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Abstract. In this paper, we shall give some new properties and characterizations of w-core inverses in a
unital ∗-ring, providing a new construction method of group inverse and Moore-Penrose inverse. We also
present several new constructions of w-core invertible elements.

1. Introduction

The idea of the core inverse has been intensively studied by a number of academics. It was initially
proposed by Baksalary and Trenkler in the context of complex matrices [1] and then expanded by Rakić et
al. [21] to the case of elements in rings with involution. Subsequently, the core inverse was extended to
several new classes of generalized inverses such as the core-EP inverse of square complex matrices [20], the
DMP inverse of square complex matrices [14], the pseudo core inverse of ∗-ring elements [4] and the e-core
inverse of ∗-ring elements [16]. Moreover, their characteristics and properties have been investigated which
one can refer to [3, 23–25] and the references therein.

Recently, Zhu et al. [26] introduced a new type of generalized inverses, called the w-core inverse,
extending Moore-Penrose inverses, core inverses and core-EP inverses. Jin et al. [9] gave some new
characterizations on w-core inverses in a unital ∗-ring R. Yang and Zhu [22] established necessary and
sufficient conditions for the existence of the w-core inverse of a regular element by units in a unital ∗-ring
R and derived the existence criterion of the w-core inverse of the product of three elements, which were
employed into 2 × 2 matrices over a ring as applications. Moreover, Zhu et al. [27] defined one-sided
versions of ‘w-core inverse’, right w-core invertible, and gave several characterizations for this type of
generalized inverses. They also presented the relationships among the right w-core inverses, right inverses
along an element, right (b, c)-inverses and right annihilator (b, c)-inverses.

Motivated by these results, this paper mainly provides some novel methods to characterize w-core
inverse in ∗-ring and apply its properties to construct the relationship among the group inverse, Moore-
Penrose inverse and EP elements. The rest of this paper is organized as follows. In Section 2, we give
some properties of w-core inverses and establish the characterizations of EP elements. Let a ∈ R#⋂R+. It is
shown that a ∈ REP if and only if a(a+)∗ ∈ REP if and only if a(a+)∗(a#)∗a ∈ REP. We also provide one new way
to construct the group inverse of finite product of an element and its generalized inverses. In Section 3,
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several new methods are given to represent different w-core invertible elements by the combinations of
a, a+, a#, a∗ and an(n ∈ N+).

For the convenience of reader, let us now recall several basic notions of generalized inverses in a ring.
Let R be an associative ring and a ∈ R. If there exists b ∈ R such that a = aba, then a is called a regular

element, and b is called an inner inverse of a. Clearly, bab is also an inner inverse of a.
If there exists a#

∈ R such that
aa#a = a, a#aa# = a#, aa# = a#a,

then a is called a group invertible element and a# is called the group inverse of a [7, 11, 12], and it is uniquely
determined by these equalities. We write R# to denote the set of all group invertible elements of R.

If a map ∗ : R→ R satisfies

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for all a, b ∈ R,

then R is said to be an involution ring or a ∗−ring.
Let R be a ∗-ring and a ∈ R. If there exists a+ ∈ R such that

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a,

then a is called a Moore-Penrose invertible element, and a+ is called the Moore-Penrose inverse of a [5, 6].
Let R+ denote the set of all Moore-Penrose invertible elements of R.

If a ∈ R#
∩ R+ and a# = a+, then a is called an EP element. On the studies of EP, the readers can refer to

[2, 6, 8, 10, 13, 15, 17–19].

2. Properties of w-core inverses and constructions of group inverses

In this section, we mainly give some properties of w-core inverses and establish the characterizations of
EP elements. To this end, we first propose the following definition.

Definition 2.1. [26] Let R be a ∗-ring and a,w ∈ R. If there exists x ∈ R such that

x = awx2, a = xawa, (awx)∗ = awx,

then a is called w-core invertible and x is called the w-core inverse of a. Denote by a #O
w = x.

In particular, if a is a 1-core invertible element, then a is called core invertible [21] and x is called the core
inverse of a and denote it by a #O. For example, if a ∈ R#

∩ R+, then it is easy to show the following results:

(1) a #O
a# = aa+;

(2) a #O = a#aa+;
(3) (a#) #O = a2a+;
(4) (a+) #O = (aa#)∗a;

(5) (a+) #O
(a#)∗ = a∗a;

(6) (a∗) #O = (a#)∗a+a;

(7) (a∗) #O
(a#)∗ = a+a;

(8) (a∗) #O
(a#)∗a+ = (aa#)∗a.

