Filomat 38:28 (2024), 9761–9768 https://doi.org/10.2298/FIL2428761E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Drazin-q-meromorphic spectrum for operator matrices

I. El Ouali^a , M. Ech-Cherif El Kettani^a , M. Karmouni^b

^aSidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, LaSMA Laboratory, Fez, Morocco ^bCadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco

Abstract. For $C \in \mathcal{L}(K, H)$, $B \in \mathcal{L}(K)$ and $A \in \mathcal{L}(H)$, let M_C be the operator matrix defined on $H \oplus K$ by $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ 0 *B* ! , whereas *K* and *H* are complex Hilbert spaces. In this paper, we demonstrate that $\sigma(M_C) = \sigma(B) \cup \sigma(A)$ is equivalent to

 $\sigma_{aD(aM)}(M_C) = \sigma_{aD(aM)}(B) \cup \sigma_{aD(aM)}(A)$

whereas σ_{qD(qM)}(.) is the generalized Drazin-q-meromorphic spectrum [9]. Also, we used the local spectral theory to give a sufficient condition to have the last equality.

1. Introduction

Let *K* and *H* denote infinite dimensional complex Hilbert spaces and $\mathcal{L}(H,K)$ denotes the set of all linear bounded operators from *H* into *K*. We write $\mathcal{L}(H)$ instead of $\mathcal{L}(H, H)$, when $H = K$. Let $A \in \mathcal{L}(H)$, we denote by $\sigma(A)$, $\sigma_{ap}(A)$, $\sigma_{su}(A)$, A^* , the spectrum, the approximate point spectrum, the surjective spectrum and the adjoint operator of *A*.

Remember that an operator $A \in \mathcal{L}(X)$ is said to possess the single valued extension property (SVEP) for short) at λ if there exists *V* an open neighborhood of λ such that for any open subset $W \subseteq V$ the only analytic solution of the equation $(A - \mu)f(\mu) = 0$ for all $\mu \in W$ is the function $\bar{f} \equiv 0$. Let *S*(*A*) be the set of all $\lambda \in \mathbb{C}$ such that *A* does not admit the SVEP at λ . Evidently, if $T - \lambda$ possesses the SVEP at 0, then *T* possesses the SVEP at λ (See [1]). *A* is said to possess the SVEP if *A* possesses the SVEP at all $\lambda \in \mathbb{C}$, in this particular situation *S*(*A*) = \emptyset . Note that $\sigma(A) = S(A) \cup \sigma_{su}(A)$.

In the Drazin sense, $A \in \mathcal{L}(H)$ is invertible if we can find $B \in \mathcal{L}(H)$ such that

$$
AB = BA
$$
, $B^2A = B$ and $BA^2 - B$ is nilpotent.

A generalization of this concept is given by J.J. Koliha [6], in fact $A \in \mathcal{L}(H)$ is called Koliha-Drazin invertible (or generalized Drazin invertible) if there exists $B \in \mathcal{L}(H)$ such that

 $AB = BA$, $B^2A = B$ and $BA^2 - B$ is quasinilpotent,

²⁰²⁰ *Mathematics Subject Classification*. Primary 47A53; Secondary 47A10.

Keywords. Generalized Drazin-q-meromorphic spectrum, operator matrix.

Received: 01 February 2024; Revised: 12 June 2024; Accepted: 16 July 2024 Communicated by Dragan S. Djordjevic´

Email addresses: issame.elouali@usmba.ac.ma (I. El Ouali), mustelkettani@yahoo.fr (M. Ech-Cherif El Kettani),

mohamed.karmouni@uca.ac.ma (M. Karmouni)

which is equivalent to 0 < *acc*σ(*A*).

The Drazin spectrum and the generalized Drazin spectrum are defined, respectively, by

 $\sigma_D(A) = {\lambda \in \mathbb{C}, A - \lambda I \text{ is not Drazin invertible }}$,

 $\sigma_{qD}(A) = {\lambda \in \mathbb{C}, A - \lambda I \text{ is not Koliha-Drazin invertible}}$,

with $\rho_D(A) = \mathbb{C} \setminus \sigma_D(A)$ and $\rho_{qD}(A) = \mathbb{C} \setminus \sigma_{qD}(A)$.

Keep in mind that an operator $A \in \mathcal{L}(H)$ is supposedly q-meromorphic if every non-zero point of its spectrum is an isolated point ($A \in (gM)$ for short) which is equivalent to $\sigma_{gD}(A) \subseteq \{0\}$ [9].

