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Abstract. This paper deals with a regular Sturm-Liouville problem with distributional potential and
transmission condition. We obtain the differentiability of the eigenvalues on parameters. Moreover, we
give the derivative formulas of the eigenvalues with respect to the parameters.

1. Introduction

Sturm-Liouville theory has been widely applied in various fields such as engineering, physics, finance.
With various practical problems arose in the fields of physics and medicine, many problems need to be
converted to differential operators with interior discontinuity. For instance, the heat conduction and mass
transfer problems [21], string vibration with nodes [20], and diffraction problems of light [24]. In order to
describe the connection between two sides of discontinuous points, some conditions need to be added, such
conditions are often referred to point interactions, transmission or interface conditions. In recent years,
such problems with interior discontinuity have attracted the attention of many researchers and have made
great progress [1, 3, 4, 8, 15, 16, 25].

As we all know, the classical Sturm-Liouville theory is the main mathematical tool to describe the state
of microscopic particles in quantum mechanics. However, the description of the interaction between mi-
croscopic particles needs to be studied by using the Sturm-Liouville problem with distributional potentials.
Recently, Sturm-Liouville problem with distributional potential function has attracted the attention and
discussion of a large number of mathematicians [6, 7, 18, 19, 23, 26]. In particular, Eckhardt et al. [6] pre-
sented a systematical development of Weyl-Titchmarsh theory for singular differential operators associated
with the following differential expression

τ f =
1
r

(
− (p[ f ′ + s f ])′ + ps[ f ′ + s f ] + q f

)
on J = (a, b), (1)
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where p, s, q, r are real-valued, 1
p , s, q, r ∈ L(J,R), p > 0, r > 0 a.e. on J, and the differential operator

determined by the differential expression (1) in space L2
r (J) is called Sturm-Liouville operator with distri-

butional potential. In 2014, Yan and Shi [26] discussed the continuous dependence of the n-th eigenvalue
of the self-adjoint Sturm-Liouville operator with distributional potentials, and the oscillatory properties of
the eigenfunctions were also considered. Recently, Uğurlu [23] investigated the properties of eigenvalues
of the Sturm-Liouville problem with distributional potential and obtained the dependence of the eigenval-
ues with respect to the elements. As we know, the dependence of eigenvalues is the theoretical basis of
numerical calculation of eigenvalues in differential operator theory. For example, the codes SLEUTH [9]
and SLEIGN2 [2].

The dependence of eigenvalues on parameters has received extensive attention by researchers. In 1999,
Kong and Zettl [12, 13] considered the continuous differentiable dependence of eigenvalues of second-
order Sturm-Liouville problem on parameters. Later, these results were extended to Sturm-Liouville
problem with eigenparameter dependent boundary condition or transmission condition, and higher order
differential operators [10, 14, 17, 22, 28, 29]. Up to now, the dependence of eigenvalues of discontinuous
Sturm-Liouville problem with distributional potentials has not been studied. In this paper, we not only
discuss the continuity and differentiability of eigenvalues but also give differential expressions of these
eigenvalues with respect to parameters.

The rest of the paper is organized as follows: Section 2 introduces a discontinuous Sturm-Liouville
problem with distributional potential and give some basic properties of the problem. Section 3 proves the
continuity of the eigenvalues. Finally, the differentiability of eigenvalues and the corresponding derivative
formulas are presented in Section 4.

2. Preliminaries

Consider the differential equation

1
r(x)

(
− (p(x)[ f ′(x) + s(x) f (x)])′ + p(x)s(x)[ f ′(x) + s(x) f (x)] + q(x) f (x)

)
= ν f (x) on S (2)

with boundary condition

AF(a) + BF(b) = 0 (3)

and transmission condition

CF(c−) +DF(c+) = 0, (4)

where

S = [a, c) ∪ (c, b], −∞ < a < b < +∞,
1
p
, s, q, r ∈ L1(S,R), p > 0, r > 0 a.e. on S, (5)

ν ∈ C is the spectral parameter, F(x) = ( f (x), f [1](x))T, and f [1] = p[ f ′ + s f ] is the first order quasi-derivative
of f . A,B are 2 × 2 complex matrices, C,D are 2 × 2 real matrices, det C = ρ > 0,det D = θ > 0 and satisfy

rank(A|B) = 2, (6)

θAE0A∗ = ρBE0B∗, θCE0C∗ = ρDE0D∗,E0 =

(
0 −1
1 0

)
, (7)

where A∗ is the conjugate transpose of A.
It is well known that the self-adjoint boundary conditions (3), (6), (7) can be divided into three disjoint and

mutually exclusive subclasses [27]. In this paper, we study the following three canonical representations:
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1. Separated boundary conditions

f (a) cosγ − f [1](a) sinγ = 0, γ ∈ [0, π), (8)

f (b) cosφ − f [1](b) sinφ = 0, φ ∈ (0, π]. (9)

2. Real coupled boundary conditions

F(b) = KF(a). (10)

3. Complex coupled boundary conditions

F(b) = eiτKF(a), (11)

where τ ∈ (−π, 0) or τ ∈ (0, π), K is 2 × 2 real matrix with det K = ρθ , θKE0K∗ = ρE0.
Let H = L2

r ([a, c)) ⊕ L2
r ((c, b]) be a weight Hilbert space with inner product

⟨ f , 1⟩ = ρ
∫ c

a
f 1̄rdx + θ

∫ b

c
f 1̄rdx

for any f , 1 ∈ H. Define an operator P in H with domain

D(P) ={ f ∈ H : f , f [1]
∈ AC(S),AF(a) + BF(b) = 0,

CF(c−) +DF(c+) = 0,P f ∈ H}.

