosic´

²⁰²⁰ *Mathematics Subject Classification*. Primary 16B99; Secondary 16W10, 46L05.

Keywords. *w*-core inverse, Group inverse, Moore-Penrose inverse, EP element.

Received: 23 September 2023; Revised: 30 June 2024; Accepted: 08 July 2024

Research supported by the National Natural Science Foundation of China (No.11471282).

^{*} Corresponding author: Yue Wang

Email addresses: wangtiantianwy@163.com (Yue Wang), 18796602289@163.com (Xinran Wang), jcwei@yzu.edu.cn (Junchao Wei)

several new methods are given to represent different *w*-core invertible elements by the combinations of a, a^+, a^*, a^* and $a^n (n \in N^+).$

For the convenience of reader, let us now recall several basic notions of generalized inverses in a ring. Let *R* be an associative ring and $a \in R$. If there exists $b \in R$ such that $a = aba$, then a is called a regular

element, and *b* is called an inner inverse of *a*. Clearly, *bab* is also an inner inverse of *a*.

If there exists $a^{\#} \in R$ such that

$$
aa^{\#}a = a, a^{\#}aa^{\#} = a^{\#}, aa^{\#} = a^{\#}a,
$$

then *a* is called a group invertible element and $a^{\#}$ is called the group inverse of *a* [\[7,](#page-10-13) [11,](#page-10-14) [12\]](#page-10-15), and it is uniquely determined by these equalities. We write *R* # to denote the set of all group invertible elements of *R*.

If a map $\ast : R \rightarrow R$ satisfies

$$
(a^*)^* = a
$$
, $(a + b)^* = a^* + b^*$, $(ab)^* = b^*a^*$ for all $a, b \in R$,

then *R* is said to be an involution ring or a $*$ −ring.

Let *R* be a $*$ -ring and $a \in R$. If there exists $a^+ \in R$ such that

$$
a = aa^+a
$$
, $a^+ = a^+aa^+$, $(aa^+)^* = aa^+$, $(a^+a)^* = a^+a$,

then *a* is called a Moore-Penrose invertible element, and a^+ is called the Moore-Penrose inverse of *a* [\[5,](#page-10-16) [6\]](#page-10-17). Let *R* ⁺ denote the set of all Moore-Penrose invertible elements of *R*.

If $a \in R^* \cap R^+$ and $a^* = a^*$, then *a* is called an EP element. On the studies of EP, the readers can refer to [\[2,](#page-10-18) [6,](#page-10-17) [8,](#page-10-19) [10,](#page-10-20) [13,](#page-10-21) [15,](#page-10-22) [17](#page-10-23)[–19\]](#page-10-24).

2. Properties of *w***-core inverses and constructions of group inverses**

In this section, we mainly give some properties of *w*-core inverses and establish the characterizations of EP elements. To this end, we first propose the following definition.

Definition 2.1. [\[26\]](#page-10-9) Let R be a $*$ -ring and a, $w \in R$. If there exists $x \in R$ such that

$$
x = awx^2, \ a = xawa, \ (awx)^* = awx,
$$

then a is called w-core invertible and x is called the w-core inverse of a. Denote by $a_w^{(\!\#)}=x$.

In particular, if *a* is a 1-core invertible element, then *a* is called core invertible [\[21\]](#page-10-1) and *x* is called the core inverse of *a* and denote it by $a^{\textcircled{4}}$. For example, if $a \in R^\# \cap R^+$, then it is easy to show the following results:

 (1) $a_{a^{\#}}^{(H)}$ $\frac{d\mathbf{r}}{a^*} = aa^+;$ $(2) a^{(H)} = a^{\#}aa^+;$ $(3) (a^{\#})^{\textcircled{\#}} = a^2 a^+;$ $(4) (a^{\dagger})^{\textcircled{\#}} = (aa^{\#})^* a;$ (5) $(a^{\dagger})_{a^{\#}}^{(4)}$ $\frac{(\#)}{(a^{\#})^*} = a^*a;$ $(6) (a^*)^{\textcircled{\#}} = (a^*)^* a^+ a;$ (7) $(a^*)^{\text{univ}}_{(a^{\#})}$ $\frac{d\vec{r}}{(a^*)^*} = a^+a;$ (8) $(a^*)_{(a^*)}^{(4)}$ $\frac{(\text{#})}{(a^*)^*a^+} = (aa^{\#})^*a.$

Unless otherwise specified in the remaining sections of this article, we designate that *R* is a ∗-ring, $a, w, x \in R$ and that corresponding inverses exist.

First, it follows from [\[9,](#page-10-10) Lemma 2.1 and Corollary 2.2] that the following lemma is easily verified.

Lemma 2.2. *The following two statements are valid:*

- (1) *If* $(aw)^{\textcircled{\#}} = x$, then for any integer $n \geq 0$, we have $x^n (aw)^{n+1} = aw = awx^n (aw)^n = (aw)^n x^n aw;$ $(aw)^n x^{n+1} = x = x^n (aw)^n x;$ $(away^* = away = (aw)^{n+1}x^{n+1};$ $xaw = x^{n+1}(aw)^{n+1}$.
- (2) *If* $a_w^{(4)} = x$, then $(aw)^{(4)} = x$ and $awx^2 = x = xawx$, $xaw = a = awx$, $(awx)^* = awx$.

Theorem 2.3. If $(aw)^{\bigoplus} = x$, then $(aw)^n x \in R^{EP}$ and $((aw)^n x)^{\#} = ((aw)^n x)^{\#} = (aw)^2 x^{n+1}$ for each integer $n \ge 0$. *Especially,* $x \in R^{EP}$ *and* $x^* = x^+ = (aw)^2 x$.