Recently, S. Č Živković-Zlatanović [9] presented and studied a new extended inverse concept to expand the Koliha-Drazin idea to "generalized Drazin-q-meromorphic invertible". In fact, $A \in \mathcal{L}(H)$ is said to be generalized Drazin-q-meromorphic invertible if there exists $B \in \mathcal{L}(H)$ such that

 $AB = BA$, $BAB = B$ and $A^2B - A$ is *g*-meromorphic.

The generalized Drazin- q -meromorphic spectrum is defined by

 $\sigma_{gD(g\mathcal{M})}(T) = {\lambda \in \mathbb{C}, A - \lambda I}$ is not generalized Drazin-g-meromorphic invertible },

and we write $\rho_{gD(gM)}(A) = \mathbb{C} \setminus \sigma_{gD(gM)}(A)$.

An interesting characterization of this class is given by the following lemma.

Lemma 1.1. *[9] Let* $A \in \mathcal{L}(H)$ *. The following statements are equivalent.*

1. *A is generalized Drazin-*1*-meromorphic invertible.*

2. $0 \notin acc \sigma_{qD}(A)$.

Let *E* be a compact subset of C, we denote by *accE*, *isoE*, ∂*E*, η(*E*) and *E ^c* be the accumulation points of *E*, the isolated points of *E*, the boundary of *E*, the polynomially convex hull and the complement of *E*, respectively.

In the last two decades an extensive study of 2×2 upper triangular operator matrices has been carried out. The research was primarily motivated by the following fact: If $T \in \mathcal{L}(H)$ and *F* is closed, complemented and *T*-invariant subspace of *H*, then *T* may be expressed as

$$
T = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} : F \oplus F^{\perp} \longrightarrow F \oplus F^{\perp}.
$$

Throughout the remainder of this paper, $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(K)$ and $C \in \mathcal{L}(K, H)$. The upper triangular operator matrix $M_C \in \mathcal{L}(H \oplus K)$ represents a bounded linear operator on the Hilbert space $H \oplus K$ given by:

$$
M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.
$$

When it comes to infinite dimensional spaces, H. K. Du and J. Pan [4] showed that the inclusion $\sigma(M_C) \subset \sigma(B) \cup \sigma(A)$ may be strict. A few years later other authors [5] were able to prove the following theorem.

Theorem 1.2. [5] Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$
\sigma(M_C) \cup W = \sigma(B) \cup \sigma(A), \tag{1}
$$

where W is the union of certain holes in $\sigma(M_C)$ such that $W \subseteq \sigma(B) \cap \sigma(A)$.

Subsequently, several mathematicians have generalized this result for other spectra. As examples we have the following two results:

Theorem 1.3. [12] Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$
\sigma_D(M_C) \cup W_D = \sigma_D(B) \cup \sigma_D(A),\tag{2}
$$

where W_D *is the union of certain holes in* $\sigma_D(M_C)$ *and* $W_D \subseteq \sigma_D(A) \cap \sigma_D(B)$ *.*

Theorem 1.4. [11] Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For all $C \in \mathcal{L}(K, H)$, we have

$$
\sigma_{gD}(M_C) \cup W_{gD} = \sigma_{gD}(B) \cup \sigma_{gD}(A),\tag{3}
$$

where W_{qD} *is the union of certain holes in* $\sigma_{qD}(M_C)$ *and* $W_{qD} \subseteq \sigma_{qD}(B) \cap \sigma_{qD}(A)$ *.*

Generally, there are many research papers that have studied this type of operator matrices, including [3], [8], [2], and [7].

In this paper, we prove the following hole-filling property:

$$
\sigma_{gD(g\mathcal{M})}(M_C) \cup W_{gD(g\mathcal{M})} = \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B),
$$

where $W_{gD(gM)}$ is the union of certain holes in $\sigma_{gD(gM)}(M_C)$ which happen to be subsets of $\sigma_{gD(gM)}(A) \cap$ $\sigma_{gD(g\mathcal{M})}(B)$. Also, we will give a sufficient condition, related to the SVEP, to have the equality

 $\sigma_{gD(g\mathcal{M})}(M_C) = \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B).$

2. Main results

The following lemma is important and it is widely used in the proofs of our main results.

