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Abstract. For C ∈ L(K,H), B ∈ L(K) and A ∈ L(H), let MC be the operator matrix defined on H ⊕ K

by MC =

(
A C
0 B

)
, whereas K and H are complex Hilbert spaces. In this paper, we demonstrate that

σ(MC) = σ(B) ∪ σ(A) is equivalent to

σ1D(1M)(MC) = σ1D(1M)(B) ∪ σ1D(1M)(A)

whereas σ1D(1M)(.) is the generalized Drazin-1-meromorphic spectrum [9]. Also, we used the local spectral
theory to give a sufficient condition to have the last equality.

1. Introduction

Let K and H denote infinite dimensional complex Hilbert spaces andL(H,K) denotes the set of all linear
bounded operators from H into K. We writeL(H) instead ofL(H,H), when H = K. Let A ∈ L(H), we denote
by σ(A), σap(A), σsu(A), A∗, the spectrum, the approximate point spectrum, the surjective spectrum and the
adjoint operator of A.

Remember that an operator A ∈ L(X) is said to possess the single valued extension property (SVEP
for short) at λ if there exists V an open neighborhood of λ such that for any open subset W ⊆ V the only
analytic solution of the equation (A − µ) f (µ) = 0 for all µ ∈ W is the function f ≡ 0. Let S(A) be the set of
all λ ∈ C such that A does not admit the SVEP at λ. Evidently, if T − λ possesses the SVEP at 0, then T
possesses the SVEP at λ (See [1]). A is said to possess the SVEP if A possesses the SVEP at all λ ∈ C, in this
particular situation S(A) = ∅. Note that σ(A) = S(A) ∪ σsu(A).

In the Drazin sense, A ∈ L(H) is invertible if we can find B ∈ L(H) such that

AB = BA, B2A = B and BA2
− B is nilpotent.

A generalization of this concept is given by J.J. Koliha [6], in fact A ∈ L(H) is called Koliha-Drazin invertible
(or generalized Drazin invertible) if there exists B ∈ L(H) such that

AB = BA, B2A = B and BA2
− B is quasinilpotent,
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which is equivalent to 0 < accσ(A).
The Drazin spectrum and the generalized Drazin spectrum are defined, respectively, by

σD(A) = {λ ∈ C,A − λI is not Drazin invertible },
σ1D(A) = {λ ∈ C,A − λI is not Koliha-Drazin invertible},

with ρD(A) = C \ σD(A) and ρ1D(A) = C \ σ1D(A).
Keep in mind that an operator A ∈ L(H) is supposedly 1-meromorphic if every non-zero point of its

spectrum is an isolated point (A ∈ (1M) for short) which is equivalent to σ1D(A) ⊆ {0} [9].
Recently, S. Č Živković-Zlatanović [9] presented and studied a new extended inverse concept to expand

the Koliha-Drazin idea to ”generalized Drazin-1-meromorphic invertible”. In fact, A ∈ L(H) is said to be
generalized Drazin-1-meromorphic invertible if there exists B ∈ L(H) such that

AB = BA, BAB = B and A2B − A is 1-meromorphic.

The generalized Drazin-1-meromorphic spectrum is defined by

σ1D(1M)(T) = {λ ∈ C,A − λI is not generalized Drazin-1-meromorphic invertible },

and we write ρ1D(1M)(A) = C \ σ1D(1M)(A).
An interesting characterization of this class is given by the following lemma.

Lemma 1.1. [9] Let A ∈ L(H). The following statements are equivalent.

1. A is generalized Drazin-1-meromorphic invertible.
2. 0 < accσ1D(A).

Let E be a compact subset of C, we denote by accE, isoE, ∂E, η(E) and Ec be the accumulation points
of E, the isolated points of E, the boundary of E, the polynomially convex hull and the complement of E,
respectively.

In the last two decades an extensive study of 2 × 2 upper triangular operator matrices has been carried
out. The research was primarily motivated by the following fact: If T ∈ L(H) and F is closed, complemented
and T-invariant subspace of H, then T may be expressed as

T =
(
∗ ∗

0 ∗

)
: F ⊕ F⊥ −→ F ⊕ F⊥.