Proof. By Lemma [2.2,](#page-2-0) we have

 $((aw)^n x)((aw)^2 x^{n+1}) = (aw)^n (x(aw)^2) x^{n+1} = (aw)^{n+1} x^{n+1} = awx;$ $((aw)^2x^{n+1})((aw)^nx) = (aw)^2x(x^n(aw)^nx) = (aw)^2x^2 = awx;$ $((aw)^{n}x)((aw)^{2}x^{n+1})((aw)^{n}x) = (awx)((aw)^{n}x) = ((aw)x(aw)^{n})x = (aw)^{n}x;$ $((aw)^2x^{n+1})((aw)^n x)((aw)^2x^{n+1}) = awx((aw)^2x^{n+1}) = (aw)^2x^{n+1}.$ Noting that $(away^* = away.$ Then

$$
(aw)^n x \in R^{EP}
$$
 with $((aw)^n x)^{\#} = ((aw)^n x)^{\#} = (aw)^2 x^{n+1}$.

 \Box

Theorem 2.4. If $(aw)^{\bigoplus} = x$, then $x^naw \in R^*$ and $(x^naw)^* = x^2(aw)^{n+1}$ for each integer $n \ge 0$. Especially, aw $\in R^*$ $with (aw)^{\#} = x^2aw.$

Proof. By Lemma [2.2,](#page-2-0) one gets

 $(x^n a w)(x^2 (aw)^{n+1}) = x^n (a w x^2)(a w)^{n+1} = x^{n+1} (a w)^{n+1} = x a w;$ $(x^2 (a\omega)^{n+1})(x^n a\omega) = (x^2 (a\omega)^3)(a\omega)^{n-2}x^n a\omega = (a\omega)^{n-1}x^n a\omega = x a\omega;$ $(x^n a w)(x^2 (aw)^{n+1})(x^n a w) = (x a w)(x^n a w) = x^n a w;$ $(x^2 (aw)^{n+1})(x^n aw)(x^2 (aw)^{n+1}) = xaw(x^2 (aw)^{n+1}) = x^2 (aw)^{n+1}.$ Hence, $x^n a w \in R^*$ and $(x^n a w)^* = x^2 (a w)^{n+1}$.

Theorem 2.5. *Suppose that* $a \in R^* \cap R^*$ *. Then (1)* $a_{aa^*a^*a^*a^*}^{\bigoplus} = (a^+)^* a^+$; $(2) a_{(a^+)^*}^{(f)} = aa^{\#}a^*a^{\#}aa^+.$

Proof. By Definition [2.1,](#page-1-1) we easily check

$$
aaa^{\#}a^{\ast}a^{\#}a(a^+)^{\ast}a^+ = aa^{\ast}(a^+)^{\ast}a^+ = aa^+ = (aa^+)^{\ast} = (aaa^{\#}a^{\ast}a^{\#}a(a^+)^{\ast}a^+)^{\ast},
$$

$$
aaa^{\#}a^{\ast}a^{\#}a((a^+)^{\ast}a^+)^2 = (aa^+)(a^+)^{\ast}a^+ = (a^+)^{\ast}a^+,
$$

and

$$
((a^+)^*a^+)a(aa^{\#}a^*a^{\#}a)a = (a^+)^*a^*a = a.
$$

These imply $a_{aa^{\#}}^{(1)}$ $\frac{d\mathbf{F}}{da^a a^a a^b a} = (a^+)^* a^+$. The proof is completed. Similarly, we can show (2). \square

Combining Theorem [2.4](#page-2-1) and Theorem [2.5,](#page-2-2) we can easily get the following corollary, which gives a new way to construct the group inverse of finite product of an element and its generalized inverses.

Corollary 2.6. *If* $a \in R^* \cap R^+$ *, then* (1) $(aa^*a^{\#}a)^{\#} = (a^+)^*a^{\#}$ *;* $(2) (a(a^+))^*$ = $aa^*a^*a^*$.

Proof. (1) By Theorem [2.5\(](#page-2-2)1), we obtain $a_{\text{out}}^{\textcircled{\#}}$ ⊕ $\overset{(H)}{=}$ $(a^+)^* a^+$. Then, it follows from Lemma [2.2\(](#page-2-0)2) and Theorem [2.4](#page-2-1) that $(aaa^{\#}a^*a^{\#}a)^{\#} = (aa^*a^{\#}a)^{\#} = ((a^+)^*a^+)^2aa^*a^{\#}a = (a^+)^*a^+(a^+)^*a^+aa^*a^{\#}a = (a^+)^*a^{\#}.$

(2) By Theorem [2.5\(](#page-2-2)2), we know that $a_{\alpha^+}^{(4)}$ (*a* +) [∗] = *aa*# *a* ∗ *a* # *aa*⁺ . Then, applying Lemma [2.2\(](#page-2-0)2) and Theorem [2.4,](#page-2-1) we have $(a(a^+)^*)^{\#} = (aa^{\#}a^*a^{\#})^2a(a^+)^* = aa^{\#}a^*a^{\#}aa^{\#}a^*a^{\#}a(a^+)^* = aa^{\#}a^*a^{\#}.$

Clearly, if $a \in R^* \cap R^*$, then $a^+ = (a^+a)a^*(aa^*)$. Hence, Corollary [2.6](#page-2-3) inspires us to give the following corollary.

Corollary 2.7. *If* $a \in R^* \cap R^*$ *, then* (1) $(aa^*a^{\#}a)^+ = a^+a(a^+)^*a^+$ *;* $(2) (a(a^+)^*)^+ = a^* a^* a a^+.$

Proof. (1) Due to $(aa^*a^{\#}a)^{+} = a^*a(aa^*a^{\#}a)^{\#}aa^+$ and Corollary [2.6\(](#page-2-3)1), we know that

 $(aa^*a^{\#}a)^+ = a^+a(a^+)^*a^{\#}aa^+ = a^+a(a^+)^*a^+.$

(2) Similarly, employing Corollary [2.6\(](#page-2-3)2), we deduce that

$$
(a(a^+)^*)^+ = a^+a(a(a^+)^*)^{\#}aa^+ = a^+a(aa^{\#}a^*a^{\#})aa^+ = a^*a^{\#}aa^+.
$$

 \Box

Noting that $(a^+a(a^+)^*a^+)^{\#} = (aa^{\#})^*(a^+a(a^+)^*a^+)^+(aa^{\#})^*$ and $(a^*a^{\#}aa^+)^{\#} = (aa^{\#})^*(a^*a^{\#}aa^+)^+(aa^{\#})^*$. Then Corollary [2.7](#page-3-0) induces the following corollary.