P f =r−1[−( f [1])′ + s f [1] + q f ], f ∈ D(P).

Note that the eigenvalues of the operator P are consistent with those of the problem (2)-(4).

For each f , 1 ∈ H, we define the modified Wronski determinant W( f , 1)(x) =
∣∣∣∣∣ f 1

f [1] 1[1]

∣∣∣∣∣. For any two

solutions f and 1 of equation (2), by a direct calculation we can verify that W( f , 1)(x) is constant on [a, c)
and (c, b], respectively.

Lemma 2.1. The operator P is symmetric in H.

Proof. For all f , 1 ∈ D(P), using (2) and integrating by parts, we get

⟨P f , 1⟩ =ρ
∫ c

a
−(p[ f ′ + s f ])′1̄ + ps[ f ′ + s f ]1̄ + q f 1̄dx

+ θ

∫ b

c
−(p[ f ′ + s f ])′1̄ + ps[ f ′ + s f ]1̄ + q f 1̄dx

=[−ρp[ f ′ + s f ]1̄]c−
a + ρ

∫ c

a
p[ f ′ + s f ]1̄′ + ps[ f ′ + s f ]1̄ + q f 1̄dx

+ [−θp[ f ′ + s f ]1̄]b
c+ + θ

∫ b

c
p[ f ′ + s f ]1̄′ + ps[ f ′ + s f ]1̄ + q f 1̄dx

=⟨ f ,P1⟩ + ρ[ f 1̄[1]
− f [1]1̄]c−

a + θ[ f 1̄[1]
− f [1]1̄]b

c+.

(12)

It follows from (7) that

ρA∗−1E0A−1 = θB∗−1E0B−1, ρC∗−1E0C−1 = θD∗−1E0D−1. (13)
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Then by (13) and boundary condition (3), we have

ρ[ f 1̄[1]
− f [1]1̄](a) =ρG∗(a)E0F(a)

=ρ((A−1BG)∗E0A−1BF)(b)

=ρ(G∗B∗A∗−1E0A−1BF)(b)

=θ(G∗B∗B∗−1E0B−1BF)(b)
=θG∗(b)E0F(b)

=θ[ f 1̄[1]
− f [1]1̄](b).

(14)

Similarly, by (13) and transmission condition (4), we have

ρ[ f 1̄[1]
− f [1]1̄](c−) = θ[ f 1̄[1]

− f [1]1̄](c+). (15)

Substituting (14) and (15) into (12), we obtain

⟨P f , 1⟩ = ⟨ f ,P1⟩.

Therefore, the operator P is symmetric.

Lemma 2.2. The operator P is a self-adjoint operator in H.

Proof. The proof is similar to that in [8, 25], here we omit the details.

To prove that the eigenvalues of the problem (2), (4), (8)-(9) are simple, we first define two fundamental
solutions of equation (2) as follows

ϕ(x, ν) =
{
ϕ1(x, ν), x ∈ [a, c),
ϕ2(x, ν), x ∈ (c, b], χ(x, ν) =

{
χ1(x, ν), x ∈ [a, c),
χ2(x, ν), x ∈ (c, b],

where ϕ1(x, ν), ϕ2(x, ν) are solutions of equation (2) on [a, c) and (c, b] respectively, and satisfying the
following initial conditions(

ϕ1(a, ν)
ϕ[1]

1 (a, ν)

)
=

(
sinγ
cosγ

)
, (16)

and (
ϕ2(c+, ν)
ϕ[1]

2 (c+, ν)

)
= −D−1C

(
ϕ1(c−, ν)
ϕ[1]

1 (c−, ν)

)
. (17)

Similarly, we can also define χ2(x, ν), χ1(x, ν) are solutions of equation (2) on (c, b] and [a, c) respectively, and
satisfying the following initial conditions(

χ2(b, ν)
χ[1]

2 (b, ν)

)
=

(
sinφ
cosφ

)
, (18)

and (
χ1(c−, ν)
χ[1]

1 (c−, ν)

)
= −C−1D

(
χ2(c+, ν)
χ[1]

2 (c+, ν)

)
. (19)

Let the modified Wronskians beωi(ν) :=W(ϕi(x, ν), χi(x, ν)) = ϕiχ
[1]
i −ϕ

[1]
i χi, i = 1, 2, whereωi(ν) are entire

functions of parameter ν and independent on variable x. By direct calculation, we have ω2(ν) = ρθω1(ν).
Let ω(ν) = ω1(ν), then ω(ν) = θρω2(ν), and ω(ν) is an entire function of parameter ν.
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Lemma 2.3. The number ν is an eigenvalue of the problem (2), (4), (8)-(9) if and only if ω(ν) = 0.

Proof. Let ν be an eigenvalue of the problem (2), (4), (8)-(9), and f (x, ν) be the corresponding eigenfunction.
Assume that ω(ν) , 0, then

W(ϕi(x, ν), χi(x, ν)) , 0, i = 1, 2.