Throughout the remainder of this paper, (A,B) ∈ L(H) × L(K) and C ∈ L(K,H). The upper triangular
operator matrix MC ∈ L(H ⊕ K) represents a bounded linear operator on the Hilbert space H ⊕ K given by:

MC =

(
A C
0 B

)
.

When it comes to infinite dimensional spaces, H. K. Du and J. Pan [4] showed that the inclusion
σ(MC) ⊂ σ(B) ∪ σ(A) may be strict. A few years later other authors [5] were able to prove the following
theorem.

Theorem 1.2. [5] Let A ∈ L(H) and B ∈ L(K). For all C ∈ L(K,H), we have

σ(MC) ∪W = σ(B) ∪ σ(A), (1)

where W is the union of certain holes in σ(MC) such that W ⊆ σ(B) ∩ σ(A).

Subsequently, several mathematicians have generalized this result for other spectra. As examples we
have the following two results:
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Theorem 1.3. [12] Let A ∈ L(H) and B ∈ L(K). For all C ∈ L(K,H), we have

σD(MC) ∪WD = σD(B) ∪ σD(A), (2)

where WD is the union of certain holes in σD(MC) and WD ⊆ σD(A) ∩ σD(B).

Theorem 1.4. [11] Let A ∈ L(H) and B ∈ L(K). For all C ∈ L(K,H), we have

σ1D(MC) ∪W1D = σ1D(B) ∪ σ1D(A), (3)

where W1D is the union of certain holes in σ1D(MC) and W1D ⊆ σ1D(B) ∩ σ1D(A).

Generally, there are many research papers that have studied this type of operator matrices, including
[3], [8], [2], and [7].

In this paper, we prove the following hole-filling property:

σ1D(1M)(MC) ∪W1D(1M) = σ1D(1M)(A) ∪ σ1D(1M)(B),

where W1D(1M) is the union of certain holes in σ1D(1M)(MC) which happen to be subsets of σ1D(1M)(A) ∩
σ1D(1M)(B). Also, we will give a sufficient condition, related to the SVEP, to have the equality

σ1D(1M)(MC) = σ1D(1M)(A) ∪ σ1D(1M)(B).

2. Main results

The following lemma is important and it is widely used in the proofs of our main results.

Lemma 2.1. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H). The following statements hold:

1. Operators MC, A and B are all invertible if any two of them are.
2. Operators MC, A and B are all generalized Drazin invertible if any two of them are.
3. Operators MC, A and B are all generalized Drazin-1-meromorphic invertible if any two of them are.

Proof. For (1), see [5, Theorem 2], and for (2), see [11, Lemma 2.4].
(3): It suffices to show that MC and A are generalized Drazin-1-meromorphic invertible implies that

B is generalized Drazin-1-meromorphic invertible. If MC and A are generalized Drazin-1-meromorphic
invertible, that is 0 < accσ1D(MC) and 0 < accσ1D(A), then there exists ϵ > 0 such that MC − λI and A − λI are
generalized Drazin invertible for allλ, 0 < |λ| < ϵ. By (ii), we have that B−λI is generalized Drazin invertible
for all λ, 0 < |λ| < ϵ. Thus, 0 < accσ1D(B). So, B is generalized Drazin-1-meromorphic invertible.

Lemma 2.2. Let A ∈ L(H), B ∈ L(K). For all C ∈ L(K,H), we have

σ1D(1M)(MC) ⊆ σ1D(1M)(A) ∪ σ1D(1M)(B).

Proof. Without loss of generality let 0 < σ1D(1M)(A) ∪ σ1D(1M)(B), then there exists ε > 0 such that B − λI
and A − λI are generalized Drazin invertible for any λ, 0 < |λ| < ε. According to Lemma 2.1, MC − λI is
generalized Drazin invertible for any λ, 0 < |λ| < ε. Hence 0 < σ1D(1M)(MC).

The inclusion σ1D(1M)(MC) ⊂ σ1D(1M)(A) ∪ σ1D(1M)(B) may be strict as shown in the following example.