Corollary 2.8. If $a \in \mathbb{R}^* \cap \mathbb{R}^+$, then (1) $(a^+a(a^+)^*a^+)^{\#} = (aa^{\#})^*aa^*a^{\#}a(aa^{\#})^*$; (2) $(a^*a^*aa^+)^{\#} = (aa^*)^*a^2a^+(a^*)^*.$

Proof. (1) It follows from $(a^+a(a^+)^*a^+)^{\#} = (aa^{\#})^* (a^+a(a^+)^*a^+)^+ (aa^{\#})^*$ and Corollary [2.7\(](#page-3-0)1) that

 $(a^+a(a^+)^*a^+)^{\#} = (aa^{\#})^* (a^+a(a^+)^*a^+)^+ (aa^{\#})^* = (aa^{\#})^* ((aa^*a^{\#}a)^+)^+ (aa^{\#})^* = (aa^{\#})^* aa^* a^{\#} a (aa^{\#})^*$

(2) According to $(a^* a^{\#} a a^+)^{\#} = (a a^{\#})^* (a^* a^{\#} a a^+)^+ (a a^{\#})^*$ and Corollary [2.7\(](#page-3-0)2), we can deduce that

 $(a^*a^*aa^+)$ $A^* = (aa^{\#})^* (a^* a^{\#} aa^+) ^+ (aa^{\#})^* = (aa^{\#})^* ((a(a^+)^*)^+)^+ (aa^{\#})^* = (aa^{\#})^* a(a^+)^* (aa^{\#})^*$ $(a^{(4)} + a^{(4)} + a^{(4)})^* = (aa^{\#})^* a(a^{\#}aa^+)^* = (aa^{\#})^* a(aa^+)^* (a^{\#})^* = (aa^{\#})^* a^2 a^+ (a^{\#})^*.$

 \Box

Theorem 2.9. Let $a \in R^{\#} \cap R^{\+}$. Then $a \in R^{\text{EP}}$ if and only if $a(a^{\+})^* \in R^{\text{EP}}$.

Proof. \Rightarrow If $a \in R^{EP}$, then $aa^{\#} = a^{\#}a$. By Corollary [2.6,](#page-2-3) we can get

$$
(a(a^+)^*)^{\#} = aa^{\#}a^*a^{\#} = a^+aa^*a^{\#} = a^*a^+.
$$

Applying Corollary [2.7,](#page-3-0) we have $(a(a^+)^*)^+ = a^*a^*aa^+ = a^*a^+$. These imply $(a(a^+)^*)^* = (a(a^+)^*)^+$. Hence, $a(a^+)^* \in \widetilde{R}^{EP}$.

 \Leftarrow If *a*(*a*⁺)^{*} ∈ *R*^{EP}, then (*a*(*a*⁺)^{*})[#] = (*a*(*a*⁺)^{*})⁺. By Corollary [2.6](#page-2-3) and Corollary [2.7,](#page-3-0) we have

$$
aa^{\#}a^*a^{\#} = a^*a^{\#}aa^+.
$$

Multiplying the equality on the left by $(a^+)^*$, we obtain $a^{\#} = a^{\#}aa^+$. Thus $a \in R^{EP}$.

Replacing *a* in the above theorem by $a(a^+)^* \in R^{EP}$, the following corollary holds.

Corollary 2.10. Let $a \in R^* \cap R^+$. Then $a \in R^{EP}$ if and only if $a(a^+)^*aa^+(a^*)^*a \in R^{EP}$.

Proof. According to Theorem [2.9,](#page-3-1) we obtain $a \in R^{EP}$ if and only if $a(a^+)^* \in R^{EP}$. Thus $a \in R^{EP}$ if and only if $a(a^+)^*((a(a^+)^*)^+)^* \in R^{EP}$. It follows from Corollary [2.7](#page-3-0) that $(a(a^+)^*)^+ = a^*a^*aa^+$. Hence, $a(a^+)^*((a(a^+)^*)^+)^* =$ $a(a^+)^*(a^*a^{\#}aa^+)^* = a(a^+)^*aa^+(a^{\#})^*a \in R^{EP}.$

Therefore $a \in R^{EP}$ if and only if $a(a^+)^*aa^+(a^*)^*a \in R^{EP}$.

Lemma 2.11. Let $a \in R^* \cap R^*$. Then $(a(a^+)^*(a^*)^*a)^+ = a^+a^*a^*a^*aa^+$.

Proof. Notice that

$$
(a(a^+)^*(a^{\#})^*a)(a^+a^*a^*a^{\#}aa^+) = a(a^+)^*(a^{\#})^*a^*a^*a^{\#}aa^+ = aa^+
$$

$$
= (aa^+)^* = ((a(a^+)^*(a^{\#})^*a)a^+a^*a^*a^{\#}aa^+)^*.
$$

Similarly,

$$
(a^+a^*a^*a^{\#}aa^+)(a(a^+)^*(a^{\#})^*a) = a^+a = (a^+a)^* = ((a^+a^*a^*a^{\#}aa^+)(a(a^+)^*(a^{\#})^*a))^*.
$$

Then, we have

$$
(a^+a^*a^*a^{\#}aa^+)(a(a^+)^*(a^{\#})^*a)(a^+a^*a^*a^{\#}aa^+) = a^+a(a^+a^*a^*a^{\#}aa^+) = a^+a^*a^*a^{\#}aa^+
$$

and

$$
(a(a^+)^*(a^{\#})^*a)(a^+a^*a^*a^{\#}aa^+)(a(a^+)^*(a^{\#})^*a) = a(a^+)^*(a^{\#})^*a.
$$

Thus $(a(a^+)^*(a^{\#})^*a)^+ = a^+a^*a^*a^{\#}aa^+.$

It is well known that $a^{\#} = (a^{\#}a)a^+(aa^{\#})$. Hence, Lemma [2.11](#page-4-0) induces us to give the following corollary.

Corollary 2.12. Let $a \in R^* \cap R^+$. Then $(a(a^+)^*(a^{\#})^*a)^{\#} = a^{\#}aa^+a^*a^*a^{\#}$.

