Filomat 38:28 (2024), 9761–9768 https://doi.org/10.2298/FIL2428761E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Drazin-g-meromorphic spectrum for operator matrices

I. El Ouali^a, M. Ech-Cherif El Kettani^a, M. Karmouni^b

^a Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, LaSMA Laboratory, Fez, Morocco ^bCadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco

Abstract. For $C \in \mathcal{L}(K, H)$, $B \in \mathcal{L}(K)$ and $A \in \mathcal{L}(H)$, let M_C be the operator matrix defined on $H \oplus K$ by $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$, whereas K and H are complex Hilbert spaces. In this paper, we demonstrate that $\sigma(M_C) = \sigma(B) \cup \sigma(A)$ is equivalent to

 $\sigma_{gD(g\mathcal{M})}(M_C) = \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$

whereas $\sigma_{gD(gM)}(.)$ is the generalized Drazin-*g*-meromorphic spectrum [9]. Also, we used the local spectral theory to give a sufficient condition to have the last equality.

1. Introduction

Let *K* and *H* denote infinite dimensional complex Hilbert spaces and $\mathcal{L}(H, K)$ denotes the set of all linear bounded operators from *H* into *K*. We write $\mathcal{L}(H)$ instead of $\mathcal{L}(H, H)$, when H = K. Let $A \in \mathcal{L}(H)$, we denote by $\sigma(A)$, $\sigma_{ap}(A)$, $\sigma_{su}(A)$, A^* , the spectrum, the approximate point spectrum, the surjective spectrum and the adjoint operator of *A*.

Remember that an operator $A \in \mathcal{L}(X)$ is said to possess the single valued extension property (SVEP for short) at λ if there exists V an open neighborhood of λ such that for any open subset $W \subseteq V$ the only analytic solution of the equation $(A - \mu)f(\mu) = 0$ for all $\mu \in W$ is the function $f \equiv 0$. Let S(A) be the set of all $\lambda \in \mathbb{C}$ such that A does not admit the SVEP at λ . Evidently, if $T - \lambda$ possesses the SVEP at 0, then Tpossesses the SVEP at λ (See [1]). A is said to possess the SVEP if A possesses the SVEP at all $\lambda \in \mathbb{C}$, in this particular situation $S(A) = \emptyset$. Note that $\sigma(A) = S(A) \cup \sigma_{su}(A)$.

In the Drazin sense, $A \in \mathcal{L}(H)$ is invertible if we can find $B \in \mathcal{L}(H)$ such that

$$AB = BA$$
, $B^2A = B$ and $BA^2 - B$ is nilpotent.

A generalization of this concept is given by J.J. Koliha [6], in fact $A \in \mathcal{L}(H)$ is called Koliha-Drazin invertible (or generalized Drazin invertible) if there exists $B \in \mathcal{L}(H)$ such that

 $AB = BA, B^2A = B$ and $BA^2 - B$ is quasinilpotent,

²⁰²⁰ Mathematics Subject Classification. Primary 47A53; Secondary 47A10.

Keywords. Generalized Drazin-g-meromorphic spectrum, operator matrix.

Received: 01 February 2024; Revised: 12 June 2024; Accepted: 16 July 2024

Communicated by Dragan S. Djordjević

Email addresses: issame.elouali@usmba.ac.ma (I. El Ouali), mustelkettani@yahoo.fr (M. Ech-Cherif El Kettani),

mohamed.karmouni@uca.ac.ma (M. Karmouni)

which is equivalent to $0 \notin acc\sigma(A)$.

The Drazin spectrum and the generalized Drazin spectrum are defined, respectively, by

 $\sigma_D(A) = \{\lambda \in \mathbb{C}, A - \lambda I \text{ is not Drazin invertible }\},\$

 $\sigma_{qD}(A) = \{\lambda \in \mathbb{C}, A - \lambda I \text{ is not Koliha-Drazin invertible}\},\$

with $\rho_D(A) = \mathbb{C} \setminus \sigma_D(A)$ and $\rho_{gD}(A) = \mathbb{C} \setminus \sigma_{gD}(A)$.

Keep in mind that an operator $A \in \mathcal{L}(H)$ is supposedly *g*-meromorphic if every non-zero point of its spectrum is an isolated point ($A \in (g\mathcal{M})$ for short) which is equivalent to $\sigma_{gD}(A) \subseteq \{0\}$ [9].