Thus ϕi(x, ν) and χi(x, ν) are linearly independent. The solution f (x, ν) of (2) can be writeen as

f (x, ν) =
{

l1ϕ1(x, ν) + l2χ1(x, ν), x ∈ [a, c),
l3ϕ2(x, ν) + l4χ2(x, ν), x ∈ (c, b], (20)

where li, i = 1, 2, 3, 4 are not all zero. Since f (x, ν) satisfies conditions (8)-(9), we have l2 = 0, l3 = 0.
Substituting (20) into the transmission condition (4), then l1 and l4 satisfy the following equations

C
(

l1ϕ1(c−, ν)
l1ϕ

[1]
1 (c−, ν)

)
+D

(
l4χ2(c+, ν)
l4χ

[1]
2 (c+, ν)

)
= 0.

By (17), we have(
l1ϕ2(c+, ν)
l1ϕ

[1]
2 (c+, ν)

)
−

(
l4χ2(c+, ν)
l4χ

[1]
2 (c+, ν)

)
= 0.

Sinceω2(ν) = ϕ2χ
[1]
2 −ϕ

[1]
2 χ2 , 0, the equations have only trivial solutions l1 = 0, l4 = 0. Such a contradiction

proves ω(ν) = 0.
Conversely, if ω(ν) = 0, then W(ϕ1(x, ν), χ1(x, ν)) = 0 for all x ∈ [a, c). Therefore ϕ1(x, ν) and χ1(x, ν) are

linearly dependent, that is,
χ1(x, ν) = k1ϕ1(x, ν), x ∈ [a, c)

for some k1 , 0. Then

χ(a, ν) cosγ − χ[1](a, ν) sinγ =χ1(a, ν) cosγ − χ[1]
1 (a, ν) sinγ

=k1(ϕ1(a, ν) cosγ − ϕ[1]
1 (a, ν) sinγ)

=0.

Therefore χ(x, ν) satisfies the boundary condition (8).
By (18) and (19), we can get that χ(x, ν) satisfies conditions (4) and (9). Hence χ(x, ν) is a corresponding

eigenfunction for the eigenvalue ν of the problem (2), (4), (8)-(9).

Lemma 2.4. The eigenvalues of the problem (2), (4), (8)-(9) are simple.

Proof. Let ν = u + iv. For simplicity, let ϕ = ϕ(x, ν), ϕ1ν =
∂ϕ1

∂ν , ϕ′1ν =
∂ϕ′1
∂ν . Differentiating the equation

Pχ = νχwith respect to ν, yields

Pχν = νχν + χ.

Then

⟨Pχν, ϕ⟩ − ⟨χν,Pϕ⟩ = ⟨νχν + χ, ϕ⟩ − ⟨χν, νϕ⟩ = ⟨χ, ϕ⟩ + 2iv⟨χν, ϕ⟩. (21)

Using integration by parts and (16)-(19), we have

⟨Pχν, ϕ⟩ − ⟨χν,Pϕ⟩ =ρ[χ1νϕ̄1
[1]
− χ[1]

1ν ϕ̄1]c−
a + θ[χ2νϕ̄2

[1]
− χ[1]

2ν ϕ̄2]b
c+

=ρ(χ[1]
ν (a, ν) sinγ − χν(a, ν) cosγ).

(22)
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Since ω(ν) is independent of x and by (16), we obtain

ω′(ν)|x=a =
dω1(ν)

dν

∣∣∣∣
x=a
=

d
dν

(ϕ1(a, ν)χ[1]
1 (a, ν) − ϕ[1]

1 (a, ν)χ1(a, ν))

=χ[1]
1ν (a, ν) sinγ − χ1ν(a, ν) cosγ.

(23)

It follows from (21)-(23) that

ω′(ν) =
1
ρ

(⟨χ, ϕ⟩ + 2iv⟨χν, ϕ⟩). (24)

Let ν0 be an eigenvalue of the problem (2), (4), (8)-(9). Since the operator P is self-adjoint, ν0 is real. By
Lemma 2.3, ω(ν0) = 0, then there exist c j , 0, such that

χ j(x, ν0) = c jϕ j(x, ν0), j = 1, 2.

By the transmission condition (4), we have(
χ2(c+, ν0)
χ[1]

2 (c+, ν0)

)
= −D−1C

(
χ1(c−, ν0)
χ[1]

1 (c−, ν0)

)
= − c1D−1C

(
ϕ1(c−, ν0)
ϕ[1]

1 (c−, ν0)

)
=c1

(
ϕ2(c+, ν0)
ϕ[1]

2 (c+, ν0)

)
,

then c1 = c2 , 0 and χ(x, ν0) = c1ϕ(x, ν0). The equation (24) can be expressed as

ω′(ν0) =
1
ρ
⟨χ, ϕ⟩ =

c1

ρ
⟨ϕ,ϕ⟩ , 0.

Thus ν0 is simple.

Remark 2.5. The spectrum of P is composed of isolated eigenvalues, and the problem (2), (4), (8)-(9) has only simple
and real eigenvalues. Moreover, we can obtain that the problem (2), (4) and (10) has only real eigenvalues, each of
which may be simple or double. The problem (2), (4) and (11) has only simple and real eigenvalues.