Example 2.3. (Cf. [4, Example 3]) Let A,B,C ∈ L(l2(N)) be defined by:

Aen = en+1 for all n ∈N,

B = A∗, and

Cx =< x, e0 > e0 for all x ∈ l2(N),

whereas {en}n∈N is the orthonormal basis of l2(N). We have σ1D(1M)(A) = {λ ∈ C; |λ| ≤ 1}. MC is unitary, so
σ1D(1M)(MC) ⊆ {µ ∈ C; |µ| = 1}. Then 0 < σ1D(1M)(MC), nonetheless 0 ∈ σ1D(1M)(A) ∪ σ1D(1M)(B).
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We can now present our first main result.

Theorem 2.4. Let A ∈ L(H) and B ∈ L(K). For all C ∈ L(K,H), we have

σ1D(1M)(MC) ∪W1D(1M) = σ1D(1M)(A) ∪ σ1D(1M)(B),

where W1D(1M) is the union of certain holes in σ1D(1M)(MC) and W1D(1M) ⊆ σ1D(1M)(A) ∩ σ1D(1M)(B).

Proof. We have

(σ1D(1M)(B) ∪ σ1D(1M)(A)) = σ1D(1M)(MC) ∪ {σ1D(1M)(B) ∩ σ1D(1M)(A)}. (4)

Indeed,
σ1D(1M)(MC) ∪ {σ1D(1M)(A) ∩ σ1D(1M)(B)} ⊆ (σ1D(1M)(A) ∪ σ1D(1M)(B))

holds for every C ∈ L(K,H). Now, we have

λ < σ1D(1M)(MC) ∪ {σ1D(1M)(B) ∩ σ1D(1M)(A)}

⇐⇒ λ ∈ {ρ1D(1M)(MC) ∩ ρ1D(1M)(A)} or λ ∈ {ρ1D(1M)(MC) ∩ ρ1D(1M)(B)},

⇐⇒ λ ∈ ρ1D(1M)(A) and λ ∈ ρ1D(1M)(B), (Lemma 2.1 )

⇐⇒ λ < σ1D(1M)(A) ∪ σ1D(1M)(B),

which give the opposite inclusion.
According to [11, Theorem 2.1], we have

η(σ1D(A) ∪ σ1D(B)) = η(σ1D(MC)).

From [8, Lemma 2.5], we have

η(σ1D(1M)(A) ∪ σ1D(1M)(B)) = η(σ1D(1M)(MC)). (5)

Therefore (5) says that the passage from σ1D(1M)(MC) to σ1D(1M)(B)∪ σ1D(1M)(A) is the filling in certain of the
holes in σ1D(1M)(MC). Moreover, equality (4) ensures that

(σ1D(1M)(B) ∪ σ1D(1M)(A))\σ1D(1M)(MC) ⊂ σ1D(1M)(A) ∩ σ1D(1M)(B).

It follows that the filling in certain of the holes in σ1D(1M)(MC) should occur in σ1D(1M)(B) ∩ σ1D(1M)(A).

The following two results are immediately obtained from Theorem 2.4.

Corollary 2.5. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H). If the interior of σ1D(1M)(B)∩ σ1D(1M)(A) is empty, then
we have

σ1D(1M)(MC) = σ1D(1M)(B) ∪ σ1D(1M)(A), for every C ∈ L(K,H). (6)

Theorem 2.6. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H). The two statements that follow are equivalent,

1. σ(MC) = σ(B) ∪ σ(A),
2. σ1D(1M)(MC) = σ1D(1M)(B) ∪ σ1D(1M)(A).
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Proof. First, we show that W ⊆ W1D(1M). Indeed, let λ ∈ W then λ ∈ σ(A) ∪ σ(B) and λ < σ(MC). So,
λ < σ1D(1M)(MC). Suppose that λ < σ1D(1M)(A) ∪ σ1D(1M)(B) = acc(σ1D(A) ∪ σ1D(B)), that is

λ ∈ iso(σ1D(B) ∪ σ1D(A)) ∪ (ρ1D(B) ∩ ρ1D(A)).

-If λ ∈ ρ1D(B) ∩ ρ1D(A). Since λ ∈ σ(B) ∪ σ(A), it is not difficult to see that λ ∈ iso(σ(B) ∪ σ(A)) ⊆
isoσ(A) ∪ isoσ(B). Hence λ ∈ ∂σ(B) ∪ ∂σ(A) ⊆ σap(B) ∪ σsu(A) ⊆ σ(MC) which is absurd.