Proof. Since $a^{\#} = (a^{\#}a)a^+(aa^{\#})$, we have

$$
(a(a^+)^*(a^{\#})^*a)^{\#} = (a^{\#}a)(a(a^+)^*(a^{\#})^*a)^+(aa^{\#}).
$$

According to Lemma [2.11,](#page-4-0) we directly deduce that

$$
(a(a^+)^*(a^{\#})^*a)^{\#} = (a^{\#}a)a^+a^*a^*a^{\#}aa^+(aa^{\#}) = a^{\#}aa^+a^*a^*a^{\#}.
$$

 \Box

Theorem 2.13. Let $a \in R^* \cap R^+$. Then $a \in R^{EP}$ if and only if $a(a^+)^*(a^*)^*a \in R^{EP}$.

Proof. \Rightarrow Assume that $a \in R^{EP}$. Then $a^+ = a^*$. By Lemma [2.11](#page-4-0) and Corollary [2.12,](#page-4-1) we have

$$
(a(a^+)^*(a^{\#})^*a)^+ = a^+a^*a^*a^{\#}aa^+ = a^+a^*a^*a^+,
$$

and

$$
(a(a^+)^*(a^{\#})^*a)^{\#} = a^{\#}aa^+a^*a^*a^{\#} = a^+a^*a^*a^+,
$$

which implies $(a(a^+)^*(a^{\#})^*a)^{\#} = (a(a^+)^*(a^{\#})^*a)^{\#}$. Hence, $a(a^+)^*(a^{\#})^*a \in R^{EP}$.

 \Leftarrow Assume that $a(a^+)^*(a^{\#})^*a \in R^{EP}$. Then $(a(a^+)^*(a^{\#})^*a)^{\#} = (a(a^+)^*(a^{\#})^*a)^{\#}$. According to Lemma [2.11](#page-4-0) and Corollary [2.12,](#page-4-1) we have

$$
a^+a^*a^*a^*aa^+ = a^*aa^+a^*a^*a^*.
$$

Multiplying the equality on the right by $a^2a^+((a^{\#})^*)^2$, we have $a^+ = a^{\#}aa^+$ which implies $a \in R^{EP}$.

Evidently, $a \in R^{EP}$ if and only if $a^# \in R^{EP}$ if and only if $a^+ \in R^{EP}$. Hence, Theorem [2.13](#page-4-2) includes the following corollary.

 (2) $a^+a^*a^*a^*$ *aa*⁺ ∈ R^{EP} ; (3) $a^{\#}aa^+a^*a^*a^{\#} \in R^{EP}$.

(1) *a* ∈ *R EP*;

Proof. (1) \Rightarrow (2) Since $a \in R^{EP}$, $a(a^+)^*(a^{\#})^*a \in R^{EP}$ by Theorem [2.13,](#page-4-2) it follows that $(a(a^+)^*(a^{\#})^*a)^+ \in R^{EP}$. By Lemma [2.11,](#page-4-0) $a^+ a^* a^* a^* a a^* = R^{EP}$.

(2) \implies (3) Assume that $a^+a^*a^*a^*a^*a^* = R^{EP}$. Then $(a^+a^*a^*a^*a^*a^*)^+ \in R^{EP}$. By Lemma [2.11,](#page-4-0) one gets $a(a^+)^*(a^{\#})^*a \in R^{EP}$. Hence, $(a(a^+)^*(a^{\#})^*a)^{\#} \in R^{EP}$. By Corollary 2.12, one yields $a^{\#}aa^+a^*a^{\#} \in R^{EP}$.

(3) \Rightarrow (1) Assume that $a^{\#}aa^+a^*a^*a^{\#} \in R^{EP}$. Then $(a^{\#}aa^+a^*a^*a^{\#})^{\#} = (a^{\#}aa^+a^*a^*a^{\#})^{\#}$, it follows from Corollary [2.12](#page-4-1) and $(a^{\#}aa^+a^*a^*a^*)^+ = a^+a^2(a^+)^*(a^{\#})^*a^2a^+$ that

$$
a(a^+)^*(a^{\#})^*a = a^+a^2(a^+)^*(a^{\#})^*a^2a^+.
$$

Multiplying the equality on the right by *aa*⁺ , we have

$$
a(a^+)^*(a^{\#})^*a = a(a^+)^*(a^{\#})^*a^2a^+.
$$

Multiplying the last equality on the left by $a^+a^*a^*a^*$, we obtain $a^+a = a^+a^2a^+$. Thus $a \in R^{EP}$.

Corollary 2.15. *Let* $a \in R^* \cap R^+$ *. Then* (1) $(a^+a^*)^* = (a^*)^*a(aa^*)^*$; (2) $(a^{\dagger}a^*)^+ = aa^+(a^*)^*a;$ $(3) (a^+a^*a)^+ = a^+(a^*)^*a.$

Proof. (1) By Corollary [2.6,](#page-2-3) we have $(a(a^{+})^{*})^{\#} = aa^{\#}a^{*}a^{\#}$. Thus

$$
((a(a^+)^*)^{\#})^* = (aa^{\#}a^*a^{\#})^* = (a^{\#})^*a(aa^{\#})^*,
$$

and

$$
((a(a^+)^*)^*)^* = ((a(a^+)^*)^*)^* = (a^+a^*)^*.
$$

Therefore $(a^+a^*)^{\#} = (a^{\#})^*a(aa^{\#})^*$.

(2) Noting that $(a^+a^*)^+ = aa^+(a^+a^*)^{\#}a^+a$. Then, by (1), we have

$$
(a^+a^*)^+ = aa^+(a^*)^*a(aa^*)^*a^+a = aa^+(a^*)^*a.
$$

(3) By (2), $(a^+a^*)(aa^+(a^+)^*a) = a^+a = (a^+a^*a)(a^+(a^+)^*a)$. Hence, $(a^+a^*a)^+ = a^+(a^+)^*a$.