Lemma 2.1. *Let* $A \in \mathcal{L}(H)$ *,* $B \in \mathcal{L}(K)$ *, and* $C \in \mathcal{L}(K, H)$ *. The following statements hold:*

- 1. *Operators MC, A and B are all invertible if any two of them are.*
- 2. *Operators MC, A and B are all generalized Drazin invertible if any two of them are.*
- 3. *Operators MC, A and B are all generalized Drazin-*1*-meromorphic invertible if any two of them are.*

Proof. For (1), see [5, Theorem 2], and for (2), see [11, Lemma 2.4].

(3): It suffices to show that M_C and A are generalized Drazin- g -meromorphic invertible implies that *B* is generalized Drazin-*q*-meromorphic invertible. If M_C and *A* are generalized Drazin-*q*-meromorphic invertible, that is $0 \notin acc \sigma_{qD}(M_C)$ and $0 \notin acc \sigma_{qD}(A)$, then there exists $\epsilon > 0$ such that $M_C - \lambda I$ and $A - \lambda I$ are generalized Drazin invertible for all λ, 0 < |λ| < ϵ. By (*ii*), we have that *B*−λ*I* is generalized Drazin invertible for all λ , $0 < |\lambda| < \epsilon$. Thus, $0 \notin acc_{aD}(B)$. So, *B* is generalized Drazin-*q*-meromorphic invertible. \square

Lemma 2.2. *Let* $A \in \mathcal{L}(H)$ *,* $B \in \mathcal{L}(K)$ *. For all* $C \in \mathcal{L}(K, H)$ *, we have*

$$
\sigma_{gD(g\mathcal{M})}(M_C) \subseteq \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B).
$$

Proof. Without loss of generality let $0 \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B)$, then there exists $\varepsilon > 0$ such that $B - \lambda B$ and *A* − λ *I* are generalized Drazin invertible for any λ , $0 < |\lambda| < \varepsilon$. According to Lemma 2.1, $M_C - \lambda I$ is generalized Drazin invertible for any λ , $0 < |\lambda| < \varepsilon$. Hence $0 \notin \sigma_{gD(g\mathcal{M})}(M_C)$.

The inclusion $\sigma_{gD(gM)}(M_C) \subset \sigma_{gD(gM)}(A) \cup \sigma_{gD(gM)}(B)$ may be strict as shown in the following example.

Example 2.3. *(Cf.* [4, Example 3]) Let A , B , $C \in \mathcal{L}(l^2(\mathbb{N}))$ be defined by:

$$
Ae_n = e_{n+1} \text{ for all } n \in \mathbb{N},
$$

$$
B = A^*, \text{ and}
$$

$$
Cx = e_0 \text{ for all } x \in l^2(\mathbb{N}),
$$

 \mathcal{L} *whereas* $\{e_n\}_{n\in\mathbb{N}}$ *is the orthonormal basis of* $l^2(\mathbb{N})$ *. We have* $\sigma_{gD(g\mathcal{M})}(A) = \{\lambda \in \mathbb{C}; |\lambda| \leq 1\}$ *. M_C is unitary, so* $\sigma_{gD(g\mathcal{M})}(M_{\mathcal{C}}) \subseteq {\{\mu \in \mathbb{C}; |\mu| = 1\}}$. Then $0 \notin \sigma_{gD(g\mathcal{M})}(M_{\mathcal{C}})$, nonetheless $0 \in \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B)$.

We can now present our first main result.

Theorem 2.4. *Let* $A \in \mathcal{L}(H)$ *and* $B \in \mathcal{L}(K)$ *. For all* $C \in \mathcal{L}(K, H)$ *, we have*

$$
\sigma_{gD(g\mathcal{M})}(M_C) \cup W_{gD(g\mathcal{M})} = \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B),
$$

 ω *i deepth* $W_{gD(g\mathcal{M})}$ *is the union of certain holes in* $\sigma_{gD(g\mathcal{M})}(M_C)$ *and* $W_{gD(g\mathcal{M})}\subseteq \sigma_{gD(g\mathcal{M})}(A)\cap \sigma_{gD(g\mathcal{M})}(B)$.