-If λ ∈ iso(σ1D(B) ∪ σ1D(A)), then

iso(σ1D(A) ∪ σ1D(B)) ⊆ isoσ1D(A) ∪ isoσ1D(B)
⊆ ∂σ(A) ∪ ∂σ(B)
⊆ σap(A) ∪ σsu(B)
⊆ σ(MC).

Then λ ∈ σ(MC), contradiction. Thus,

λ ∈ σ1D(1M)(A) ∪ σ1D(1M)(B) \ σ1D(1M)(MC),

by Theorem 2.4, λ ∈W1D(1M), so W ⊆W1D(1M), which shows the inclusion.
Now, if σ1D(1M)(MC) = σ1D(1M)(B) ∪ σ1D(1M)(A), then W1D(1M) = ∅, which implies that W = ∅. Conse-

quently, σ(MC) = σ(B) ∪ σ(A).
Conversely, if σ(B) ∪ σ(A) = σ(MC), by [11, Theorem 2.2] we have σ1D(B) ∪ σ1D(A) = σ1D(MC). Now,

let λ < σ1D(1M)(MC), without losing generality, take 0 < σ1D(1M)(MC) then there exists ε > 0 such that
MC − λI is generalized Drazin-1-meromorphic invertible, for all λ, 0 < |λ| < ε, hence 0 < σ1D(MC) =
σ1D(B) ∪ σ1D(A). Thus both B − λI and A − λI are generalized Drazin invertible for any λ, 0 < |λ| < ε.
Therefore 0 < σ1D(1M)(A)) ∪ σ1D(1M)(B)). Since σ1D(1M)(MC) ⊆ σ1D(1M)(B) ∪ σ1D(1M)(A) always holds, then
σ1D(1M)(MC) = σ1D(1M)(B) ∪ σ1D(1M)(A).

According to Theorem 2.6, [10, Proposition 3.6] and [11, Theorem 2.2], we can conclude the following
conclusion.

Corollary 2.7. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H). The following claims are equivalent:

1. σ(MC) = σ(B) ∪ σ(A).
2. σD(MC) = σD(B) ∪ σD(A).
3. σ1D(MC) = σ1D(B) ∪ σ1D(A).
4. σ1D(1M)(MC) = σ1D(1M)(B) ∪ σ1D(1M)(A).

According to the proof of Theorem 2.6, we have W ⊂ W1D(1M). The following example show that this
inclusion may be strict in general.

Example 2.8. Define P,Q,R ∈ L(l2(N)) by

P(x1, x2, x3, ...) = (0, x1, x2, ...),

Q(x1, x2, x3, ...) = (x2, x3, x4...),

and
R(x1, x2, x3, ...) = (x1, 0, 0, ...).

Let A = P ∈ L(l2(N)), C = (R, 0) ∈ L(l2(N) ⊕ l2(N), l2(N)) and B =
(
Q 0
0 0

)
∈ L(l2(N) ⊕ l2(N)). Let

MC =

(
A C
0 B

)
∈ L(l2(N) ⊕ l2(N) ⊕ l2(N)).
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We have σ(MC) = {λ ∈ C, |λ| = 1} ∪ {0}, σ(B) = σ(A) = {λ ∈ C, |λ| ≤ 1}, then σ1D(1M)(MC) = {λ ∈ C, |λ| =
1}, σ1D(1M)(B) = σ1D(1M)(A) = {λ ∈ C, |λ| ≤ 1}. So,

W = {λ ∈ C, 0 < |λ| < 1} and W1D(1M) = {λ ∈ C, |λ| < 1}.

Consequently, W1D(1M) ,W.

The subsequent theorem, however, provides an adequate condition for the equality.

Theorem 2.9. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H). If iso∂W = ∅, then

W =W1D =W1D(1M).

Proof. Assume that iso∂W = ∅, from [11, Theorem 2.3] we have W =W1D, hence iso∂W1D = ∅, so

isoσ1D(MC) = iso(σ1D(A) ∪ σ1D(B)) ⊆ isoσ1D(A) ∪ isoσ1D(B).