Noting that

$$
(a^{\#})^*a(aa^{\#})^* = (a^{\#})^*a(a^{\#})^*a^* = (a^{\#})^*a(a^{\#})^*aa^+a^* = ((a^{\#})^*a)^2a^+a^*,
$$

and

$$
(a^+a^*a)^{\#} = (a^+a^*a)^+ = a^+(a^{\#})^*a = (a^+(a^{\#})^*a)a^+a = (a^+(a^{\#})^*a)(a^+(a^{\#})^*a^*) = (a^+(a^{\#})^*a)(a^+(a^{\#})^*a)(a^+a^*a).
$$

Then Theorem [2.4](#page-2-1) and Corollary [2.15](#page-5-0) inspires us to give the following corollary, which proof is routine.

Corollary 2.16. *Let* $a \in R^* \cap R^+$ *. Then* (1) $(a^+)^{(\#)}_{a^*} = (a^*)^* a$; $(2) (a^+)_{{a^*}{a}}^{\textcircled{\#}} = a^+ (a^{\#})^* a.$

It is easy to show the following lemma.

Lemma 2.17. *Let* w_1 *and* $w_2 \in R$ *.* If $a_{w_1w_2}^{(\textcircled{\#})} = x$ *, then* $(aw_1)_{w_2}^{(\textcircled{\#})} = x$ *.*

Corollary 2.16 and Lemma 2.17 lead to the following corollary.

Corollary 2.18. *Let* $a \in R^* \cap R^+$ *. Then* (1) $(a^+ a^+ a)_{a^+}^{(\text{#})} = (a^*)^* a$; $(2) (a^+a^*)_a^{\textcircled{\#}} = a^+(a^*)^*a.$

Corollary 2.19. *Let* $a \in R^* \cap R^+$ *. Then* $(a^*)_{a^*}^{(4)}$ $\frac{d\mathbf{F}}{a^*} = a^+a^2(a^+)^*.$

Proof. According to Definition [2.1,](#page-1-1) we can verify directly

$$
a^*a^{\#}a^+a^2(a^+)^* = a^*a^{\#}a(a^+)^* = a^+a = (a^+a)^* = (a^*a^{\#}a^+a^2(a^+)^*)^*,
$$

$$
a^*a^{\#}(a^+a^2(a^+)^*)^2 = a^+a(a^+a^2(a^+)^*) = a^+a^2(a^+)^*
$$

and

$$
a^+a^2(a^+)^*a^*a^{\dagger}a^* = a^+aa^* = a^*.
$$

Hence, we have $(a^*)^{\textcircled{\#}}_{a^{\#}}$ $\frac{d\vec{r}}{dt} = a^+a^2(a^+)^*.$

By Corollary [2.19,](#page-6-0) we have $a^*a^{\dagger}a^+a^2(a^+)^* = a^*a^{\dagger}a(a^+)^* = a^*a^{\dagger}a(aa^+(a^+)^*)$. This gives us the following enlightenms.

Corollary 2.20. *Let* $a \in R^* \cap R^*$ *. The following statements are valid.*

(1) $(a^*)_{aa^*}^{\textcircled{\#}} = a^+a(a^+)^*;$ (2) $(a^*aa^{\#})^{\#} = (a^*aa^{\#})^+ = (a^+a(a^+)^*)^2a^*aa^{\#} = a^+a(a^+)^*;$ (3) $(a^{\dagger})_{a}^{(4)}$ $\frac{(\#)}{a(a^+)^*} = a^*aa^{\#}$; (4) (a^+a) ^(#) $\frac{(\text{#})}{(a^+)^*} = a^*aa^{\#}$; (5) $(a^*a)_{a^*}$ (#) $\frac{d\mathbf{F}}{a^*} = a^+a(a^+)^*.$

Proof. (1) According to Definition [2.1,](#page-1-1) we can verify directly

$$
a^*aa^{\#}a^+a(a^+)^* = a^*aa^{\#}(a^+)^* = a^+a = (a^*a)^* = (a^*aa^{\#}a^+a(a^+)^*)^*,
$$

$$
a^*aa^{\#}(a^+a(a^+)^*)^2 = a^+a(a^+a(a^+)^*) = a^+a(a^+)^*
$$

and

 $a^+a(a^+)^*a^*aa^*a^* = a^+aa^* = a^*.$

Hence, we have $(a^*)_{aa^{\#}}^{(#)} = a^+ a (a^+)^*.$

(2) If $(a^*)^{\bigoplus}_{aa^*} = a^+ a (a^*)^*$, then it follows from Lemma [2.2\(](#page-2-0)2) and Theorem [2.4](#page-2-1) that

$$
(a^*aa^{\#})^{\#} = (a^+a(a^+)^*)^2a^*aa^{\#} = a^+a(a^+)^*a^+a = a^+a(a^+)^*
$$

Since $(a^*aa^{\#})^{\#} = a^+a(a^+)^*$, we get

$$
a^*aa^{\#}(a^+a(a^+)^*) = a^*(a^+)^* = a^+a = (a^+a)^* = (a^*aa^{\#}(a^+a(a^+)^*))^*,
$$

.

and then $(a^+a(a^+)^*)a^*aa^+ = a^+a = (a^+a)^* = ((a^+a(a^+)^*)a^*aa^+)^*$. That is $(a^*aa^+)^+ = a^+a(a^+)^*$. (3) Similarly, employing Definition [2.1,](#page-1-1) we obtain

$$
a^+a(a^+)^*a^*aa^{\#} = a^+aaa^+aa^{\#} = a^+a = (a^+a)^* = (a^+a(a^+)^*a^*aa^{\#})^*
$$
\n
$$
a^+a(a^+)^*(a^*aa^{\#})^2 = a^+a(a^*aa^{\#}) = a^*aa^{\#}
$$
\n
$$
a^+a^+a^+a^+a^+a^+a^-a^+a^-a^+a^-a^+
$$

and

 $a^* a a^{\dagger} a^+ a (a^+)^* a^+ = a^* (a^+)^* a^+ = a^+.$

Hence, $(a^{\dagger})_{a(a)}^{\text{(#)}}$ $\frac{(\#)}{a(a^+)^*} = a^*aa^{\#}.$

(4) According to Definition [2.1,](#page-1-1) it is easy to check that

$$
a^+a(a^+)^*a^*aa^{\#} = a^+aaa^+aa^{\#} = a^+a = (a^+a)^* = (a^+a(a^+)^*a^*aa^{\#})^*,
$$