Proof. We have

$$
(\sigma_{gD(g\mathcal{M})}(B)\cup\sigma_{gD(g\mathcal{M})}(A))=\sigma_{gD(g\mathcal{M})}(M_C)\cup\{\sigma_{gD(g\mathcal{M})}(B)\cap\sigma_{gD(g\mathcal{M})}(A)\}.
$$
\n(4)

Indeed,

$$
\sigma_{gD(g\mathcal M)}(M_C)\cup \{\sigma_{gD(g\mathcal M)}(A)\cap \sigma_{gD(g\mathcal M)}(B)\}\subseteq (\sigma_{gD(g\mathcal M)}(A)\cup \sigma_{gD(g\mathcal M)}(B))
$$

holds for every $C \in \mathcal{L}(K, H)$. Now, we have

 $\lambda \notin \sigma_{gD(g\mathcal{M})}(M_C) \cup \{\sigma_{gD(g\mathcal{M})}(B) \cap \sigma_{gD(g\mathcal{M})}(A)\}$ $\iff \lambda \in \{\rho_{gD(g\mathcal{M})}(M_c) \cap \rho_{gD(g\mathcal{M})}(A)\}\$ or $\lambda \in \{\rho_{gD(g\mathcal{M})}(M_c) \cap \rho_{gD(g\mathcal{M})}(B)\},$ $\iff \lambda \in \rho_{gD(g\mathcal{M})}(A)$ and $\lambda \in \rho_{gD(g\mathcal{M})}(B)$, (Lemma 2.1) $\iff \lambda \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B),$

which give the opposite inclusion.

According to [11, Theorem 2.1], we have

$$
\eta(\sigma_{gD}(A) \cup \sigma_{gD}(B)) = \eta(\sigma_{gD}(M_C)).
$$

From [8, Lemma 2.5], we have

$$
\eta(\sigma_{gD(gM)}(A) \cup \sigma_{gD(gM)}(B)) = \eta(\sigma_{gD(gM)}(M_C)).
$$
\n(5)

Therefore (5) says that the passage from $\sigma_{gD(gM)}(M_C)$ to $\sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$ is the filling in certain of the holes in σ_{gD(gM)}(M_C). Moreover, equality (4) ensures that

$$
(\sigma_{gD(g\mathcal{M})}(B)\cup\sigma_{gD(g\mathcal{M})}(A))\backslash\sigma_{gD(g\mathcal{M})}(M_C)\subset\sigma_{gD(g\mathcal{M})}(A)\cap\sigma_{gD(g\mathcal{M})}(B).
$$

It follows that the filling in certain of the holes in $\sigma_{gD(gM)}(M_C)$ should occur in $\sigma_{gD(gM)}(B) \cap \sigma_{gD(gM)}(A)$. \Box

The following two results are immediately obtained from Theorem 2.4.

Corollary 2.5. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. If the interior of $\sigma_{gD(g\mathcal{M})}(B) \cap \sigma_{gD(g\mathcal{M})}(A)$ is empty, then *we have*

$$
\sigma_{gD(gM)}(M_C) = \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A), \text{ for every } C \in \mathcal{L}(K, H). \tag{6}
$$

Theorem 2.6. *Let* $A \in \mathcal{L}(H)$ *,* $B \in \mathcal{L}(K)$ *, and* $C \in \mathcal{L}(K, H)$ *. The two statements that follow are equivalent,*

1. $\sigma(M_C) = \sigma(B) \cup \sigma(A)$,

2. $\sigma_{gD(gM)}(M_C) = \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$ *.*

Proof. First, we show that $W \subseteq W_{gD(g\mathcal{M})}$. Indeed, let $\lambda \in W$ then $\lambda \in \sigma(A) \cup \sigma(B)$ and $\lambda \notin \sigma(M_C)$. So, $\lambda \notin \sigma_{gD(g\mathcal{M})}(M_C)$. Suppose that $\lambda \notin \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B) = acc(\sigma_{gD}(A) \cup \sigma_{gD}(B))$, that is

 $\lambda \in iso(\sigma_{aD}(B) \cup \sigma_{aD}(A)) \cup (\rho_{aD}(B) \cap \rho_{aD}(A)).$

 $-If \lambda \in \rho_{aD}(B) \cap \rho_{aD}(A)$. Since $\lambda \in \sigma(B) \cup \sigma(A)$, it is not difficult to see that $\lambda \in iso(\sigma(B) \cup \sigma(A)) \subseteq$ *isoσ*(*A*) ∪ *isoσ*(*B*). Hence $\lambda \in \partial \sigma(B)$ ∪ $\partial \sigma(A) \subseteq \sigma_{an}(B)$ ∪ $\sigma_{su}(A) \subseteq \sigma(M_C)$ which is absurd.

 $-If \lambda \in iso(\sigma_{qD}(B) \cup \sigma_{qD}(A))$, then

 $iso(\sigma_{aD}(A) \cup \sigma_{aD}(B)) \subseteq iso(\sigma_{aD}(A) \cup iso(\sigma_{aD}(B))$ ⊆ ∂σ(*A*) ∪ ∂σ(*B*) ⊆ σ*ap*(*A*) ∪ σ*su*(*B*) $\subseteq \sigma(M_C)$.