3. Continuity of eigenvalues and eigenfunctions

In this section, we present the continuity of eigenvalues on the parameters in the discontinuous Sturm-
Liouville problem with distributional potential (2)-(4).

Let δ1(x, ν), σ1(x, ν) be the linearly independent solutions of equation (2) on [a, c) satisfying the following
initial conditions(

δ1(a, ν) σ1(a, ν)
δ[1]

1 (a, ν) σ[1]
1 (a, ν)

)
=

(
1 0
0 1

)
. (25)

In view of dependency properties of the solutions on the parameter, we get that δ1(x, ν), σ1(x, ν) are entire
functions of parameter ν for a fixed x. Then, the Wronskian of functions δ1(x, ν), σ1(x, ν) is an entire function
of parameter ν and is independent of x.
Denote ω1 =W(δ1(x, ν), σ1(x, ν)), then we get

ω1 =

∣∣∣∣∣∣ δ1(x, ν) σ1(x, ν)
δ[1]

1 (x, ν) σ[1]
1 (x, ν)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ δ1(a, ν) σ1(a, ν)
δ[1]

1 (a, ν) σ[1]
1 (a, ν)

∣∣∣∣∣∣
=1.
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Let δ2(x, ν), σ2(x, ν) be the solutions of equation (2) on (c, b] satisfying the following initial condition

C
(
δ1(c−, ν) σ1(c−, ν)
δ[1]

1 (c−, ν) σ[1]
1 (c−, ν)

)
+D

(
δ2(c+, ν) σ2(c+, ν)
δ[1]

2 (c+, ν) σ[1]
2 (c+, ν)

)
= 0.

Let ω2(x, ν) be the Wronskian of functions δ2(x, ν), σ2(x, ν), then ω2(x, ν) is an entire function of ν and is
independent of x. By direct calculation, we obtain

ω2 =
ρ

θ
, 0.

Therefore, the functions δ2(x, ν), σ2(x, ν) are the linearly independent solutions of equation (2) on (c, b].

Lemma 3.1. The number ν is an eigenvalue of (2)-(4) if and only if

∆(ν) = det(A + BΨ(b, ν)) = 0,

whereΨ(b, ν) =
(
δ2(b, ν) σ2(b, ν)
δ[1]

2 (b, ν) σ[1]
2 (b, ν)

)
.

Proof. The proof is similar to that of Lemma 2.3, here we omit it.

To discuss the dependence of eigenvalues, we introduce a Banach space

Z =M2×2(C) ×M2×2(C) ×M2×2(R) ×M2×2(R) × L(S) × L(S) × L(S) × L(S)

with its norm

∥ϵ∥ = ∥A∥ + ∥B∥ + ∥C∥ + ∥D∥ +
∫ c

a

( 1
|p|
+ |s| + |q| + |r|

)
+

∫ b

c

( 1
|p|
+ |s| + |q| + |r|

)
for any ϵ = (A,B,C,D, 1

p , s, q, r) ∈ Z. Let

Ξ = {ϵ ∈ Z : (5), (6), (7) hold}.

Theorem 3.2. Let ϵ0 = (A0,B0,C0,D0, 1
p0
, s0, q0, r0) ∈ Ξ and ν(ϵ0) be an eigenvalue of (2)-(4) with ϵ0. Then ν is

continuous at ϵ0. In other words, for any ε > 0, there exists an η > 0 such that

|ν(ϵ) − ν(ϵ0)| < ε,

if ϵ = (A,B,C,D, 1
p , s, q, r) ∈ Ξ satisfies

∥ϵ − ϵ0∥ =∥A − A0∥ + ∥B − B0∥ + ∥C − C0∥ + ∥D −D0∥

+

∫ c

a

(
|
1
p
−

1
p0
| + |s − s0| + |q − q0| + |r − r0|

)
+

∫ b

c

(
|
1
p
−

1
p0
| + |s − s0| + |q − q0| + |r − r0|

)
< η.

Proof. By Lemma 3.1, ν(ϵ0) is an eigenvalue of (2)-(4) if and only if ∆(ϵ0, ν(ϵ0)) = 0. Given any ϵ ∈ Ξ, ∆(ϵ, ν)
is an entire function of ν and is continuous in ϵ (see [11, Theorems 2.7, 2.8]). Due to ν(ϵ0) is an isolated
eigenvalue, we can conclude that ∆(ϵ0, ν) is not a constant in ν. Therefore, there exists ϑ > 0 such that
∆(ϵ0, ν) , 0 for ν ∈ Sϑ := {ν ∈ C : |ν − ν(ϵ0)| = ϑ}. In view of the continuity of the roots of an equation as a
function of parameters [5], the conclusion holds.
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Lemma 3.3. For h ∈ S ∪ {c−, c+}, the unique solution of the initial value problem{
−( f [1])′ + s f [1] + q f = νr f ,

f (h) = e, f [1](h) = t (26)

f = f (·, h, e, t, 1
p , s, q, r,C,D) is continuous with respect to each of these variables and satisfies the transmission

conditions (4). More precisely, given any ε > 0, there exists an η > 0 such that if

|h − h0| + |e − e0| + |t − t0| +

∫ c

a

(
|
1
p
−

1
p0
| + |s − s0| + |q − q0| + |r − r0|

)
+

∫ b

c

(
|
1
p
−

1
p0
| + |s − s0| + |q − q0| + |r − r0|

)
+ ∥C − C0∥ + ∥D −D0∥ < η,

then

| f (x, h, e, t,
1
p
, s, q, r,C,D) − f (x, h0, e0, t0,

1
p0
, s0, q0, r0,C0,D0)| < ε,

| f [1](x, h, e, t,
1
p
, s, q, r,C,D) − f [1](x, h0, e0, t0,

1
p0
, s0, q0, r0,C0,D0)| < ε,

uniformly for ∀x ∈ S.