$$
a^+a(a^+)^*(a^*aa^{\#})^2 = a^+a(a^*aa^{\#}) = a^*aa^{\#}
$$

and

$$
a^*aa^{\#}a^+a(a^+)^*a^+a = a^*aa^{\#}(a^+)^*a^+a = a^+a.
$$

Hence, $(a^+a)_{(a^+)}^{(1)}$ $\frac{(\text{#})}{(a^+)^*} = a^*aa^{\#}.$

(5) Similar to the arguments in (1), (3) and (4), we get

$$
a^*aa^{\#}a^+a(a^+)^* = a^*aa^{\#}(a^+)^* = a^*(a^+)^* = a^+a = (a^+a)^* = (a^*aa^{\#}a^+a(a^+)^*)^*,
$$

$$
a^*aa^{\#}(a^+a(a^+)^*)^2 = a^+a(a^+a(a^+)^*) = a^+a(a^+)^*
$$

and

$$
a^+a(a^+)^*a^*aa^{\#}a^*a = a^+aa^*a = a^*a.
$$

Hence, (*a*^{*}*a*)^{,#} $\frac{d\mathbf{F}}{a^*} = a^+a(a^+)^*.$

3. Constructions of *w***-core invertible elements**

In this section, we mainly provide some new methods to construct different *w*-core invertible elements.

Theorem 3.1. Let $a_w^{\textcircled{\#}} = x$. Then $(awa)_{wx}^{\textcircled{\#}} = x$. *Proof.* Since $a_w^{(1)} = x$, $x = awx^2 = xawx$, $a = xawa = awxa$, $(awx)^* = awx$. Then we have a *wawx* \cdot $x^2 = a$ *w* $(a$ *wx*² $)$ *x* = *awx*² = *x*,

 $x($ *awa* $)$ *wx*(*awa* $) = (x$ *awa* $)$ *wa* $=$ *awa*,

and

 $(away)(wx)x = aw(awx^2) = awx = (awx)^* = ((awa)(wx)x)^*.$

Hence, $(awa)_{wx}^{(#)} = x$.

Corollary 3.2. Let $a \in R^* \cap R^+$. Then $(aa^*a)_{a^*}^{\bigoplus a}$ $\frac{(\text{#})}{a^+} = (a^+)^* a^+.$

Proof. By Definition [2.1,](#page-1-1) we know that

 $aa^*(a^+)^*a^+ = aa^+ = (aa^+)^* = (aa^*(a^+)^*a^+)^*,$ $aa^*(a^+)^*a^+(a^+)^*a^+ = aa^+(a^+)^*a^+ = (a^+)^*a^+,$ $(a^+)^* a^+ a a^* (a^+)^* a^+ = (a^+)^* a^* a = a$,

which implies that $a_{a^*}^{(H)} = (a^+)^* a^+$. Then we have $(aa^*a)_{a^*(a^*a^*})$ ⊕ $^{\textcircled{4}}$ _{*a**(*a*+)^{*} *a*⁺ by Theorem [3.1,](#page-7-1) and then (*aa***a*)^{$^{\textcircled{4}}$ ^{*a*}_{*a*+}}} $\frac{dU}{dt}$ = $(a^{+})^* a^{+}$.

Corollary 3.3. Let $a \in R^* \cap R^+$. Then (1) $(a(a^+)^*a)_{a^*a}^{(+)}$ *a* #*aa*⁺ ⁼ *aa*# *a* ∗ *a* # *aa*⁺ ; $(a^2) (a(a^+)^*aa^+)^{\#} = (a(a^+)^*a(a^{\#}aa^+))^{\#} = aa^{\#}a^*a^{\#}aa^+.$

Proof. (1) Since $a_{(a^+)}^{\textcircled{\tiny{\textup{\tiny{\textup{+}}}}}}$ (∄)∗ = $aa^{\#}a^*a^{\#}aa^+$ by Theorem [2.5,](#page-2-2) it follows that $(a(a^+)^*a)_{(a^+}$ (*a* +) [∗]*aa*#*a* ∗*a* #*aa*⁺ ⁼ *aa*# *a* ∗ *a* # *aa*⁺ by Theorem [3.1,](#page-7-1) and then $(a(a^+)^* a)_{a^{\#a}}^{(4)}$ $\frac{d\ddot{x}}{dt} = aa^{\#}a^*a^{\#}aa^+.$ (2) Since $(a(a^+)^*a)_{a^*a}^{(4)}$ $\frac{dE}{dt}$ _{*a***a*} $=$ *aa*[#]*a***a*[#]*aa*⁺, it follows from Lemma [2.2\(](#page-2-0)2) and Theorem [2.4](#page-2-1) that

$$
(a(a^+)^*aa^{\#}aa^+)^{\#} = (aa^{\#}a^*a^{\#}aa^+)^2a(a^+)^*a(a^{\#}aa^+).
$$

Hence, $(a(a^+)^*aa^+)^{\#} = (aa^{\#}a^*a^{\#}aa^+)(aa^{\#}a^*a^{\#}aa^+)a(a^+)^*a(a^{\#}aa^+) = aa^{\#}a^*a^{\#}aa^+.$

Theorem 3.4. Let $a_w^{(H)} = x$. Then $a_{wx}^{(H)} = awx$.

Proof. From $a_w^{(1)} = x$, we have $a = xawa = awxa$, $x = awx^2 = xawx$ and $(awx)^* = awx$. It follows from Definition [2.1](#page-1-1) that

$$
awx(avx) = (awxa)wx = awx = (awx)^* = (awx(awx))^*,
$$

$$
awx (awx)^2 = awx (awx) (awx) = awx (awx) = awx
$$

and

$$
(awx)a(wx)a = awxa = a.
$$

Hence, $a_{wx}^{(H)} = awx$.