Unless otherwise specified in the remaining sections of this article, we designate that R is a ∗-ring,
a,w, x ∈ R and that corresponding inverses exist.

First, it follows from [9, Lemma 2.1 and Corollary 2.2] that the following lemma is easily verified.
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Lemma 2.2. The following two statements are valid:
(1) If (aw) #O = x, then for any integer n ≥ 0, we have

xn(aw)n+1 = aw = awxn(aw)n = (aw)nxnaw;
(aw)nxn+1 = x = xn(aw)nx;
(awx)∗ = awx = (aw)n+1xn+1;
xaw = xn+1(aw)n+1.

(2) If a #O
w = x, then (aw) #O = x and awx2 = x = xawx, xawa = a = awxa, (awx)∗ = awx.

Theorem 2.3. If (aw) #O = x, then (aw)nx ∈ REP and ((aw)nx)# = ((aw)nx)+ = (aw)2xn+1 for each integer n ≥ 0.
Especially, x ∈ REP and x# = x+ = (aw)2x.

Proof. By Lemma 2.2, we have
((aw)nx)((aw)2xn+1) = (aw)n(x(aw)2)xn+1 = (aw)n+1xn+1 = awx;
((aw)2xn+1)((aw)nx) = (aw)2x(xn(aw)nx) = (aw)2x2 = awx;
((aw)nx)((aw)2xn+1)((aw)nx) = (awx)((aw)nx) = ((aw)x(aw)n)x = (aw)nx;
((aw)2xn+1)((aw)nx)((aw)2xn+1) = awx((aw)2xn+1) = (aw)2xn+1.
Noting that (awx)∗ = awx. Then

(aw)nx ∈ REP with ((aw)nx)# = ((aw)nx)+ = (aw)2xn+1.

Theorem 2.4. If (aw) #O = x, then xnaw ∈ R# and (xnaw)# = x2(aw)n+1 for each integer n ≥ 0. Especially, aw ∈ R#

with (aw)# = x2aw.

Proof. By Lemma 2.2, one gets
(xnaw)(x2(aw)n+1) = xn(awx2)(aw)n+1 = xn+1(aw)n+1 = xaw;
(x2(aw)n+1)(xnaw) = (x2(aw)3)(aw)n−2xnaw = (aw)n−1xnaw = xaw;
(xnaw)(x2(aw)n+1)(xnaw) = (xaw)(xnaw) = xnaw;
(x2(aw)n+1)(xnaw)(x2(aw)n+1) = xaw(x2(aw)n+1) = x2(aw)n+1.
Hence, xnaw ∈ R# and (xnaw)# = x2(aw)n+1.

Theorem 2.5. Suppose that a ∈ R#⋂R+. Then (1) a #O
aa#a∗a#a = (a+)∗a+;

(2) a #O
(a+)∗ = aa#a∗a#aa+.

Proof. By Definition 2.1, we easily check

aaa#a∗a#a(a+)∗a+ = aa∗(a+)∗a+ = aa+ = (aa+)∗ = (aaa#a∗a#a(a+)∗a+)∗,

aaa#a∗a#a((a+)∗a+)2 = (aa+)(a+)∗a+ = (a+)∗a+,

and
((a+)∗a+)a(aa#a∗a#a)a = (a+)∗a∗a = a.

These imply a #O
aa#a∗a#a = (a+)∗a+. The proof is completed.

Similarly, we can show (2).

Combining Theorem 2.4 and Theorem 2.5, we can easily get the following corollary, which gives a new way
to construct the group inverse of finite product of an element and its generalized inverses.

Corollary 2.6. If a ∈ R#⋂R+, then (1) (aa∗a#a)# = (a+)∗a#;
(2) (a(a+)∗)# = aa#a∗a#.
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Proof. (1) By Theorem 2.5(1), we obtain a #O
aa#a∗a#a = (a+)∗a+. Then, it follows from Lemma 2.2(2) and Theorem

2.4 that (aaa#a∗a#a)# = (aa∗a#a)# = ((a+)∗a+)2aa∗a#a = (a+)∗a+(a+)∗a+aa∗a#a = (a+)∗a#.