Proof. The proof is similar as that in [26].

Lemma 3.4. Let ϵ0 = (A0,B0,C0,D0, 1
p0
, s0, q0, r0) and ν = ν(ϵ) be an eigenvalue of (2)-(4). Suppose that ν(ϵ0) is

simple, then there is a neighborhoodM of ϵ0 ∈ Ξ such that ν(ϵ) is simple for any ϵ ∈ M.

Proof. Suppose that ν(ϵ0) is simple, then ∆′(ν(ϵ0)) , 0. By Theorem 3.2, the conclusion follows since ∆(ν) is
an entire function of ν.

We call m ∈ H is a normalized eigenfunction of (2)-(4), if the eigenfunction m satisfies

⟨m,m⟩ = ρ
∫ c

a
mm̄rdx + θ

∫ b

c
mm̄rdx = 1.

Now we give the continuity of the eigenfunctions.

Theorem 3.5. Suppose that ν(ϵ) (ϵ ∈ Ξ) is an eigenvalue of (2)-(4) with multiplicity h (h = 1, 2), if h = 2, we
suppose further that there is a neighborhoodM of ϵ0 ∈ Ξ such that ν(ϵ) is double for any ϵ ∈ M. Let m(·, ϵ0) ∈ H be
the normalized eigenfunctions for ν(ϵ0). Then there exist normalized eigenfunctions m(·, ϵ) ∈ H for ν(ϵ) such that

m(·, ϵ)→ m(·, ϵ0), m[1](·, ϵ)→ m[1](·, ϵ0), (27)

as ϵ→ ϵ0 hold uniformly on S.

Proof. (i) If ν(ϵ0) is simple, then by Lemma 3.4, there exists a neighborhoodM of ϵ0 such that ν(ϵ) is simple
for ∀ϵ ∈ M. Let m(·, ϵ) be an eigenfunction for ν(ϵ) with

∥M(x0, ϵ)∥ = |m(x0, ϵ)| + |m[1](x0, ϵ)| = 1, m(x, ϵ) > 0,

for some x0 ∈ S and x→ x0, where M(·, ϵ) = (m(·, ϵ),m[1](·, ϵ))T. Next, we prove

M(x0, ϵ)→M(x0, ϵ0), ϵ→ ϵ0, ϵ ∈ Ξ. (28)

If (28) does not hold, then we can find a sequence ϵk → ϵ0 such that

M(x0, ϵk)→ F, ϵk → ϵ0, ϵ ∈ Ξ,
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where F and M(x0, ϵ0) are linearly independent vectors. Let G(x) be the vector solution of (2) with ϵ = ϵ0,
ν = ν(ϵ0) and the initial condition G(x0) = F. According to Lemma 3.3, M(x, ϵk) → G(x) uniformly hold on
S. More precisely,

M(a, ϵk)→ G(a), M(b, ϵk)→ G(b), M(c−, ϵk)→ G(c−), M(c+, ϵk)→ G(c+).

Since M(·, ϵk) satisfies the conditions

AkM(a, ϵk) + BkM(b, ϵk) = 0, CkM(c−, ϵk) +DkM(c+, ϵk) = 0,

Taking k→∞, we have
A0G(a) + B0G(b) = 0, C0G(c−) +D0G(c+) = 0.

Then G(x) is a vector eigenfunction for ϵ = ϵ0, ν = ν(ϵ0), which is a contradiction since ν(ϵ0) is simple. In
view of Lemma 3.3, m(x, ϵ)→ m(x, ϵ0), m[1](x, ϵ)→ m[1](x, ϵ0) as ϵ→ ϵ0 and x ∈ S.

(ii) If ν(ϵ) is double for all ϵ in some neighborhoodM of ϵ0. When we find a linear combination of two
linearly independent eigenfunctions satisfying any initial conditions, then we can find the eigenfunctions
of ν(ϵ) and these eigenfunctions satisfy the same initial conditions at x0 for some x0 ∈ S. Similarly, we can
get (27) as (i). The proof is finished.

4. Differential expression of eigenvalues

In this section, we not only prove that the eigenvalues of the operator P are differentiable with respect
to the parameters but also give the corresponding derivative expressions.

Definition 4.1. [12] Let Y, Z be Banach spaces. A map T: Y→ Z is differentiable at a point y ∈ Y, if there exists a
bounded linear operator dTy : Y→ Z such that for ς ∈ Y

|T(y + ς) − T(y) − dTy(ς)| = o(ς), as ς→ 0.