Then $\lambda \in \sigma(M_C)$, contradiction. Thus,

 $\lambda \in \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B) \setminus \sigma_{gD(g\mathcal{M})}(M_C)$,

by Theorem 2.4, $\lambda \in W_{gD(g\mathcal{M})}$, so $W \subseteq W_{gD(g\mathcal{M})}$, which shows the inclusion.

Now, if $\sigma_{gD(gM)}(M_c) = \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$, then $W_{gD(gM)} = \emptyset$, which implies that $W = \emptyset$. Consequently, $\sigma(M_C) = \sigma(B) \cup \sigma(A)$.

Conversely, if $\sigma(B) \cup \sigma(A) = \sigma(M_C)$, by [11, Theorem 2.2] we have $\sigma_{gD}(B) \cup \sigma_{gD}(A) = \sigma_{gD}(M_C)$. Now, let $\lambda \notin \sigma_{gD(g\mathcal{M})}(M_C)$, without losing generality, take $0 \notin \sigma_{gD(g\mathcal{M})}(M_C)$ then there exists $\varepsilon > 0$ such that *M*_{*C*} − *λI* is generalized Drazin-*g*-meromorphic invertible, for all $λ$, 0 < $|λ|$ < $ε$, hence $0 \notin σ_{qD}(M_C)$ = $\sigma_{gD}(B) \cup \sigma_{gD}(A)$. Thus both $B - \lambda I$ and $A - \lambda I$ are generalized Drazin invertible for any λ , $0 < |\lambda| < \varepsilon$. Therefore $0 \notin \sigma_{gD(gM)}(A) \cup \sigma_{gD(gM)}(B)$. Since $\sigma_{gD(gM)}(M_C) \subseteq \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$ always holds, then $\sigma_{gD(gM)}(M_C) = \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A).$ \Box

According to Theorem 2.6, [10, Proposition 3.6] and [11, Theorem 2.2], we can conclude the following conclusion.

Corollary 2.7. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$, and $C \in \mathcal{L}(K, H)$. The following claims are equivalent:

1. $\sigma(M_C) = \sigma(B) \cup \sigma(A)$.

2. $\sigma_D(M_C) = \sigma_D(B) \cup \sigma_D(A)$.

- 3. $\sigma_{aD}(M_C) = \sigma_{aD}(B) \cup \sigma_{aD}(A)$.
- 4. $\sigma_{gD(g\mathcal{M})}(M_C) = \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$ *.*

According to the proof of Theorem 2.6, we have $W \subset W_{gD(g,M)}$. The following example show that this inclusion may be strict in general.

Example 2.8. *Define P*, Q , $R \in \mathcal{L}(l^2(\mathbb{N}))$ *by*

$$
P(x_1, x_2, x_3, ...) = (0, x_1, x_2, ...),
$$

$$
Q(x_1, x_2, x_3, ...) = (x_2, x_3, x_4, ...),
$$

and

$$
R(x_1, x_2, x_3, ...) = (x_1, 0, 0, ...).
$$

Let A = *P* ∈ *L*(*l*²(**I**N)*)*, *C* = (*R*, 0) ∈ *L*(*l*²(**I**N) ⊕ *l*²(**I**N), *l*²(**I**N)) and *B* = $\begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix}$ ∈ *L*(*l*²(**I**N) ⊕ *l*²(**I**N)). Let $(A \cap C)$

$$
M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathcal{L}(l^2(\mathbb{N}) \oplus l^2(\mathbb{N}) \oplus l^2(\mathbb{N})).
$$

We have $\sigma(M_C) = {\lambda \in \mathbb{C}, |\lambda| = 1} \cup \{0\}, \sigma(B) = \sigma(A) = {\lambda \in \mathbb{C}, |\lambda| \le 1}$, *then* $\sigma_{gD(g\mathcal{M})}(M_C) = {\lambda \in \mathbb{C}, |\lambda| = 1}$ 1 , $\sigma_{gD(gM)}(B) = \sigma_{gD(gM)}(A) = \{\lambda \in \mathbb{C}, |\lambda| \le 1\}$. *So*,

$$
W = \{ \lambda \in \mathbb{C}, 0 < |\lambda| < 1 \} \text{ and } W_{gD(g\mathcal{M})} = \{ \lambda \in \mathbb{C}, |\lambda| < 1 \}.
$$

Consequently, $W_{aD(aM)} \neq W$.