(2) By Theorem 2.5(2), we know that a #O
(a+)∗ = aa#a∗a#aa+. Then, applying Lemma 2.2(2) and Theorem 2.4,

we have (a(a+)∗)# = (aa#a∗a#)2a(a+)∗ = aa#a∗a#aa#a∗a#a(a+)∗ = aa#a∗a#.

Clearly, if a ∈ R#⋂R+, then a+ = (a+a)a#(aa+). Hence, Corollary 2.6 inspires us to give the following corollary.

Corollary 2.7. If a ∈ R#⋂R+, then (1) (aa∗a#a)+ = a+a(a+)∗a+;
(2) (a(a+)∗)+ = a∗a#aa+.

Proof. (1) Due to (aa∗a#a)+ = a+a(aa∗a#a)#aa+ and Corollary 2.6(1), we know that

(aa∗a#a)+ = a+a(a+)∗a#aa+ = a+a(a+)∗a+.

(2) Similarly, employing Corollary 2.6(2), we deduce that

(a(a+)∗)+ = a+a(a(a+)∗)#aa+ = a+a(aa#a∗a#)aa+ = a∗a#aa+.

Noting that (a+a(a+)∗a+)# = (aa#)∗(a+a(a+)∗a+)+(aa#)∗ and (a∗a#aa+)# = (aa#)∗(a∗a#aa+)+(aa#)∗. Then Corollary
2.7 induces the following corollary.

Corollary 2.8. If a ∈ R#⋂R+, then (1) (a+a(a+)∗a+)# = (aa#)∗aa∗a#a(aa#)∗;
(2) (a∗a#aa+)# = (aa#)∗a2a+(a#)∗.

Proof. (1) It follows from (a+a(a+)∗a+)# = (aa#)∗(a+a(a+)∗a+)+(aa#)∗ and Corollary 2.7(1) that

(a+a(a+)∗a+)# = (aa#)∗(a+a(a+)∗a+)+(aa#)∗ = (aa#)∗((aa∗a#a)+)+(aa#)∗ = (aa#)∗aa∗a#a(aa#)∗

(2) According to (a∗a#aa+)# = (aa#)∗(a∗a#aa+)+(aa#)∗ and Corollary 2.7(2), we can deduce that

(a∗a#aa+)# = (aa#)∗(a∗a#aa+)+(aa#)∗ = (aa#)∗((a(a+)∗)+)+(aa#)∗ = (aa#)∗a(a+)∗(aa#)∗

= (aa#)∗a(aa#a+)∗ = (aa#)∗a(a#aa+)∗ = (aa#)∗a(aa+)∗(a#)∗ = (aa#)∗a2a+(a#)∗.

Theorem 2.9. Let a ∈ R#⋂R+. Then a ∈ REP if and only if a(a+)∗ ∈ REP.

Proof. ⇒ If a ∈ REP, then aa# = a+a. By Corollary 2.6, we can get

(a(a+)∗)# = aa#a∗a# = a+aa∗a# = a∗a+.

Applying Corollary 2.7, we have (a(a+)∗)+ = a∗a#aa+ = a∗a+. These imply (a(a+)∗)# = (a(a+)∗)+. Hence,
a(a+)∗ ∈ REP.
⇐ If a(a+)∗ ∈ REP, then (a(a+)∗)# = (a(a+)∗)+. By Corollary 2.6 and Corollary 2.7, we have

aa#a∗a# = a∗a#aa+.

Multiplying the equality on the left by (a+)∗, we obtain a# = a#aa+. Thus a ∈ REP.

Replacing a in the above theorem by a(a+)∗ ∈ REP, the following corollary holds.

Corollary 2.10. Let a ∈ R#⋂R+. Then a ∈ REP if and only if a(a+)∗aa+(a#)∗a ∈ REP.
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Proof. According to Theorem 2.9, we obtain a ∈ REP if and only if a(a+)∗ ∈ REP. Thus a ∈ REP if and only
if a(a+)∗((a(a+)∗)+)∗ ∈ REP. It follows from Corollary 2.7 that (a(a+)∗)+ = a∗a#aa+. Hence, a(a+)∗((a(a+)∗)+)∗ =
a(a+)∗(a∗a#aa+)∗ = a(a+)∗aa+(a#)∗a ∈ REP.

Therefore a ∈ REP if and only if a(a+)∗aa+(a#)∗a ∈ REP.

Lemma 2.11. Let a ∈ R#⋂R+. Then (a(a+)∗(a#)∗a)+ = a+a∗a∗a#aa+.