Recently, S. Č Živković-Zlatanović [9] presented and studied a new extended inverse concept to expand the Koliha-Drazin idea to "generalized Drazin-*g*-meromorphic invertible". In fact, $A \in \mathcal{L}(H)$ is said to be generalized Drazin-*g*-meromorphic invertible if there exists $B \in \mathcal{L}(H)$ such that

AB = BA, BAB = B and $A^2B - A$ is *g*-meromorphic.

The generalized Drazin-g-meromorphic spectrum is defined by

 $\sigma_{aD(aM)}(T) = \{\lambda \in \mathbb{C}, A - \lambda I \text{ is not generalized Drazin-}g\text{-meromorphic invertible }\},\$

and we write $\rho_{gD(g\mathcal{M})}(A) = \mathbb{C} \setminus \sigma_{gD(g\mathcal{M})}(A)$.

An interesting characterization of this class is given by the following lemma.

Lemma 1.1. [9] Let $A \in \mathcal{L}(H)$. The following statements are equivalent.

1. *A is generalized Drazin-g-meromorphic invertible.*

2. 0 ∉ $acc\sigma_{qD}(A)$.

Let *E* be a compact subset of \mathbb{C} , we denote by *accE*, *isoE*, ∂E , $\eta(E)$ and E^c be the accumulation points of *E*, the isolated points of *E*, the boundary of *E*, the polynomially convex hull and the complement of *E*, respectively.

In the last two decades an extensive study of 2×2 upper triangular operator matrices has been carried out. The research was primarily motivated by the following fact: If $T \in \mathcal{L}(H)$ and F is closed, complemented and T-invariant subspace of H, then T may be expressed as

$$T = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} : F \oplus F^{\perp} \longrightarrow F \oplus F^{\perp}.$$

Throughout the remainder of this paper, $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(K)$ and $C \in \mathcal{L}(K, H)$. The upper triangular operator matrix $M_C \in \mathcal{L}(H \oplus K)$ represents a bounded linear operator on the Hilbert space $H \oplus K$ given by:

$$M_{\rm C} = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.$$

When it comes to infinite dimensional spaces, H. K. Du and J. Pan [4] showed that the inclusion $\sigma(M_C) \subset \sigma(B) \cup \sigma(A)$ may be strict. A few years later other authors [5] were able to prove the following theorem.

Theorem 1.2. [5] Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$\sigma(M_C) \cup W = \sigma(B) \cup \sigma(A),\tag{1}$$

where W is the union of certain holes in $\sigma(M_C)$ such that $W \subseteq \sigma(B) \cap \sigma(A)$.

Subsequently, several mathematicians have generalized this result for other spectra. As examples we have the following two results:

(2)

Theorem 1.3. [12] Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$\sigma_D(M_C) \cup W_D = \sigma_D(B) \cup \sigma_D(A),$$

where W_D is the union of certain holes in $\sigma_D(M_C)$ and $W_D \subseteq \sigma_D(A) \cap \sigma_D(B)$.

Theorem 1.4. [11] Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$\sigma_{gD}(M_C) \cup W_{gD} = \sigma_{gD}(B) \cup \sigma_{gD}(A), \tag{3}$$

where W_{qD} is the union of certain holes in $\sigma_{qD}(M_C)$ and $W_{qD} \subseteq \sigma_{qD}(B) \cap \sigma_{qD}(A)$.

Generally, there are many research papers that have studied this type of operator matrices, including [3], [8], [2], and [7].

In this paper, we prove the following hole-filling property:

 $\sigma_{qD(q\mathcal{M})}(M_C) \cup W_{qD(q\mathcal{M})} = \sigma_{qD(q\mathcal{M})}(A) \cup \sigma_{qD(q\mathcal{M})}(B),$

where $W_{gD(g\mathcal{M})}$ is the union of certain holes in $\sigma_{gD(g\mathcal{M})}(M_C)$ which happen to be subsets of $\sigma_{gD(g\mathcal{M})}(A) \cap \sigma_{gD(g\mathcal{M})}(B)$. Also, we will give a sufficient condition, related to the SVEP, to have the equality

 $\sigma_{qD(q\mathcal{M})}(M_C) = \sigma_{qD(q\mathcal{M})}(A) \cup \sigma_{qD(q\mathcal{M})}(B).$

2. Main results

The following lemma is important and it is widely used in the proofs of our main results.