Corollary 3.5. Let $a \in R^* \cap R^+$. Then $a_{a^*aa^+}^{\textcircled{4\hskip-4pt\textup{4}}}=aa^+.$

Proof. By Theorem [2.5,](#page-2-2) we know $a_{\alpha^+}^{(4)}$ (#)_{*} = aa[#]a*a[#]aa⁺. Thus, by Theorem [3.4,](#page-8-0) we have

$$
a_{(a^+)^*aa^{\#}a^*a^{\#}aa^+}^{(\#)} = a(a^+)^*aa^{\#}a^*a^{\#}aa^+.
$$

Since $(a^+)^* a a^{\#} a^* a^{\#} a a^+ = (a^+)^* a^* a^{\#} a a^+ = a^{\#} a a^+$ and

$$
a(a^+)^*aa^*a^*a^*aa^+ = a(a^+)^*a^*a^*aa^+ = aa^*,
$$

which implies $a_{ata}^{(4)}$ $\frac{d\vec{t}}{dt}$ aa⁺.

Theorem 3.6. Let $a_w^{(H)} = x$. Then $(aw)_x^{(H)} = awx$.

Proof. Since $a_w^{(#)} = x$, we have $aww^2 = x = xawx$, $xawa = a = awxa$ and $(awx)^* = awx$. By Definition [2.1,](#page-1-1) we have

$$
awx(awx) = awx = (awx)^* = (awx(awx))^*,
$$

awx(*awx*) ² = *awx*(*awx*)(*awx*) = *awxawx* = *awx*,

and

 $(axvx)(aw)xaw = axvxaw = aw$.

Hence, $(aw)_x^{\textcircled{\#}} = awx$.

Corollary 3.7. Let $a \in R^+$ and $a_w^{(H)} = x$. Then $(aw)_x^{(H)} = aa^+$.

Proof. Since $a_w^{(#)} = x$, we have $awx^2 = x = xawx$, $xawa = a = awxa$ and $(awx)^* = awx$. Thus, $(awxaa^*)^* = awx$. $(aa^+)^*(aww)^* = aa^+awx = awx = (awx)^* = ((awxaa^+)^*)^* = awxaa^+$, $(awx(aa^+)^2) = awxaa^+ = aa^+$ and $aa^+awxaw =$ a *wxaw* = a *w*. That is $(aw)_x^{\textcircled{\#}} = aa^+.$

Theorem 3.8. *Let* $a \in R^* \cap R^+$ *. Then*

(1) $a_{a^*a}^{(4)} = a^*(a^+)^*a^+$; (2) (aa^*a) ^(#)_{∩#(} $\frac{d\mathbf{r}}{d^{\#}(a^+)^*a^+} = aa^+;$ (3) $(aa^*a)^{\#} = a^{\#}(a^+)^*a^+a^{\#}a;$ $(4) (aa^*a)^+ = a^+aa^{\#}(a^+)^*a^+a^{\#}aaa^+ = a^+(a^+)^*a^+;$ (5) $(a^{\#}(a^+)^*a^+)^{\#} = (a^{\#}(a^+)^*a^+)^{\#} = aa^*a^2a^+.$

Proof. (1) It follows from Definition [2.1](#page-1-1) that

$$
aa^*aa^{\#}(a^+)^*a^+ = aa^*(a^+)^*a^+ = aa^+ = (aa^+)^* = (aa^*aa^{\#}(a^+)^*a^+)^*,
$$

$$
aa^*a(a^{\#}(a^+)^*a^+)^2 = aa^+(a^{\#}(a^+)^*a^+) = a^{\#}(a^+)^*a^+
$$

and

$$
a^{\#}(a^+)^*a^+aa^*aa = a^{\#}(a^+)^*a^*a^2 = a.
$$

Thus, $a_{a^*a}^{(4)} = a^*(a^+)^* a^+.$

(2) Combining $a_{\alpha}^{(\text{#})} = a^{\text{#}}(a^+)^* a^+$ with Theorem [3.6,](#page-8-1) we directly deduce that

$$
(aa^*a)_{a^*(a^+)^*a^+}^{(4)} = aa^*aa^*(a^+)^*a^+ = aa^*(a^+)^*a^+ = aa^+.
$$

(3) Since $a_{a^*a}^{(#)} = a^*_{a}(a^+)^*a^+$, it follows from Lemma [2.2\(](#page-2-0)2) that $(aa^*a)^* = a^*(a^+)^*a^+$. By Theorem [2.4,](#page-2-1) we obtain $(aa^*a)^{\#} = (a^{\#}(a^{\#})^*a^{\#})^2aa^*a = a^{\#}(a^{\#})^*a^{\#}a^{\#}a.$

(4) It is well known that $a^+ = a^+ a a^{\#} a a^+$. Then we have $(a a^* a)^+ = a^+ a (a a^* a)^{\#} a a^+$. By (3), we obtain $(aa^*a)^+ = a^+a(a^{\#}(a^+)^*a^+a^{\#}a)aa^+ = a^+(a^+)^*a^+.$

(5) By (1) and Lemma [2.2\(](#page-2-0)2), we know $(aa^*a)^{\#} = a^{\#}(a^+)^*a^+$. Then according to Theorem [2.3,](#page-2-4) we get

$$
(a^{\#}(a^+)^*a^+)^{\#} = (a^{\#}(a^+)^*a^+)^{\dagger} = aa^*a(aa^*a)a^{\#}(a^+)^*a^+ = aa^*a^2a^+.
$$

 \Box

Statements and Declarations

Acknowledgements

All authors sincerely appreciate the valuable comments and diligent efforts from the reviewers and editors on improving this manuscript.

Ethical Approval

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Y. Wang, X.R. Wang and J.C. Wei wrote the main manuscript text. All authors reviewed and approved the final manuscript.

Funding

This research was funded by the National Natural Science Foundation of China, grant number 11471282.

Availability of data and materials

Not applicable.