Proof. Notice that
(a(a+)∗(a#)∗a)(a+a∗a∗a#aa+) = a(a+)∗(a#)∗a∗a∗a#aa+ = aa+

= (aa+)∗ = ((a(a+)∗(a#)∗a)a+a∗a∗a#aa+)∗.

Similarly,
(a+a∗a∗a#aa+)(a(a+)∗(a#)∗a) = a+a = (a+a)∗ = ((a+a∗a∗a#aa+)(a(a+)∗(a#)∗a))∗.

Then, we have

(a+a∗a∗a#aa+)(a(a+)∗(a#)∗a)(a+a∗a∗a#aa+) = a+a(a+a∗a∗a#aa+) = a+a∗a∗a#aa+

and

(a(a+)∗(a#)∗a)(a+a∗a∗a#aa+)(a(a+)∗(a#)∗a) = a(a+)∗(a#)∗a.

Thus (a(a+)∗(a#)∗a)+ = a+a∗a∗a#aa+.

It is well known that a# = (a#a)a+(aa#). Hence, Lemma 2.11 induces us to give the following corollary.

Corollary 2.12. Let a ∈ R#⋂R+. Then (a(a+)∗(a#)∗a)# = a#aa+a∗a∗a#.

Proof. Since a# = (a#a)a+(aa#), we have

(a(a+)∗(a#)∗a)# = (a#a)(a(a+)∗(a#)∗a)+(aa#).

According to Lemma 2.11, we directly deduce that

(a(a+)∗(a#)∗a)# = (a#a)a+a∗a∗a#aa+(aa#) = a#aa+a∗a∗a#.

Theorem 2.13. Let a ∈ R#⋂R+. Then a ∈ REP if and only if a(a+)∗(a#)∗a ∈ REP.

Proof. ⇒ Assume that a ∈ REP. Then a+ = a#. By Lemma 2.11 and Corollary 2.12, we have

(a(a+)∗(a#)∗a)+ = a+a∗a∗a#aa+ = a+a∗a∗a+,

and
(a(a+)∗(a#)∗a)# = a#aa+a∗a∗a# = a+a∗a∗a+,

which implies (a(a+)∗(a#)∗a)# = (a(a+)∗(a#)∗a)+. Hence, a(a+)∗(a#)∗a ∈ REP.
⇐ Assume that a(a+)∗(a#)∗a ∈ REP. Then (a(a+)∗(a#)∗a)# = (a(a+)∗(a#)∗a)+. According to Lemma 2.11 and

Corollary 2.12, we have
a+a∗a∗a#aa+ = a#aa+a∗a∗a#.

Multiplying the equality on the right by a2a+((a#)∗)2, we have a+ = a#aa+ which implies a ∈ REP.

Evidently, a ∈ REP if and only if a#
∈ REP if and only if a+ ∈ REP. Hence, Theorem 2.13 includes the following

corollary.
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Corollary 2.14. Let a ∈ R#⋂R+. Then the following statements are equivalent:
(1) a ∈ REP;
(2) a+a∗a∗a#aa+ ∈ REP;
(3) a#aa+a∗a∗a#

∈ REP.

Proof. (1) ⇒ (2) Since a ∈ REP, a(a+)∗(a#)∗a ∈ REP by Theorem 2.13, it follows that (a(a+)∗(a#)∗a)+ ∈ REP. By
Lemma 2.11, a+a∗a∗a#aa+ ∈ REP.

(2) =⇒ (3) Assume that a+a∗a∗a#aa+ ∈ REP. Then (a+a∗a∗a#aa+)+ ∈ REP. By Lemma 2.11, one gets
a(a+)∗(a#)∗a ∈ REP. Hence, (a(a+)∗(a#)∗a)#

∈ REP. By Corollary 2.12, one yields a#aa+a∗a∗a#
∈ REP.

(3)⇒ (1) Assume that a#aa+a∗a∗a#
∈ REP. Then (a#aa+a∗a∗a#)# = (a#aa+a∗a∗a#)+, it follows from Corollary

2.12 and (a#aa+a∗a∗a#)+ = a+a2(a+)∗(a#)∗a2a+ that

a(a+)∗(a#)∗a = a+a2(a+)∗(a#)∗a2a+.

Multiplying the equality on the right by aa+, we have

a(a+)∗(a#)∗a = a(a+)∗(a#)∗a2a+.