Lemma 2.1. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. The following statements hold:

- 1. Operators M_C , A and B are all invertible if any two of them are.
- 2. Operators M_C, A and B are all generalized Drazin invertible if any two of them are.
- 3. Operators M_C , A and B are all generalized Drazin-g-meromorphic invertible if any two of them are.

Proof. For (1), see [5, Theorem 2], and for (2), see [11, Lemma 2.4].

(3): It suffices to show that M_C and A are generalized Drazin-g-meromorphic invertible implies that B is generalized Drazin-g-meromorphic invertible. If M_C and A are generalized Drazin-g-meromorphic invertible, that is $0 \notin acc\sigma_{gD}(M_C)$ and $0 \notin acc\sigma_{gD}(A)$, then there exists $\epsilon > 0$ such that $M_C - \lambda I$ and $A - \lambda I$ are generalized Drazin invertible for all λ , $0 < |\lambda| < \epsilon$. By (*ii*), we have that $B - \lambda I$ is generalized Drazin invertible for all λ , $0 < |\lambda| < \epsilon$. By (*ii*), we have that $B - \lambda I$ is generalized Drazin invertible for all λ , $0 < |\lambda| < \epsilon$. By (*ii*), we have that $B - \lambda I$ is generalized Drazin invertible.

Lemma 2.2. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$\sigma_{gD(g\mathcal{M})}(M_C) \subseteq \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B).$$

Proof. Without loss of generality let $0 \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B)$, then there exists $\varepsilon > 0$ such that $B - \lambda I$ and $A - \lambda I$ are generalized Drazin invertible for any λ , $0 < |\lambda| < \varepsilon$. According to Lemma 2.1, $M_C - \lambda I$ is generalized Drazin invertible for any λ , $0 < |\lambda| < \varepsilon$. Hence $0 \notin \sigma_{gD(g\mathcal{M})}(M_C)$. \Box

The inclusion $\sigma_{aD(qM)}(M_C) \subset \sigma_{aD(qM)}(A) \cup \sigma_{aD(qM)}(B)$ may be strict as shown in the following example.

Example 2.3. (*Cf.* [4, *Example 3*]) Let $A, B, C \in \mathcal{L}(l^2(\mathbb{N}))$ be defined by:

$$Ae_n = e_{n+1}$$
 for all $n \in \mathbb{N}$,

$$B = A^*$$
, and

$$Cx = \langle x, e_0 \rangle e_0$$
 for all $x \in l^2(\mathbb{N})$,

whereas $\{e_n\}_{n\in\mathbb{N}}$ is the orthonormal basis of $l^2(\mathbb{N})$. We have $\sigma_{gD(g\mathcal{M})}(A) = \{\lambda \in \mathbb{C}; |\lambda| \le 1\}$. M_C is unitary, so $\sigma_{qD(g\mathcal{M})}(M_C) \subseteq \{\mu \in \mathbb{C}; |\mu| = 1\}$. Then $0 \notin \sigma_{qD(g\mathcal{M})}(M_C)$, nonetheless $0 \in \sigma_{qD(g\mathcal{M})}(A) \cup \sigma_{qD(g\mathcal{M})}(B)$.

We can now present our first main result.

Theorem 2.4. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$\sigma_{qD(q\mathcal{M})}(M_C) \cup W_{qD(q\mathcal{M})} = \sigma_{qD(q\mathcal{M})}(A) \cup \sigma_{qD(q\mathcal{M})}(B),$$

where $W_{gD(g\mathcal{M})}$ is the union of certain holes in $\sigma_{gD(g\mathcal{M})}(M_C)$ and $W_{gD(g\mathcal{M})} \subseteq \sigma_{gD(g\mathcal{M})}(A) \cap \sigma_{gD(g\mathcal{M})}(B)$.