References

- [1] O. M. Baksalary, G. Trenkler, *Core inverse of matrices*, Linear Multilinear Algebra **58** (2010) 681–697. doi: 10.1080/[03081080902778222](https://doi.org/10.1080/03081080902778222)
- [2] D. Drivaliaris, S. Karanasios, D. Pappas, *Factorizations of EP operators*, Linear Algebra Appl. **429** (2008) 1555–1567. doi: 10.1016/[j.laa.2008.04.026](https://doi.org/10.1016/j.laa.2008.04.026)
- [3] D. E. Ferreyra, F. E. Levis, N. Thome, *Revisiting the core EP inverse and its extension to rectangular matrices*, Quaest. Math. **41** (2018) 265–281. doi: 10.2989/[16073606.2017.1377779](https://doi.org/10.2989/16073606.2017.1377779)
- [4] Y. F. Gao, J. L. Chen, *Pseudo core inverses in rings with involution*, Comm. Algebra **46** (2018) 38–50. doi: 10.1080/[00927872.2016.1260729](https://doi.org/10.1080/00927872.2016.1260729)
- [5] R. E. Harte, M. Mbekhta, *On generalized inverses in C*[∗] *-algebras*, Studia Math. **103** (1992) 71-7-7. doi: 10.4064/[sm-103-](https://doi.org/10.4064/sm-103-1-71-77) [1-71-77](https://doi.org/10.4064/sm-103-1-71-77)
- [6] R. E. Hartwig, *Block generalized inverses*, Arch. Retion. Mech. Anal. **61** (1976) 197–251. doi: 10.1007/[BF00281485](https://doi.org/10.1007/BF00281485)
- [7] R. E. Hartwig, *Generalized inverses, EP elements and associates*, Rev. Roumaine Math. Pures Appl. **23** (1978) 57–60.
- [8] R. E. Hartwig, I. J. Katz, *Products of EP elements in reflexive semigroups*, Linear Algebra and Appl. **14** (1976) 11–19. doi: 10.1016/[0024-3795\(76\)90058-6](https://doi.org/10.1016/0024-3795(76)90058-6)
- [9] T. H. Jin, H. H. Zhu, L. Y. Wu, *New characterizations for w-core inverses in rings with involution*, Filomat **37** (2023) 2131–2139.
- [10] S. Karanasios, *EP elements in rings and semigroup with involution and C*[∗] *-algebras*, Serdica Math. J. **41** (2015) 83–116. http://[eudml.org](http://eudml.org/doc/295044)/doc/295044
- [11] J. J. Koliha, *The Drazin and Moore-Penrose inverse in C*[∗] *-algebras*, Math. Proc. R. Ir. Acad. **99**A (1999) 17–27. http://[www.jstor.org](http://www.jstor.org/stable/20459739)/stable/20459739
- [12] J. J. Koliha, D. Cvetkovi*c*´, D. S. Djordjevi*c*´, *Moore-Penrose inverse in rings with involution*, Linear Algebra Appl. **426** (2007) 371–381. doi: 10.1016/[j.laa.2007.05.012](https://doi.org/10.1016/j.laa.2007.05.012)
- [13] J. J. Koliha, P. Patr´ılcio, *Elements of rings with equal spectral idempotents*, J. Aust. Math. Soc. **72** (2002) 137–152. doi: 10.1017/[S1446788700003657](https://doi.org/10.1017/S1446788700003657)
- [14] S. B. Malik, N. Thome, *On a new generalized inverse for matrices of an arbitrary index*, Appl. Math. Comput. **226** (2014) 575–580. doi: 10.1016/[j.amc.2013.10.060](https://doi.org/10.1016/j.amc.2013.10.060)
- [15] D. Mosić, *Generalized inverses*, Faculty of Sciences and Mathematics, University of Niš, Niš 2018.
- [16] D. Mosić, C. Y. Deng, H. F. Ma, On a weighted core inverse in a ring with involution, Comm. Algebra 46 (2018) 2332–2345. doi: 10.1080/[00927872.2017.1378895](https://doi.org/10.1080/00927872.2017.1378895)
- [17] D. Mosić, D. S. Djordjević, *Further results on partial isometries and EP elements in rings with involution*, Math. Comput. Model. **54** (2011) 460–465. doi: 10.1016/[j.mcm.2011.02.035](https://doi.org/10.1016/j.mcm.2011.02.035)
- [18] D. Mosić, D. S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings, Appl. Math. Comput. **218** (2012) 6702–6710. doi: 10.1016/[j.amc.2011.12.030](https://doi.org/10.1016/j.amc.2011.12.030)
- [19] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings, Linear Algebra Appl. 431 (2009) 527–535. doi: 10.1016/[j.laa.2009.02.032](https://doi.org/10.1016/j.laa.2009.02.032)
- [20] K. M. Prasad, K. S. Mohana, *Core-EP inverse*, Linear Multilinear Algebra **62** (2014) 792–802. doi: 10.1080/[03081087.2013.791690](https://doi.org/10.1080/03081087.2013.791690)
- [21] D. S. Rakić, N.Č. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. **463** (2014) 115–133. doi: 10.1016/[j.laa.2014.09.003](https://doi.org/10.1016/j.laa.2014.09.003)
- [22] Y. X. Yang, H. H. Zhu, *The w-core inverse of a product and its applications*, Filomat **37** (2023) 4587–4601.
- [23] H. H. Zhu, *On DMP inverse and m-EP elements in rings*, Linear Multilinear Algebra **67** (2019) 756–766. doi: 10.1080/[03081087.2018.1432546](https://doi.org/10.1080/03081087.2018.1432546)
- [24] H. H. Zhu, P. Patrício, *Characterizations for pseudo core inverses in a ring with involution*, Linear Multilinear Algebra **67** (2019) 1109–1120. doi: 10.1080/[03081087.2018.1446506](https://doi.org/10.1080/03081087.2018.1446506)
- [25] H. H. Zhu, Q. W. Wang, *Weighted Moore-Penrose inverses and weighted core inverses in rings with involution*, Chin. Ann. Math. Ser. B **42** (2021) 613–624. doi: 10.1007/[s11401-021-0282-5](https://doi.org/10.1007/s11401-021-0282-5)
- [26] H. H. Zhu, L. Y. Wu, J. L. Chen, *A new class of generalized inverses in semigroups and rings with involution*, Comm. Algebra **51** (2023), 2098-2113. doi: 10.1080/[00927872.2022.2150771](https://doi.org/10.1080/00927872.2022.2150771)
- [27] H. H. Zhu, L. Y. Wu, D. Mosic,´ *One-sided w-core inverses in rings with an involution*, Linear and Multilinear Algebra **71** (2023), 528–544. doi: 10.1080/[03081087.2022.2035308](https://doi.org/10.1080/03081087.2022.2035308)