Let λ ∈ isoσ1D(MC), then λ ∈ isoσ1D(A) or λ ∈ isoσ1D(B). If λ ∈ isoσ1D(A), then A− λ is generalized Drazin-1-
meromorphic invertible but not generalized Drazin invertible. According to Lemma 2.1, B−λ is generalized
Drazin-1-meromorphic invertible, then λ ∈ isoσ1D(B) ∪ ρ1D(B). Similarly, we have λ ∈ isoσ1D(B) =⇒ λ ∈
isoσ1D(A) ∪ ρ1D(A). Which entails that:

isoσ1D(MC) ⊆ (isoσ1D(A) ∩ isoσ1D(B)) ∪ (isoσ1D(A) ∩ ρ1D(B)) ∪ (isoσ1D(B) ∩ ρ1D(A)).

Furthermore, Lemma 2.1 ensure that

(isoσ1D(A) ∩ isoσ1D(B)) ∪ (isoσ1D(A) ∩ ρ1D(B)) ∪ (isoσ1D(B) ∩ ρ1D(A))
⊆ ∂σ1D(A) ∪ ∂σ1D(B)
⊆ accσap(B) ∪ accσsu(A)
⊆ σ1D(MC)

and
(isoσ1D(A) ∩ isoσ1D(B)) ∪ (isoσ1D(A) ∩ ρ1D(B)) ∪ (isoσ1D(B) ∩ ρ1D(A)) ⊆ isoσ1D(MC).

According to the above, we have

(isoσ1D(A) ∩ isoσ1D(B)) ∪ (isoσ1D(A) ∩ ρ1D(B)) ∪ (isoσ1D(B) ∩ ρ1D(A)) = isoσ1D(MC).

Hence
isoσ1D(MC) ∩ (σ1D(1M)(A) ∪ σ1D(1M)(B)) = ∅.

According to Lemma 2.1,

(isoσ1D(A) ∪ isoσ1D(B)) \ isoσ1D(MC)
= (isoσ1D(A) \ isoσ1D(MC)) ∪ (isoσ1D(B) \ isoσ1D(MC))
⊆ σ1D(1M)(A) ∪ σ1D(1M)(B).

Consequently,

σ1D(A) ∪ σ1D(B)
= σ1D(1M)(A) ∪ σ1D(1M)(B) ∪ isoσ1D(A) ∪ isoσ1D(B)

= σ1D(1M)(A) ∪ σ1D(1M)(B) ∪ isoσ1D(MC) ∪ [(isoσ1D(A) ∪ isoσ1D(B)) \ isoσ1D(MC)]

= σ1D(1M)(A) ∪ σ1D(1M)(B) ∪ isoσ1D(MC)

= σ1D(1M)(MC) ∪W1D(1M) ∪ isoσ1D(MC)

= σ1D(1M)(MC) ∪ isoσ1D(MC) ∪W1D(1M)
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and

[σ1D(1M)(MC) ∪ isoσ1D(MC)] ∩W1D(1M)

= [σ1D(1M)(MC) ∩W1D(1M)] ∪ [isoσ1D(MC) ∩W1D(1M)]

⊆ [σ1D(1M)(MC) ∩W1D(1M)] ∪ [isoσ1D(MC) ∩ (σ1D(1M)(B) ∪ σ1D(1M)(A))]

= ∅.

Moreover,

σ1D(B) ∪ σ1D(A) = σ1D(MC) ∪W1D

= σ1D(1M)(MC) ∪ isoσ1D(MC) ∪W1D

and
σ1D(MC) ∩W1D = ∅.

We get that W1D =W1D(1M), therefore W =W1D(1M).

Recall that for T ∈ L(H) we have S(T) ∪ S(T∗) ⊂ σ1D(1M)(T) [9]. Using the SVEP, we found the following
result:

Lemma 2.10. Let A ∈ L(K) and B ∈ L(K). We have

1. S(B) ∩ S(A∗) ⊆ σ1D(1M)(B) ∪ σ1D(1M)(A), and
2. [S(A∗) ∩ S(B)] ∩ [iso(σ1D(B) ∪ σ1D(A))]c = S(B) ∩ S(A∗).

Proof. For (1), let λ ∈ ρ1D(1M)(A). Then A − λI is generalized Drazin-g-meromorphic. According to [9,
Theorem 3.10], A∗ has SVEP at λ. So, λ ∈ S(A∗)c. As a result, we have ρ1D(1M)(A) ⊆ S(A∗)c. By a similar
argument, we can conclude that ρ1D(1M)(B) ⊆ S(B)c. Hence

ρ1D(1M)(B) ∩ ρ1D(1M)(A) ⊆ S(B)c
∩ S(A∗)c.