Proof. We have

$$(\sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)) = \sigma_{gD(g\mathcal{M})}(M_C) \cup \{\sigma_{gD(g\mathcal{M})}(B) \cap \sigma_{gD(g\mathcal{M})}(A)\}.$$
(4)

Indeed,

$$\sigma_{gD(g\mathcal{M})}(M_C) \cup \{\sigma_{gD(g\mathcal{M})}(A) \cap \sigma_{gD(g\mathcal{M})}(B)\} \subseteq (\sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B))$$

holds for every $C \in \mathcal{L}(K, H)$. Now, we have

 $\lambda \notin \sigma_{gD(g\mathcal{M})}(M_C) \cup \{\sigma_{gD(g\mathcal{M})}(B) \cap \sigma_{gD(g\mathcal{M})}(A)\}$ $\iff \lambda \in \{\rho_{gD(g\mathcal{M})}(M_C) \cap \rho_{gD(g\mathcal{M})}(A)\} \text{ or } \lambda \in \{\rho_{gD(g\mathcal{M})}(M_C) \cap \rho_{gD(g\mathcal{M})}(B)\},$ $\iff \lambda \in \rho_{gD(g\mathcal{M})}(A) \text{ and } \lambda \in \rho_{gD(g\mathcal{M})}(B), \quad \text{(Lemma 2.1)}$ $\iff \lambda \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B),$

which give the opposite inclusion.

According to [11, Theorem 2.1], we have

$$\eta(\sigma_{qD}(A) \cup \sigma_{qD}(B)) = \eta(\sigma_{qD}(M_C)).$$

From [8, Lemma 2.5], we have

 $\eta(\sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B)) = \eta(\sigma_{gD(g\mathcal{M})}(M_C)).$ (5)

Therefore (5) says that the passage from $\sigma_{gD(gM)}(M_C)$ to $\sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$ is the filling in certain of the holes in $\sigma_{gD(gM)}(M_C)$. Moreover, equality (4) ensures that

 $(\sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)) \setminus \sigma_{gD(g\mathcal{M})}(M_C) \subset \sigma_{gD(g\mathcal{M})}(A) \cap \sigma_{gD(g\mathcal{M})}(B).$

It follows that the filling in certain of the holes in $\sigma_{gD(gM)}(M_C)$ should occur in $\sigma_{gD(gM)}(B) \cap \sigma_{gD(gM)}(A)$.

The following two results are immediately obtained from Theorem 2.4.

Corollary 2.5. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. If the interior of $\sigma_{gD(g\mathcal{M})}(B) \cap \sigma_{gD(g\mathcal{M})}(A)$ is empty, then we have

$$\sigma_{gD(g\mathcal{M})}(\mathcal{M}_C) = \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A), \text{ for every } C \in \mathcal{L}(K, H).$$
(6)

Theorem 2.6. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. The two statements that follow are equivalent,

1. $\sigma(M_C) = \sigma(B) \cup \sigma(A)$,

2. $\sigma_{gD(g\mathcal{M})}(M_C) = \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A).$

Proof. First, we show that $W \subseteq W_{gD(g\mathcal{M})}$. Indeed, let $\lambda \in W$ then $\lambda \in \sigma(A) \cup \sigma(B)$ and $\lambda \notin \sigma(M_C)$. So, $\lambda \notin \sigma_{gD(g\mathcal{M})}(M_C)$. Suppose that $\lambda \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B) = acc(\sigma_{gD}(A) \cup \sigma_{gD}(B))$, that is

 $\lambda \in iso(\sigma_{qD}(B) \cup \sigma_{qD}(A)) \cup (\rho_{qD}(B) \cap \rho_{qD}(A)).$

-If $\lambda \in \rho_{gD}(B) \cap \rho_{gD}(A)$. Since $\lambda \in \sigma(B) \cup \sigma(A)$, it is not difficult to see that $\lambda \in iso(\sigma(B) \cup \sigma(A)) \subseteq iso\sigma(A) \cup iso\sigma(B)$. Hence $\lambda \in \partial\sigma(B) \cup \partial\sigma(A) \subseteq \sigma_{av}(B) \cup \sigma_{su}(A) \subseteq \sigma(M_C)$ which is absurd.

-If $\lambda \in iso(\sigma_{qD}(B) \cup \sigma_{qD}(A))$, then

 $iso(\sigma_{gD}(A) \cup \sigma_{gD}(B)) \subseteq iso\sigma_{gD}(A) \cup iso\sigma_{gD}(B)$ $\subseteq \partial\sigma(A) \cup \partial\sigma(B)$ $\subseteq \sigma_{ap}(A) \cup \sigma_{su}(B)$ $\subseteq \sigma(M_{C}).$

Then $\lambda \in \sigma(M_C)$, contradiction. Thus,

 $\lambda \in \sigma_{qD(q\mathcal{M})}(A) \cup \sigma_{qD(q\mathcal{M})}(B) \setminus \sigma_{qD(q\mathcal{M})}(M_C),$

by Theorem 2.4, $\lambda \in W_{gD(g\mathcal{M})}$, so $W \subseteq W_{gD(g\mathcal{M})}$, which shows the inclusion.