The subsequent theorem, however, provides an adequate condition for the equality.

Theorem 2.9. *Let* $A \in \mathcal{L}(H)$ *,* $B \in \mathcal{L}(K)$ *, and* $C \in \mathcal{L}(K, H)$ *. If iso∂W* = \emptyset *, then*

$$
W = W_{gD} = W_{gD(gM)}.
$$

Proof. Assume that *iso∂W* = \emptyset , from [11, Theorem 2.3] we have *W* = W_{qD} , hence *iso∂W*_{qD} = \emptyset , so

$$
iso\sigma_{gD}(M_C) = iso(\sigma_{gD}(A) \cup \sigma_{gD}(B)) \subseteq iso\sigma_{gD}(A) \cup iso\sigma_{gD}(B).
$$

Let $\lambda \in iso\sigma_{gD}(M_C)$, then $\lambda \in iso\sigma_{gD}(A)$ or $\lambda \in iso\sigma_{gD}(B)$. If $\lambda \in iso\sigma_{gD}(A)$, then $A - \lambda$ is generalized Drazin-*q*meromorphic invertible but not generalized Drazin invertible. According to Lemma 2.1, *B*−λ is generalized Drazin-q-meromorphic invertible, then $\lambda \in iso\sigma_{qD}(B) \cup \rho_{qD}(B)$. Similarly, we have $\lambda \in iso\sigma_{qD}(B) \implies \lambda \in$ $i\omega\sigma_{qD}(A) \cup \rho_{qD}(A)$. Which entails that:

 $i\pi\sigma_aD(M_C)$ ⊆ ($i\pi\sigma_aD(A)$ ∩ $i\pi\sigma_aD(B)$) ∪ ($i\pi\sigma_aD(A)$ ∩ $\rho_{aD}(B)$) ∪ ($i\pi\sigma_aD(B)$ ∩ $\rho_{aD}(A)$).

Furthermore, Lemma 2.1 ensure that

```
(iso\sigma_{aD}(A) \cap iso\sigma_{aD}(B)) \cup (iso\sigma_{aD}(A) \cap \rho_{aD}(B)) \cup (iso\sigma_{aD}(B) \cap \rho_{aD}(A))\subseteq ∂σ<sub>qD</sub>(A) ∪ ∂σ<sub>qD</sub>(B)
⊆ accσap(B) ∪ accσsu(A)
\subseteq \sigma_{aD}(M_C)
```
and

 $(iso\sigma_{gD}(A) \cap iso\sigma_{gD}(B)) \cup (iso\sigma_{gD}(A) \cap \rho_{gD}(B)) \cup (iso\sigma_{gD}(B) \cap \rho_{gD}(A)) \subseteq iso\sigma_{gD}(M_C).$

According to the above, we have

 $(iso\sigma_{gD}(A) \cap iso\sigma_{gD}(B)) \cup (iso\sigma_{gD}(A) \cap \rho_{gD}(B)) \cup (iso\sigma_{gD}(B) \cap \rho_{gD}(A)) = iso\sigma_{gD}(M_C).$

Hence

 $iso\sigma_{gD}(M_C) \cap (\sigma_{gD(gM)}(A) \cup \sigma_{gD(gM)}(B)) = \emptyset.$

According to Lemma 2.1,

 $(iso\sigma_{aD}(A) \cup iso\sigma_{aD}(B)) \setminus iso\sigma_{aD}(M_C)$ $= (iso\sigma_{aD}(A) \setminus iso\sigma_{aD}(M_C)) \cup (iso\sigma_{aD}(B) \setminus iso\sigma_{aD}(M_C))$ $\subseteq \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B).$

Consequently,

```
\sigma_{aD}(A) \cup \sigma_{aD}(B)
```

```
= \sigma_{gD(gM)}(A) \cup \sigma_{gD(gM)}(B) \cup iso \sigma_{gD}(A) \cup iso \sigma_{gD}(B)
```
 $= \sigma_{gD(gM)}(A) \cup \sigma_{gD(gM)}(B) \cup iso \sigma_{gD}(M_C) \cup [(iso \sigma_{gD}(A) \cup iso \sigma_{gD}(B)) \setminus iso \sigma_{gD}(M_C)]$

 $= \sigma_{gD(g\mathcal{M})}(A) \cup \sigma_{gD(g\mathcal{M})}(B) \cup iso \sigma_{gD}(M_C)$