Consequently,
S(B) ∩ S(A∗) ⊆ σ1D(1M)(B) ∪ σ1D(1M)(A).

For (2), let λ ∈ S(B) ∩ S(A∗). Hence B and A∗ have SVEP at λ. According to [9, Theorem 3.10],
λ ∈ accσ1D(B) ∩ accσ1D(A) ⊆ accσ1D(B) ∪ accσ1D(A). Since accσ1D(B) ∪ accσ1D(A) = acc(σ1D(B) ∪ σ1D(A)) (See
[11, Lemma 2.2]), we have λ ∈ acc(σ1D(B) ∪ σ1D(A)). Thus λ ∈ [iso(σ1D(B) ∪ σ1D(A))]c. As a result,

S(A∗) ∩ S(B) ⊆ [iso(σ1D(B) ∪ σ1D(A))]c.

Consequently,
S(A∗) ∩ S(B) ⊆ [S(A∗) ∩ S(B)] ∩ [iso(σ1D(B) ∪ σ1D(A))]c.

The other inclusion is obvious.

Theorem 2.11. Let A ∈ L(H), B ∈ L(K) and, C ∈ L(K,H). Then

σ1D(1M)(MC) ∪ [S(B) ∩ S(A∗)] = σ1D(1M)(B) ∪ σ1D(1M)(A).

Proof. It follows from [10, Theorem 3.2] that

σ1D(MC) ∪ [S(B) ∩ S(A∗)] = σ1D(A) ∪ σ1D(B) for all C ∈ B(K,H).

Hence,

σ1D(1M)(B) ∪ σ1D(1M)(A) = {σ1D(MC) ∪ [S(B) ∩ S(A∗)]} ∩ {iso(σ1D(B) ∪ σ1D(A))}c.
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By Lemma 2.10, we have
S(B) ∩ S(A∗) ⊆ σ1D(1M)(B) ∪ σ1D(1M)(A),

and [S(A∗) ∩ S(B)] ∩ {iso(σ1D(B) ∪ σ1D(A))}c = S(B) ∩ S(A∗).

From Theorem 1.4, we have σ1D(MC) ∩ W1D = ∅, then λ ∈ isoσ1D(MC) implies that there exists a
neighborhood V of λ such that V ∩ σ1D(MC) = {λ}. Put U = V ∩Wc

1D, then [σ1D(MC) ∪W1D] ∩ U = {λ}.
Therefore, λ ∈ iso(σ1D(MC) ∪W1D). Whence

isoσ1D(MC) ⊆ iso(σ1D(B) ∪ σ1D(A)).

Hence

σ1D(MC) ∩ {iso(σ1D(B) ∪ σ1D(A))}c

= (isoσ1D(MC) ∪ σ1D(1M)(MC)) ∩ {iso(σ1D(B) ∪ σ1D(A))}c

= σ1D(1M)(MC) ∩ {iso(σ1D(B) ∪ σ1D(A))}c

⊆ σ1D(1M)(MC).

So,

σ1D(1M)(B) ∪ σ1D(1M)(A)

= {σ1D(MC) ∪ [S(B) ∩ S(A∗)]} ∩ {iso(σ1D(B) ∪ σ1D(A))}c

⊆ σ1D(1M)(MC) ∪ [S(B) ∩ S(A∗)].

We obtain the following corollary from Theorem 2.11.

Corollary 2.12. Let A ∈ L(H) and B ∈ L(K). If S(B) ∩ S(A∗) = ∅, then for every C ∈ L(K,H) we have

σ1D(1M)(MC) = σ1D(B) ∪ σ1D(1M)(A).(∗∗)

Specifically, if B or A∗ have the SVEP, then equality (∗∗) hold.

Acknowledgements: We would like to thank the anonymous referees for their valuable comments and
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