Now, if $\sigma_{gD(gM)}(M_C) = \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$, then $W_{gD(gM)} = \emptyset$, which implies that $W = \emptyset$. Consequently, $\sigma(M_C) = \sigma(B) \cup \sigma(A)$.

Conversely, if $\sigma(B) \cup \sigma(A) = \sigma(M_C)$, by [11, Theorem 2.2] we have $\sigma_{gD}(B) \cup \sigma_{gD}(A) = \sigma_{gD}(M_C)$. Now, let $\lambda \notin \sigma_{gD(g\mathcal{M})}(M_C)$, without losing generality, take $0 \notin \sigma_{gD(g\mathcal{M})}(M_C)$ then there exists $\varepsilon > 0$ such that $M_C - \lambda I$ is generalized Drazin-*g*-meromorphic invertible, for all λ , $0 < |\lambda| < \varepsilon$, hence $0 \notin \sigma_{gD}(M_C) = \sigma_{gD}(B) \cup \sigma_{gD}(A)$. Thus both $B - \lambda I$ and $A - \lambda I$ are generalized Drazin invertible for any λ , $0 < |\lambda| < \varepsilon$. Therefore $0 \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B)$. Since $\sigma_{gD(g\mathcal{M})}(M_C) \subseteq \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$ always holds, then $\sigma_{gD(g\mathcal{M})}(M_C) = \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$.

According to Theorem 2.6, [10, Proposition 3.6] and [11, Theorem 2.2], we can conclude the following conclusion.

Corollary 2.7. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. The following claims are equivalent:

1. $\sigma(M_C) = \sigma(B) \cup \sigma(A)$.

2. $\sigma_D(M_C) = \sigma_D(B) \cup \sigma_D(A)$.

- 3. $\sigma_{qD}(M_C) = \sigma_{qD}(B) \cup \sigma_{qD}(A)$.
- 4. $\sigma_{qD(q\mathcal{M})}(M_C) = \sigma_{qD(q\mathcal{M})}(B) \cup \sigma_{qD(q\mathcal{M})}(A).$

According to the proof of Theorem 2.6, we have $W \subset W_{gD(gM)}$. The following example show that this inclusion may be strict in general.

Example 2.8. Define $P, Q, R \in \mathcal{L}(l^2(\mathbb{N}))$ by

$$\begin{split} P(x_1, x_2, x_3, \ldots) &= (0, x_1, x_2, \ldots), \\ Q(x_1, x_2, x_3, \ldots) &= (x_2, x_3, x_4 \ldots), \end{split}$$

and

$$R(x_1, x_2, x_3, ...) = (x_1, 0, 0, ...).$$

Let
$$A = P \in \mathcal{L}(l^2(\mathbb{N})), C = (R, 0) \in \mathcal{L}(l^2(\mathbb{N}) \oplus l^2(\mathbb{N}), l^2(\mathbb{N}))$$
 and $B = \begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{L}(l^2(\mathbb{N}) \oplus l^2(\mathbb{N})).$ Let

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathcal{L}(l^2(\mathbb{N}) \oplus l^2(\mathbb{N}) \oplus l^2(\mathbb{N})).$$

We have $\sigma(M_C) = \{\lambda \in \mathbb{C}, |\lambda| = 1\} \cup \{0\}, \sigma(B) = \sigma(A) = \{\lambda \in \mathbb{C}, |\lambda| \le 1\}$, then $\sigma_{gD(gM)}(M_C) = \{\lambda \in \mathbb{C}, |\lambda| = 1\}, \sigma_{gD(gM)}(B) = \sigma_{gD(gM)}(A) = \{\lambda \in \mathbb{C}, |\lambda| \le 1\}$. So,

$$W = \{\lambda \in \mathbb{C}, 0 < |\lambda| < 1\} and W_{gD(g\mathcal{M})} = \{\lambda \in \mathbb{C}, |\lambda| < 1\}.$$

Consequently, $W_{aD(aM)} \neq W$.

The subsequent theorem, however, provides an adequate condition for the equality.