Multiplying the last equality on the left by a+a∗a∗a#, we obtain a+a = a+a2a+. Thus a ∈ REP.

Corollary 2.15. Let a ∈ R#⋂R+. Then (1) (a+a∗)# = (a#)∗a(aa#)∗;
(2) (a+a∗)+ = aa+(a#)∗a;
(3) (a+a∗a)+ = a+(a#)∗a.

Proof. (1) By Corollary 2.6, we have (a(a+)∗)# = aa#a∗a#. Thus

((a(a+)∗)#)∗ = (aa#a∗a#)∗ = (a#)∗a(aa#)∗,

and
((a(a+)∗)#)∗ = ((a(a+)∗)∗)# = (a+a∗)#.

Therefore (a+a∗)# = (a#)∗a(aa#)∗.
(2) Noting that (a+a∗)+ = aa+(a+a∗)#a+a. Then, by (1), we have

(a+a∗)+ = aa+(a#)∗a(aa#)∗a+a = aa+(a#)∗a.

(3) By (2), (a+a∗)(aa+(a#)∗a) = a+a = (a+a∗a)(a+(a#)∗a). Hence, (a+a∗a)+ = a+(a#)∗a.

Noting that

(a#)∗a(aa#)∗ = (a#)∗a(a#)∗a∗ = (a#)∗a(a#)∗aa+a∗ = ((a#)∗a)2a+a∗,

and

(a+a∗a)# = (a+a∗a)+ = a+(a#)∗a = (a+(a#)∗a)a+a = (a+(a#)∗a)(a+(a#)∗a∗)a = (a+(a#)∗a)(a+(a#)∗a)(a+a∗a).

Then Theorem 2.4 and Corollary 2.15 inspires us to give the following corollary, which proof is routine.

Corollary 2.16. Let a ∈ R#⋂R+. Then (1) (a+) #O
a∗ = (a#)∗a;

(2) (a+) #O
a∗a = a+(a#)∗a.

It is easy to show the following lemma.

Lemma 2.17. Let w1 and w2 ∈ R. If a #O
w1w2
= x, then (aw1) #O

w2
= x.

Corollary 2.16 and Lemma 2.17 lead to the following corollary.
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Corollary 2.18. Let a ∈ R#⋂R+. Then (1) (a+a+a) #O
a∗ = (a#)∗a;

(2) (a+a∗) #O
a = a+(a#)∗a.

Corollary 2.19. Let a ∈ R#⋂R+. Then (a∗) #O
a# = a+a2(a+)∗.

Proof. According to Definition 2.1, we can verify directly

a∗a#a+a2(a+)∗ = a∗a#a(a+)∗ = a+a = (a+a)∗ = (a∗a#a+a2(a+)∗)∗,

a∗a#(a+a2(a+)∗)2 = a+a(a+a2(a+)∗) = a+a2(a+)∗

and
a+a2(a+)∗a∗a#a∗ = a+aa∗ = a∗.

Hence, we have (a∗) #O
a# = a+a2(a+)∗.

By Corollary 2.19, we have a∗a#a+a2(a+)∗ = a∗a#a(a+)∗ = a∗a#a(aa+(a+)∗). This gives us the following
enlightenms.

Corollary 2.20. Let a ∈ R#⋂R+. The following statements are valid.

(1) (a∗) #O
aa# = a+a(a+)∗;

(2) (a∗aa#)# = (a∗aa#)+ = (a+a(a+)∗)2a∗aa# = a+a(a+)∗;

(3) (a+) #O
a(a+)∗ = a∗aa#;

(4) (a+a) #O
(a+)∗ = a∗aa#;

(5) (a∗a) #O
a# = a+a(a+)∗.

Proof. (1) According to Definition 2.1, we can verify directly

a∗aa#a+a(a+)∗ = a∗aa#(a+)∗ = a+a = (a+a)∗ = (a∗aa#a+a(a+)∗)∗,

a∗aa#(a+a(a+)∗)2 = a+a(a+a(a+)∗) = a+a(a+)∗

and
a+a(a+)∗a∗aa#a∗ = a+aa∗ = a∗.

Hence, we have (a∗) #O
aa# = a+a(a+)∗.

(2) If (a∗) #O
aa# = a+a(a+)∗, then it follows from Lemma 2.2(2) and Theorem 2.4 that

(a∗aa#)# = (a+a(a+)∗)2a∗aa# = a+a(a+)∗a+a = a+a(a+)∗.