 $= \sigma_{gD(g\mathcal{M})}(M_C) \cup W_{gD(g\mathcal{M})} \cup iso \sigma_{gD}(M_C)$

 $= \sigma_{gD(g\mathcal{M})}(M_C) \cup iso \sigma_{gD}(M_C) \cup W_{gD(g\mathcal{M})}$

```
[\sigma_{gD(gM)}(M_C) \cup iso\sigma_{gD}(M_C)] \cap W_{gD(gM)}= [\sigma_{gD(gM)}(M_C) \cap W_{gD(gM)}] \cup [iso\sigma_{gD}(M_C) \cap W_{gD(gM)}]\subseteq [\sigma_{gD(g\mathcal{M})}(M_C) \cap W_{gD(g\mathcal{M})}] \cup [iso\sigma_{gD}(M_C) \cap (\sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A))]= \emptyset.
```
Moreover,

$$
\begin{aligned} \sigma_{gD}(B) \cup \sigma_{gD}(A) &= \sigma_{gD}(M_C) \cup W_{gD} \\ &= \sigma_{gD(gM)}(M_C) \cup iso \sigma_{gD}(M_C) \cup W_{gD} \end{aligned}
$$

and

 $\sigma_{qD}(M_C) \cap W_{qD} = \emptyset.$

We get that $W_{gD} = W_{gD(gM)}$, therefore $W = W_{gD(gM)}$.

Recall that for $T \in \mathcal{L}(H)$ we have $S(T) \cup S(T^*) \subset \sigma_{gD(g\mathcal{M})}(T)$ [9]. Using the SVEP, we found the following result:

Lemma 2.10. *Let* $A \in \mathcal{L}(K)$ *and* $B \in \mathcal{L}(K)$ *. We have*

1. *S*(*B*) \cap *S*(*A*^{*}) \subseteq $\sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$, and 2. $[S(A^*) \cap S(B)] \cap [iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))]^c = S(B) \cap S(A^*)$ *.*

Proof. For (1), let $\lambda \in \rho_{gD(gM)}(A)$. Then $A - \lambda I$ is generalized Drazin-g-meromorphic. According to [9, Theorem 3.10], *A*^{*} has SVEP at λ . So, $\lambda \in S(A^*)^c$. As a result, we have $\rho_{gD(gM)}(A) \subseteq S(A^*)^c$. By a similar argument, we can conclude that $\rho_{gD(gM)}(B) \subseteq S(B)^c$. Hence

 $\rho_{gD(gM)}(B) \cap \rho_{gD(gM)}(A) \subseteq S(B)^c \cap S(A^*)^c$.

Consequently,

 $S(B) \cap S(A^*) \subseteq \sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A).$

For (2), let $\lambda \in S(B) \cap S(A^*)$. Hence *B* and A^* have SVEP at λ . According to [9, Theorem 3.10], $\lambda \in acc_{gD}(B) \cap acc_{gD}(A) \subseteq acc_{gD}(B) \cup acc_{gD}(A)$. Since $acc_{gD}(B) \cup acc_{gD}(A) = acc(\sigma_{gD}(B) \cup \sigma_{gD}(A))$ (See [11, Lemma 2.2]), we have $\lambda \in acc(\sigma_{gD}(B) \cup \sigma_{gD}(A))$. Thus $\lambda \in [iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))]^c$. As a result,

 $S(A^*) \cap S(B) \subseteq [iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))]^c$.

Consequently,

 $S(A^*) \cap S(B) \subseteq [S(A^*) \cap S(B)] \cap [iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))]^c$.

The other inclusion is obvious. \square

Theorem 2.11. *Let* $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$ and, $C \in \mathcal{L}(K, H)$. Then

 $\sigma_{gD(gM)}(M_C) \cup [S(B) \cap S(A^*)] = \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A).$

Proof. It follows from [10, Theorem 3.2] that

$$
\sigma_{gD}(M_C) \cup [S(B) \cap S(A^*)] = \sigma_{gD}(A) \cup \sigma_{gD}(B)
$$
 for all $C \in \mathcal{B}(K, H)$.

Hence,

$$
\sigma_{gD(g\mathcal{M})}(B)\cup \sigma_{gD(g\mathcal{M})}(A)=\{\sigma_{gD}(M_C)\cup [S(B)\cap S(A^*)]\}\cap \{iso(\sigma_{gD}(B)\cup \sigma_{gD}(A))\}^c.
$$

By Lemma 2.10, we have

 $S(B) \cap S(A^*) \subseteq \sigma_{gD(gM)}(B) \cup \sigma_{gD(gM)}(A)$ and $[S(A^*) \cap S(B)] \cap {iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))}^c = S(B) \cap S(A^*)$.