Theorem 2.9. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. If $iso\partial W = \emptyset$, then

$$W = W_{qD} = W_{qD(q\mathcal{M})}.$$

Proof. Assume that $iso\partial W = \emptyset$, from [11, Theorem 2.3] we have $W = W_{qD}$, hence $iso\partial W_{qD} = \emptyset$, so

$$iso\sigma_{qD}(M_C) = iso(\sigma_{qD}(A) \cup \sigma_{qD}(B)) \subseteq iso\sigma_{qD}(A) \cup iso\sigma_{qD}(B).$$

Let $\lambda \in iso\sigma_{gD}(M_C)$, then $\lambda \in iso\sigma_{gD}(A)$ or $\lambda \in iso\sigma_{gD}(B)$. If $\lambda \in iso\sigma_{gD}(A)$, then $A - \lambda$ is generalized Drazin-*g*-meromorphic invertible but not generalized Drazin invertible. According to Lemma 2.1, $B - \lambda$ is generalized Drazin-*g*-meromorphic invertible, then $\lambda \in iso\sigma_{gD}(B) \cup \rho_{gD}(B)$. Similarly, we have $\lambda \in iso\sigma_{gD}(B) \implies \lambda \in iso\sigma_{gD}(A) \cup \rho_{gD}(A)$. Which entails that:

 $iso\sigma_{gD}(M_C) \subseteq (iso\sigma_{gD}(A) \cap iso\sigma_{gD}(B)) \cup (iso\sigma_{gD}(A) \cap \rho_{gD}(B)) \cup (iso\sigma_{gD}(B) \cap \rho_{gD}(A)).$

Furthermore, Lemma 2.1 ensure that

 $\begin{aligned} (iso\sigma_{gD}(A) \cap iso\sigma_{gD}(B)) \cup (iso\sigma_{gD}(A) \cap \rho_{gD}(B)) \cup (iso\sigma_{gD}(B) \cap \rho_{gD}(A)) \\ &\subseteq \partial \sigma_{gD}(A) \cup \partial \sigma_{gD}(B) \\ &\subseteq acc\sigma_{ap}(B) \cup acc\sigma_{su}(A) \\ &\subseteq \sigma_{gD}(M_C) \end{aligned}$

and

 $(iso\sigma_{qD}(A) \cap iso\sigma_{qD}(B)) \cup (iso\sigma_{qD}(A) \cap \rho_{qD}(B)) \cup (iso\sigma_{qD}(B) \cap \rho_{qD}(A)) \subseteq iso\sigma_{qD}(M_C).$

According to the above, we have

 $(iso\sigma_{gD}(A) \cap iso\sigma_{gD}(B)) \cup (iso\sigma_{gD}(A) \cap \rho_{gD}(B)) \cup (iso\sigma_{gD}(B) \cap \rho_{gD}(A)) = iso\sigma_{gD}(M_C).$

Hence

 $iso\sigma_{qD}(M_C) \cap (\sigma_{qD(q\mathcal{M})}(A) \cup \sigma_{qD(q\mathcal{M})}(B)) = \emptyset.$

According to Lemma 2.1,

 $\begin{aligned} (iso\sigma_{gD}(A) \cup iso\sigma_{gD}(B)) \setminus iso\sigma_{gD}(M_C) \\ &= (iso\sigma_{gD}(A) \setminus iso\sigma_{gD}(M_C)) \cup (iso\sigma_{gD}(B) \setminus iso\sigma_{gD}(M_C)) \\ &\subseteq \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B). \end{aligned}$

Consequently,

```
\sigma_{gD}(A)\cup\sigma_{gD}(B)
```

```
= \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B) \cup iso\sigma_{gD}(A) \cup iso\sigma_{gD}(B)
```

 $= \sigma_{qD(qM)}(A) \cup \sigma_{qD(qM)}(B) \cup iso\sigma_{gD}(M_C) \cup [(iso\sigma_{gD}(A) \cup iso\sigma_{gD}(B)) \setminus iso\sigma_{gD}(M_C)]$

 $= \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B) \cup iso\sigma_{gD}(M_C)$

 $= \sigma_{gD(g\mathcal{M})}(M_C) \cup W_{gD(g\mathcal{M})} \cup iso\sigma_{gD}(M_C)$

 $= \sigma_{gD(g\mathcal{M})}(M_C) \cup iso\sigma_{gD}(M_C) \cup W_{gD(g\mathcal{M})}$