Since (a∗aa#)# = a+a(a+)∗, we get

a∗aa#(a+a(a+)∗) = a∗(a+)∗ = a+a = (a+a)∗ = (a∗aa#(a+a(a+)∗))∗,

and then (a+a(a+)∗)a∗aa# = a+a = (a+a)∗ = ((a+a(a+)∗)a∗aa#)∗. That is (a∗aa#)+ = a+a(a+)∗.
(3) Similarly, employing Definition 2.1, we obtain

a+a(a+)∗a∗aa# = a+aaa+aa# = a+a = (a+a)∗ = (a+a(a+)∗a∗aa#)∗,

a+a(a+)∗(a∗aa#)2 = a+a(a∗aa#) = a∗aa#

and
a∗aa#a+a(a+)∗a+ = a∗(a+)∗a+ = a+.
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Hence, (a+) #O
a(a+)∗ = a∗aa#.

(4) According to Definition 2.1, it is easy to check that

a+a(a+)∗a∗aa# = a+aaa+aa# = a+a = (a+a)∗ = (a+a(a+)∗a∗aa#)∗,

a+a(a+)∗(a∗aa#)2 = a+a(a∗aa#) = a∗aa#

and
a∗aa#a+a(a+)∗a+a = a∗aa#(a+)∗a+a = a+a.

Hence, (a+a) #O
(a+)∗ = a∗aa#.

(5) Similar to the arguments in (1), (3) and (4), we get

a∗aa#a+a(a+)∗ = a∗aa#(a+)∗ = a∗(a+)∗ = a+a = (a+a)∗ = (a∗aa#a+a(a+)∗)∗,

a∗aa#(a+a(a+)∗)2 = a+a(a+a(a+)∗) = a+a(a+)∗

and
a+a(a+)∗a∗aa#a∗a = a+aa∗a = a∗a.

Hence, (a∗a) #O
a# = a+a(a+)∗.

3. Constructions of w-core invertible elements

In this section, we mainly provide some new methods to construct different w-core invertible elements.

Theorem 3.1. Let a #O
w = x. Then (awa) #O

wx = x.

Proof. Since a #O
w = x, x = awx2 = xawx, a = xawa = awxa, (awx)∗ = awx. Then we have

awawx · x2 = aw(awx2)x = awx2 = x,

x(awa)wx(awa) = (xawa)wa = awa,

and
(awa)(wx)x = aw(awx2) = awx = (awx)∗ = ((awa)(wx)x)∗.

Hence, (awa) #O
wx = x.

Corollary 3.2. Let a ∈ R#⋂R+. Then (aa∗a) #O
a+ = (a+)∗a+.

Proof. By Definition 2.1, we know that

aa∗(a+)∗a+ = aa+ = (aa+)∗ = (aa∗(a+)∗a+)∗,
aa∗(a+)∗a+(a+)∗a+ = aa+(a+)∗a+ = (a+)∗a+,
(a+)∗a+aa∗(a+)∗a+ = (a+)∗a∗a = a,

which implies that a #O
a∗ = (a+)∗a+. Then we have (aa∗a) #O

a∗(a+)∗a+ = (a+)∗a+ by Theorem 3.1, and then (aa∗a) #O
a+ =

(a+)∗a+.

Corollary 3.3. Let a ∈ R#⋂R+. Then

(1) (a(a+)∗a) #O
a#aa+ = aa#a∗a#aa+;

(2) (a(a+)∗aa+)# = (a(a+)∗a(a#aa+))# = aa#a∗a#aa+.
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Proof. (1) Since a #O
(a+)∗ = aa#a∗a#aa+ by Theorem 2.5, it follows that (a(a+)∗a) #O

(a+)∗aa#a∗a#aa+ = aa#a∗a#aa+ by Theorem

3.1, and then (a(a+)∗a) #O
a#aa+ = aa#a∗a#aa+.

(2) Since (a(a+)∗a) #O
a#aa+ = aa#a∗a#aa+, it follows from Lemma 2.2(2) and Theorem 2.4 that

(a(a+)∗aa#aa+)# = (aa#a∗a#aa+)2a(a+)∗a(a#aa+).

Hence, (a(a+)∗aa+)# = (aa#a∗a#aa+)(aa#a∗a#aa+)a(a+)∗a(a#aa+) = aa#a∗a#aa+.