From Theorem 1.4, we have $\sigma_{gD}(M_C) \cap W_{gD} = \emptyset$, then $\lambda \in iso\sigma_{gD}(M_C)$ implies that there exists a neighborhood *V* of λ such that $V \cap \sigma_{gD}(M_C) = \{\lambda\}$. Put $U = V \cap W_{gD}^c$, then $[\sigma_{gD}(M_C) \cup W_{gD}] \cap U = \{\lambda\}$. Therefore, $\lambda \in iso(\sigma_{qD}(M_C) \cup W_{qD})$. Whence

$$
iso\sigma_{gD}(M_C) \subseteq iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))
$$

Hence

 $\sigma_{gD}(M_C) \cap {iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))}^c$ $= (iso\sigma_{gD}(M_C) \cup \sigma_{gD(gM)}(M_C)) \cap {iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))}^c$ $= \sigma_{gD(g\mathcal{M})}(M_C) \cap {iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))}^c$ $\subseteq \sigma_{gD(gM)}(M_C).$

So,

 $\sigma_{gD(g\mathcal{M})}(B) \cup \sigma_{gD(g\mathcal{M})}(A)$ $= {\sigma_{gD}(M_C) \cup [S(B) \cap S(A^*)]} \cap {iso(\sigma_{gD}(B) \cup \sigma_{gD}(A))}^c$ $\subseteq \sigma_{gD(gM)}(M_C) \cup [S(B) \cap S(A^*)].$

 \Box

We obtain the following corollary from Theorem 2.11.

Corollary 2.12. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. If $S(B) \cap S(A^*) = \emptyset$, then for every $C \in \mathcal{L}(K, H)$ we have

$$
\sigma_{gD(g\mathcal{M})}(M_C) = \sigma_{gD}(B) \cup \sigma_{gD(g\mathcal{M})}(A).(**)
$$

Specifically, if B or A[∗] *have the SVEP, then equality* (∗∗) *hold.*

Acknowledgements: We would like to thank the anonymous referees for their valuable comments and suggestions.

References

- [1] P. Aiena, *Fredholm and local spectral theory with application to multipliers,* Kluwer Academic, 2004.
- [2] X. Cao, *Browder essential approximate point spectra and hypercyclicity for operator matrices,* Linear Algebra and its Applications, 426:2-3 (2007), 317-324.
- [3] Dragan S. Djordjevic´, *Perturbation of spectra of operator matrices,* J. Operator Theory, 48:3 (2002), 467-486.
- [4] H. K. Du and J. Pan, *Perturbation of spectrums of* 2 × 2 *operator matrices,* Proc. Amer. Math. Soc., 121 (1994), 761-766.
- [5] J. K. Han, H. Y. Lee and W. Y. Lee, *Invertible completions of* 2 × 2 *upper triangular operator matrices,* Proc. Amer. Math. Soc., 128 (1999), 119-123.
- [6] J. J. Koliha, *A generalized Drazin inverse,* Glasgow Math.J., 38 (1996), 367-381.
- [7] W. Y. Lee, *Weyl's theorem for operator matrices,* Integr. equ. oper. theory, 32 (1996), 319-331.
- [8] A. Tajmouati, M.Karmouni and S. Alaoui Chrifi, *Limit points for Browder spectrum of operator matrices,* Rend. Circ. Mat. Palermo, II. Ser., 69 (2020), 393-402.
- [9] S. C. ˇ Zˇ ivkovic´-Zlatanovic´, *Generalized Drazin-*1*-meromorphic invertible operators and generalized Kato-*1*-meromorphic decomposition,* Filomat, 36:8 (2022), 2813-2827.
- [10] H. ZARIOUH AND H. ZGUITTI, *On pseudo B-Weyl operators and generalized Drazin invertibility for operator matrices*, Linear and Multilinear Algebra, 64:7 (2016), 1245-1257.
- [11] S. Zhang, H. Zhong and L.Lin, *Generalized Drazin spectrum of operator matrices,* Appl. Math. J. Chin. Univ., 29 (2014), 162-170.
- [12] S. Zhang, H. Zhong and Q. Jiang, *Drazin spectrum of operator matrices on the Banach space,* Linear Algebra Appl., 429 (2008), 2067-2075.