9766

$$\begin{split} & [\sigma_{gD(g\mathcal{M})}(M_C) \cup iso\sigma_{gD}(M_C)] \cap W_{gD(g\mathcal{M})} \\ &= [\sigma_{gD(g\mathcal{M})}(M_C) \cap W_{gD(g\mathcal{M})}] \cup [iso\sigma_{gD}(M_C) \cap W_{gD(g\mathcal{M})}] \\ &\subseteq [\sigma_{gD(g\mathcal{M})}(M_C) \cap W_{gD(g\mathcal{M})}] \cup [iso\sigma_{gD}(M_C) \cap (\sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A))] \\ &= \emptyset. \end{split}$$

Moreover,

$$\sigma_{gD}(B) \cup \sigma_{gD}(A) = \sigma_{gD}(M_C) \cup W_{gD}$$
$$= \sigma_{gD(g\mathcal{M})}(M_C) \cup iso\sigma_{gD}(M_C) \cup W_{gD}$$

and

 $\sigma_{gD}(M_C)\cap W_{gD}=\emptyset.$

We get that $W_{gD} = W_{gD(g\mathcal{M})}$, therefore $W = W_{gD(g\mathcal{M})}$.

Recall that for $T \in \mathcal{L}(H)$ we have $S(T) \cup S(T^*) \subset \sigma_{gD(gM)}(T)$ [9]. Using the SVEP, we found the following result:

Lemma 2.10. Let $A \in \mathcal{L}(K)$ and $B \in \mathcal{L}(K)$. We have

1. $S(B) \cap S(A^*) \subseteq \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$, and 2. $[S(A^*) \cap S(B)] \cap [iso(\sigma_{qD}(B) \cup \sigma_{gD}(A))]^c = S(B) \cap S(A^*)$.

Proof. For (1), let $\lambda \in \rho_{gD(g\mathcal{M})}(A)$. Then $A - \lambda I$ is generalized Drazin-g-meromorphic. According to [9, Theorem 3.10], A^* has SVEP at λ . So, $\lambda \in S(A^*)^c$. As a result, we have $\rho_{gD(g\mathcal{M})}(A) \subseteq S(A^*)^c$. By a similar argument, we can conclude that $\rho_{qD(g\mathcal{M})}(B) \subseteq S(B)^c$. Hence

 $\rho_{gD(g\mathcal{M})}(B) \cap \rho_{gD(g\mathcal{M})}(A) \subseteq S(B)^c \cap S(A^*)^c.$

Consequently,

 $S(B) \cap S(A^*) \subseteq \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A).$

For (2), let $\lambda \in S(B) \cap S(A^*)$. Hence *B* and A^* have SVEP at λ . According to [9, Theorem 3.10], $\lambda \in acc\sigma_{gD}(B) \cap acc\sigma_{gD}(A) \subseteq acc\sigma_{gD}(B) \cup acc\sigma_{gD}(A)$. Since $acc\sigma_{gD}(B) \cup acc\sigma_{gD}(A) = acc(\sigma_{gD}(B) \cup \sigma_{gD}(A))$ (See [11, Lemma 2.2]), we have $\lambda \in acc(\sigma_{qD}(B) \cup \sigma_{qD}(A))$. Thus $\lambda \in [iso(\sigma_{qD}(B) \cup \sigma_{qD}(A))]^c$. As a result,

 $S(A^*) \cap S(B) \subseteq [iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))]^c$.

Consequently,

 $S(A^*) \cap S(B) \subseteq [S(A^*) \cap S(B)] \cap [iso(\sigma_{qD}(B) \cup \sigma_{qD}(A))]^c$.

The other inclusion is obvious. \Box

Theorem 2.11. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$ and, $C \in \mathcal{L}(K, H)$. Then

 $\sigma_{qD(q\mathcal{M})}(M_C) \cup [S(B) \cap S(A^*)] = \sigma_{qD(q\mathcal{M})}(B) \cup \sigma_{qD(q\mathcal{M})}(A).$

Proof. It follows from [10, Theorem 3.2] that

 $\sigma_{aD}(M_C) \cup [S(B) \cap S(A^*)] = \sigma_{aD}(A) \cup \sigma_{aD}(B) \text{ for all } C \in \mathcal{B}(K, H).$

Hence,

 $\sigma_{qD(q\mathcal{M})}(B) \cup \sigma_{qD(q\mathcal{M})}(A) = \{\sigma_{qD}(M_C) \cup [S(B) \cap S(A^*)]\} \cap \{iso(\sigma_{qD}(B) \cup \sigma_{qD}(A))\}^c.$