Theorem 4.2. Let the hypotheses of Theorem 3.5 hold. ν(ϵ) is an eigenvalue of the operator P with ϵ ∈ Ξ and
m = m(·, ϵ) ∈ H is the corresponding normalized eigenfunction for ν(ϵ), then ν is differentiable with respect to γ, φ,
τ, K, C, D, 1

p , s, q, r.
(I) Let all parameters of ϵ be fixed except γ and ν(γ) := ν(ϵ). Then

ν′(γ) = −ρ csc2 γ|m(a)|2. (29)

(II) Let all parameters of ϵ be fixed except φ and ν(φ) := ν(ϵ). Then

ν′(φ) = θ csc2 φ|m(b)|2. (30)

(III) Let all parameters of ϵ be fixed except τ and ν(τ) := ν(ϵ). Then

ν′(τ) = −2θℑ(m(b)m̄[1](b)). (31)

(IV) Let all parameters of ϵ be fixed except K and ν(K) := ν(ϵ). For all I satisfying det(K + I) = ρ
θ and

θ(K + I)E0(K + I)∗ = ρE0. Then

dνK(I) = θM∗(b)E0IK−1M(b). (32)

(V) Let all parameters of ϵ be fixed except C and ν(C) := ν(ϵ). For all I satisfying det(C+I) = ρ in the neighborhood
of C and θ(C + I)E0(C + I)∗ = ρDE0D∗. Then

dνC(I) = ρM∗(c−)I∗C∗−1E0M(c−). (33)
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(VI) Let all parameters of ϵ be fixed except D and ν(D) := ν(ϵ). For all I satisfying det(D + I) = θ in the
neighborhood of D and θCE0C∗ = ρ(D + I)E0(D + I)∗. Then

dνD(I) = −θM∗(c+)I∗D∗−1E0M(c+). (34)

(VII) Let all parameters of ϵ be fixed except p and ν( 1
p ) := ν(ϵ). Then

dν 1
p
(ς) = −ρ

∫ c

a
ς|m[1]

|
2dx − θ

∫ b

c
ς|m[1]

|
2dx, ς ∈ L(S,R). (35)

(VIII) Let all parameters of ϵ be fixed except s and ν(s) := ν(ϵ). Then

dνs(ς) = 2ρ
∫ c

a
ςℜ(mm̄[1])dx + 2θ

∫ b

c
ςℜ(mm̄[1])dx, ς ∈ L(S,R). (36)

(IX) Let all parameters of ϵ be fixed except q and ν(q) := ν(ϵ). Then

dνq(ς) = ρ
∫ c

a
ς|m|2dx + θ

∫ b

c
ς|m|2dx, ς ∈ L(S,R). (37)

(X) Let all parameters of ϵ be fixed except r and ν(r) := ν(ϵ). Then

dνr(ς) = −ν(r) · (ρ
∫ c

a
ς|m|2dx + θ

∫ b

c
ς|m|2dx), ς ∈ L(S,R). (38)

Proof. Let all the data of ϵ be fixed except one and ν(ϵ0) be the eigenvalue satisfying Theorem 3.2 when
∥ϵ − ϵ0∥ < η for sufficiently small η > 0. For the above ten cases, we replace ν(ϵ0) by ν(γ + ς), ν(φ + ς),
ν(τ+ ς), ν(K+ I), ν(C+ I), ν(D+ I), ν( 1

p + ς), ν(s+ ς), ν(q+ ς), ν(r+ ς), respectively. Let n be the corresponding
normalized eigenfunction.

We prove (29) firstly. For ς ∈ R sufficiently small, by (2), we get

−(p[m′ + sm])′ + ps[m′ + sm] + qm = ν(γ)rm, (39)

−(p[n̄′ + sn̄])′ + ps[n̄′ + sn̄] + qn̄ = ν(γ + ς)rn̄. (40)

It follows from (39) and (40) that

[ν(γ + ς) − ν(γ)]mn̄r = − (p[n̄′ + sn̄])′m + ps[n̄′ + sn̄]m
+ (p[m′ + sm])′n̄ − ps[m′ + sm]n̄.

Then

[ν(γ + ς) − ν(γ)]⟨m,n⟩ =[ν(γ + ς) − ν(γ)]
[
ρ

∫ c

a
mn̄rdx + θ

∫ b

c
mn̄rdx

]
=ρ[−mn̄[1] +m[1]n̄]c−

a + θ[−mn̄[1] +m[1]n̄]b
c+.

(41)

The boundary condition (9) yields

m(b) cosφ −m[1](b) sinφ = 0, n̄(b) cosφ − n̄[1](b) sinφ = 0.

Thus, −m(b)n̄[1](b) +m[1](b)n̄(b) = 0.
By the transmission condition (4), we obtain

ρ[−mn̄[1] +m[1]n̄](c−) − θ[−mn̄[1] +m[1]n̄](c+)
= − ρ(N∗E0M)(c−) + θ(N∗E0M)(c+)

= − ρ((C−1DN)∗E0C−1DM)(c+) + θ(N∗E0M)(c+)

= − ρ(N∗D∗C∗−1E0C−1DM)(c+) + θ(N∗E0M)(c+)
= − θ(N∗E0M)(c+) + θ(N∗E0M)(c+) = 0,
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where M(c+) = (m(c+),m[1](c+))T. Analogously, the boundary condition (8) implies that

m(a) cosγ −m[1](a) sinγ = 0, n̄(a) cos(γ + ς) − n̄[1](a) sin(γ + ς) = 0.