Theorem 3.4. Let a #O
w = x. Then a #O

wx = awx.

Proof. From a #O
w = x, we have a = xawa = awxa, x = awx2 = xawx and (awx)∗ = awx. It follows from

Definition 2.1 that
awx(awx) = (awxa)wx = awx = (awx)∗ = (awx(awx))∗,

awx(awx)2 = awx(awx)(awx) = awx(awx) = awx

and
(awx)a(wx)a = awxa = a.

Hence, a #O
wx = awx.

Corollary 3.5. Let a ∈ R#⋂R+. Then a #O
a#aa+ = aa+.

Proof. By Theorem 2.5, we know a #O
(a+)∗ = aa#a∗a#aa+. Thus, by Theorem 3.4, we have

a #O
(a+)∗aa#a∗a#aa+ = a(a+)∗aa#a∗a#aa+.

Since (a+)∗aa#a∗a#aa+ = (a+)∗a∗a#aa+ = a#aa+ and

a(a+)∗aa#a∗a#aa+ = a(a+)∗a∗a#aa+ = aa+,

which implies a #O
a#aa+ = aa+.

Theorem 3.6. Let a #O
w = x. Then (aw) #O

x = awx.

Proof. Since a #O
w = x, we have awx2 = x = xawx, xawa = a = awxa and (awx)∗ = awx.

By Definition 2.1, we have

awx(awx) = awx = (awx)∗ = (awx(awx))∗,

awx(awx)2 = awx(awx)(awx) = awxawx = awx,

and
(awx)(aw)xaw = awxaw = aw.

Hence, (aw) #O
x = awx.

Corollary 3.7. Let a ∈ R+ and a #O
w = x. Then (aw) #O

x = aa+.

Proof. Since a #O
w = x, we have awx2 = x = xawx, xawa = a = awxa and (awx)∗ = awx. Thus, (awxaa+)∗ =

(aa+)∗(awx)∗ = aa+awx = awx = (awx)∗ = ((awxaa+)∗)∗ = awxaa+, (awx(aa+)2) = awxaa+ = aa+ and aa+awxaw =

awxaw = aw. That is (aw) #O
x = aa+.



Y. Wang et al. / Filomat 38:27 (2024), 9507–9517 9516

Theorem 3.8. Let a ∈ R#⋂R+. Then
(1) a #O

a∗a = a#(a+)∗a+;

(2) (aa∗a) #O
a#(a+)∗a+ = aa+;

(3) (aa∗a)# = a#(a+)∗a+a#a;
(4) (aa∗a)+ = a+aa#(a+)∗a+a#aaa+ = a+(a+)∗a+;
(5) (a#(a+)∗a+)# = (a#(a+)∗a+)+ = aa∗a2a+.

Proof. (1) It follows from Definition 2.1 that

aa∗aa#(a+)∗a+ = aa∗(a+)∗a+ = aa+ = (aa+)∗ = (aa∗aa#(a+)∗a+)∗,

aa∗a(a#(a+)∗a+)2 = aa+(a#(a+)∗a+) = a#(a+)∗a+

and
a#(a+)∗a+aa∗aa = a#(a+)∗a∗a2 = a.

Thus, a #O
a∗a = a#(a+)∗a+.

(2) Combining a #O
a∗a = a#(a+)∗a+ with Theorem 3.6, we directly deduce that

(aa∗a) #O
a#(a+)∗a+ = aa∗aa#(a+)∗a+ = aa∗(a+)∗a+ = aa+.

(3) Since a #O
a∗a = a#(a+)∗a+, it follows from Lemma 2.2(2) that (aa∗a)# = a#(a+)∗a+. By Theorem 2.4, we obtain

(aa∗a)# = (a#(a+)∗a+)2aa∗a = a#(a+)∗a+a#a.
(4) It is well known that a+ = a+aa#aa+. Then we have (aa∗a)+ = a+a(aa∗a)#aa+. By (3), we obtain

(aa∗a)+ = a+a(a#(a+)∗a+a#a)aa+ = a+(a+)∗a+.
(5) By (1) and Lemma 2.2(2), we know (aa∗a)# = a#(a+)∗a+. Then according to Theorem 2.3, we get

(a#(a+)∗a+)# = (a#(a+)∗a+)+ = aa∗a(aa∗a)a#(a+)∗a+ = aa∗a2a+.
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