By Lemma 2.10, we have

 $S(B) \cap S(A^*) \subseteq \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A),$

and
$$[S(A^*) \cap S(B)] \cap \{iso(\sigma_{qD}(B) \cup \sigma_{qD}(A))\}^c = S(B) \cap S(A^*).$$

From Theorem 1.4, we have $\sigma_{gD}(M_C) \cap W_{gD} = \emptyset$, then $\lambda \in iso\sigma_{gD}(M_C)$ implies that there exists a neighborhood V of λ such that $V \cap \sigma_{gD}(M_C) = \{\lambda\}$. Put $U = V \cap W_{gD}^c$, then $[\sigma_{gD}(M_C) \cup W_{gD}] \cap U = \{\lambda\}$. Therefore, $\lambda \in iso(\sigma_{qD}(M_C) \cup W_{qD})$. Whence

$$iso\sigma_{gD}(M_C) \subseteq iso(\sigma_{gD}(B) \cup \sigma_{gD}(A)).$$

Hence

 $\begin{aligned} \sigma_{gD}(M_C) &\cap \{iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))\}^c \\ &= (iso\sigma_{gD}(M_C) \cup \sigma_{gD(g\mathcal{M})}(M_C)) \cap \{iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))\}^c \\ &= \sigma_{gD(g\mathcal{M})}(M_C) \cap \{iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))\}^c \\ &\subseteq \sigma_{qD(g\mathcal{M})}(M_C). \end{aligned}$

So,

 $\sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$ $= \{\sigma_{gD}(M_C) \cup [S(B) \cap S(A^*)]\} \cap \{iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))\}^c$ $\subseteq \sigma_{qD(g\mathcal{M})}(M_C) \cup [S(B) \cap S(A^*)].$

We obtain the following corollary from Theorem 2.11.

Corollary 2.12. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. If $S(B) \cap S(A^*) = \emptyset$, then for every $C \in \mathcal{L}(K, H)$ we have

 $\sigma_{qD(q\mathcal{M})}(M_C) = \sigma_{qD}(B) \cup \sigma_{qD(q\mathcal{M})}(A).(**)$

Specifically, if B or A^{*} *have the SVEP, then equality (**) hold.*

Acknowledgements: We would like to thank the anonymous referees for their valuable comments and suggestions.

References

- [1] P. AIENA, Fredholm and local spectral theory with application to multipliers, Kluwer Academic, 2004.
- X. CAO, Browder essential approximate point spectra and hypercyclicity for operator matrices, Linear Algebra and its Applications, 426:2-3 (2007), 317-324.
- [3] DRAGAN S. DJORDJEVIĆ, Perturbation of spectra of operator matrices, J. Operator Theory, 48:3 (2002), 467-486.
- [4] H. K. DU AND J. PAN, Perturbation of spectrums of 2 × 2 operator matrices, Proc. Amer. Math. Soc., 121 (1994), 761-766.
- [5] J. K. HAN, H. Y. LEE AND W. Y. LEE, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc., 128 (1999), 119-123.
- [6] J. J. KOLIHA, A generalized Drazin inverse, Glasgow Math.J., 38 (1996), 367-381.
- [7] W. Y. LEE, Weyl's theorem for operator matrices, Integr. equ. oper. theory, 32 (1996), 319-331.
- [8] A. TAJMOUATI, M.KARMOUNI AND S. ALAOUI CHRIFI, Limit points for Browder spectrum of operator matrices, Rend. Circ. Mat. Palermo, II. Ser., 69 (2020), 393-402.
- [9] S. Č. ŽIVKOVIĆ-ZLATANOVIĆ, Generalized Drazin-g-meromorphic invertible operators and generalized Kato-g-meromorphic decomposition, Filomat, 36:8 (2022), 2813-2827.
- [10] H. ZARIOUH AND H. ZGUITTI, On pseudo B-Weyl operators and generalized Drazin invertibility for operator matrices, Linear and Multilinear Algebra, 64:7 (2016), 1245-1257.
- [11] S. ZHANG, H. ZHONG AND L.LIN, Generalized Drazin spectrum of operator matrices, Appl. Math. J. Chin. Univ., 29 (2014), 162-170.
- [12] S. ZHANG, H. ZHONG AND Q. JIANG, Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl., 429 (2008), 2067-2075.