Therefore
m[1](a) = cotγm(a), n̄[1](a) = cot(γ + ς)n̄(a).

It follows that (41) can be transformed into

[ν(γ + ς) − ν(γ)]⟨m,n⟩ = − ρ[−mn̄[1] +m[1]n̄](a)
=ρ[cot(γ + ς) − cotγ]m(a)n̄(a).

(42)

Dividing both sides of (42) by ς and taking the limit as ς→ 0, then in view of Theorem 3.5, we have

ν′(γ) = −ρ csc2 γ|m(a)|2.

Then (29) follows. Similarly, we can get (30).
Secondly, we prove (31). For ς ∈ R, it follows from (2) and (4) that

[ν(τ + ς) − ν(τ)]⟨m,n⟩ =ρ[−mn̄[1] +m[1]n̄]c−
a + θ[−mn̄[1] +m[1]n̄]b

c+

=ρ[mn̄[1]
−m[1]n̄](a) − θ[mn̄[1]

−m[1]n̄](b)
=ρ(N∗E0M)(a) − θ(N∗E0M)(b).

(43)

By complex coupled boundary conditions (11), we have

N∗(b)E0 =e−i(τ+ς)N∗(a)K∗E0

=e−i(τ+ς)N∗(a)E0(−E0)K∗E0

=e−i(τ+ς)N∗(a)E0
ρ

θ
K−1.

(44)

Thus

N∗(a)E0 =
θ
ρ

ei(τ+ς)N∗(b)E0K. (45)

Combining (11), (43) and (45), we get

[ν(τ + ς) − ν(τ)]⟨m,n⟩ = θei(τ+ς)N∗(b)E0KM(a) − θN∗(b)E0eiτKM(a). (46)

Then by virtue of Theorem 3.5, we obtain

ν′(τ) = −2θℑ(m(b)m̄[1](b)).

Thirdly, we prove (32). For I ∈M2×2(R). Similar to the proof of (45), one gets

N∗(a)E0 =
θ
ρ

eiτN∗(b)E0(K + I). (47)

Then

[ν(K + I) − ν(K)]⟨m,n⟩ =ρ(N∗E0M)(a) − θ(N∗E0M)(b)

=ρ ·
θ
ρ

eiτN∗(b)E0(K + I)M(a) − θN∗(b)E0eiτKM(a)

=θeiτN∗(b)E0IM(a)

=θN∗(b)E0IK−1M(b).

(48)



J. F. Qin et al. / Filomat 38:28 (2024), 9891–9904 9902

Let I→ 0, by Theorem 3.5 we have

dνK(I) = θM∗(b)E0IK−1M(b).

Next, we prove (33). For I ∈M2×2(R), by (2) and (14), we obtain

[ν(C + I) − ν(C)]⟨m,n⟩ = ρ[−mn̄[1] +m[1]n̄](c−) + θ[mn̄[1]
−m[1]n̄](c+).

By (4), we have

CM(c−) +DM(c+) = 0,

(C + I)N(c−) +DN(c+) = 0.

Thus

[ν(C + I) − ν(C)]⟨m,n⟩
= − ρ(N∗E0M)(c−) + θ(N∗E0M)(c+)

= − ρ(N∗E0M)(c−) + θ((D−1(C + I)N)∗E0D−1CM)(c−)

= − ρ(N∗E0M)(c−) + θ(N∗(C + I)∗D∗−1E0D−1CM)(c−)

= − ρ(N∗E0M)(c−) + ρ(N∗(C + I)∗C∗−1E0C−1CM)(c−)

=ρ(N∗I∗C∗−1E0M)(c−).

Let I→ 0, by Theorem 3.5 we get

dνC(I) = ρM∗(c−)I∗C∗−1E0M(c−).

Then (33) follows. Similarly, we can get (34).
To prove (35), let 1

p + ς =
1
p0

, ς ∈ L(S,R). Then p − p0 = pp0ς. Using (2), we obtain[
ν
(1

p
+ ς

)
− ν

(1
p

)]
⟨m,n⟩ =

[
ν
(1

p
+ ς

)
− ν

(1
p

)][
ρ

∫ c

a
mn̄rdx + θ

∫ b

c
mn̄rdx

]
=ρ[m[1]n̄ −mn̄[1]]c−

a + θ[m[1]n̄ −mn̄[1]]b
c+

+ ρ

∫ c

a
(p0 − p)(m′ + sm)(n̄′ + sn̄)dx

+ θ

∫ b

c
(p0 − p)(m′ + sm)(n̄′ + sn̄)dx

=ρ[m[1]n̄ −mn̄[1]]c−
a + θ[m[1]n̄ −mn̄[1]]b

c+

− ρ

∫ c

a
ς[p(m′ + sm)][p0(n̄′ + sn̄)]dx

− θ

∫ b

c
ς[p(m′ + sm)][p0(n̄′ + sn̄)]dx,

where n̄[1] = p0(n̄′ + sn̄).
Using the conditions (3) and (4), we get[

ν
(1

p
+ ς

)
− ν

(1
p

)]
⟨m,n⟩ = −ρ

∫ c

a
ςm[1]n̄[1]dx − θ

∫ b

c
ςm[1]n̄[1]dx.

Let ς→ 0, then in view of Theorem 3.5, we obtain

dν 1
p
(ς) = −ρ

∫ c

a
ς|m[1]

|
2dx − θ

∫ b

c
ς|m[1]

|
2dx.
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Now, we prove (36). For ς ∈ L(S,R). Using (2), one gets

[ν(s + ς) − ν(s)]⟨m,n⟩ =[ν(s + ς) − ν(s)]
[
ρ

∫ c

a
mn̄rdx + θ

∫ b

c
mn̄rdx

]
=ρ[m[1]n̄ −mn̄[1]]c−

a + θ[m[1]n̄ −mn̄[1]]b
c+

+ ρ

∫ c

a
n̄[1][m′ + (s + ς)m] −m[1][n̄′ + sn̄]dx

+ θ

∫ b

c
n̄[1][m′ + (s + ς)m] −m[1][n̄′ + sn̄]dx

=ρ[m[1]n̄ −mn̄[1]]c−
a + θ[m[1]n̄ −mn̄[1]]b

c+

+ ρ

∫ c

a
ςmn̄[1] + ςm[1]n̄dx + θ

∫ b

c
ςmn̄[1] + ςm[1]n̄dx.

By (3)-(4), we find that

[ν(s + ς) − ν(s)]⟨m,n⟩ =[ν(s + ς) − ν(s)]
[
ρ

∫ c

a
mn̄rdx + θ

∫ b

c
mn̄rdx

]
=ρ

∫ c

a
ςmn̄[1] + ςm[1]n̄dx + θ

∫ b

c
ςmn̄[1] + ςm[1]n̄dx.

(49)

Let ς→ 0, we have

dνs(ς) = 2ρ
∫ c

a
ςℜ(mm̄[1])dx + 2θ

∫ b

c
ςℜ(mm̄[1])dx.

Finally, we prove (37). For ς ∈ L(S,R). Using (2), one gets

[ν(q + ς) − ν(q)]⟨m,n⟩ =[ν(q + ς) − ν(q)]
[
ρ

∫ c

a
mn̄rdx + θ

∫ b

c
mn̄rdx

]
=ρ[m[1]n̄ −mn̄[1]]c−

a + θ[m[1]n̄ −mn̄[1]]b
c+

+ ρ

∫ c

a
(q + ς)mn̄dx + θ

∫ b

c
(q + ς)mn̄dx

− ρ

∫ c

a
qmn̄dx − θ

∫ b

c
qmn̄dx.

Similarly, it follows from (3)-(4) that

[ν(q + ς) − ν(q)]⟨m,n⟩ = ρ
∫ c

a
ςmn̄dx + θ

∫ b

c
ςmn̄dx.

Thus

dνq(ς) = ρ
∫ c

a
ς|m|2dx + θ

∫ b

c
ς|m|2dx.

Then (37) holds. Using the similar method, we can get (38), here we omit the details.

References
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[5] J. Dieudonné, Foundations of Modern Analysis, Academis Press, New York/London, 1969.
[6] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl-Titchmarsh theory for Sturm-Liouville operators with distributional potentials,

Opuscula Math. 33 (2013) 467-563.
[7] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Inverse spectral theory for Sturm-Liouville operators with distributional potentials, J.

Lond. Math. Soc. 88 (2013) 801-828.
[8] W. N. Everitt, A. Zettl, Sturm-Liouville differential operators in direct sum spaces, Rocky Mountain J. Math. 16(3) (1986) 497-516.
[9] L. Greenberg, M. Marletta, The code SLEUTH for solving fourth order Sturm-Liouville problems, ACM Trans. Math. Software 23(4)

(1997) 453-493.
[10] Q. Kong, H. Wu, A. Zettl, Dependence of eigenvalues on the problems, Math. Nachr. 188 (1997) 173-201.
[11] Q. Kong, A. Zettl, Linear ordinary differential equations. In Inequalities and Applications, R.P. Agarwal, (Ed), WSSIAA 3 (1994) 381-397.
[12] Q. Kong, A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations 131 (1996) 1-19.
[13] Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differential Equations 126 (1996), 389-407.
[14] K. Li, J. Sun, X. Hao, Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions, Math. Methods Appl.

Sci. 40 (2017) 3538-3551.
[15] O. Sh. Mukhtarov, K. Aydemir, Two-linked periodic Sturm-Liouville problems with transmission conditions, Math. Methods Appl. Sci.

44(18) (2021) 1-13.
[16] O. Sh. Mukhtarov, S. Yakubov, Problems for ordinary differential equations with transmission conditions, Appl. Anal. 81 (2002) 1033-

1064.
[17] J. Qin, K. Li, Z. Zheng, J. Cai, Dependence of eigenvalues of discontinuous fourth-order diferential operators with eigenparameter dependent

boundary conditions, J. Nonlinear Math. Phys. 29(4) (2022) 776-793.
[18] I. V. Sadovnichaya, Equiconvergence of expansions in series in eigenfunctions of Sturm-Liouville operators with distribution potentials,

Sborn. Math. 201(9) (2010) 1307-1322.
[19] A. M. Savchuk, A. A. Shkalikov, On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces, Math. Notes

80(6) (2006) 814-832.
[20] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Pergramon Press, Oxford and NewYork, 1963.
[21] I. Titeux, Y. Yakubov, Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients, Math. Models

Methods Appl. Sci. 7(7) (1997), 1035-1050.
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