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Hom-Lie structures on the algebra Lλ,µ
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aSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Abstract. For parameters λ, µ ∈ C, the algebra Lλ,µ is the semi-direct product of the Witt algebra and its
tensor density module. In this paper, we determine all (multiplicative) Hom-Lie structures on Lλ,µ. As a
result, we prove that any Hom-Lie structure on Lλ,µ is the direct sum of some special Hom-Lie structures,
and there exist non-trivial multiplicative Hom-Lie structures on Lλ,µ if and only if λ = 0 or 1. Moreover, all
Hom-structures on Lλ,µ form a Jordan algebra in the usual way.

1. Introduction

The concept of a Hom-Lie algebra was introduced by Hartwig, Larsson and Silvestrov in order to
describe the structures on certain deformations of the Witt algebra and the Virasoro algebra in [9]. More
results concerning the Hom-Lie algebra refer to [1, 2, 8, 10, 16]. Recall that a Hom-Lie algebra is a vector
space g equipped with a skew-symmetry bilinear multiplication [·, ·] : g × g→ g and a linear map σ : g→ g
satisfying the Hom-Jacobi identity

[σ(x), [y, z]] + [σ(y), [z, x]] + [σ(z), [x, y]] = 0, ∀ x, y, z ∈ g. (1)

A Hom-Lie algebra (g, [·, ·], σ), in which σ is an endomorphism (resp. automorphism) of (g, [·, ·]), is called
multiplicative (resp. regular). Moreover, note that when σ = id, the Hom-Lie algebra degenerates to a
corresponding Lie algebra.

Hence, determining all possible Hom-Lie structures on a given Lie algebra is an interesting research
topic. Earlier, this work was done on finite-dimensional Lie algebras. In [11, 18], the authors showed
that the Hom-Lie structures on finite-dimensional simple Lie algebras except for sl2 are trivial. The study
of Hom-Lie structures is gradually extended to infinite-dimensional Lie algebras. In [19], the authors
characterized Hom-Lie structures on simple graded Lie algebras of finite growth, which are isomorphic to
finite-dimensional simple Lie algebras, or loop algebras, or Cartan algebras, or the Virasoro algebra. In
[14], the authors showed that the space of Hom-Lie structures on an affine Kac-Moody algebra is linearly
spanned by central Hom-Lie structures and the identity map. Moreover, regular Hom-Lie structures on
Borel subalgebras of finite-dimensional simple Lie algebras[4], nilpotent Lie algebras of strictly upper
triangular matrices [5], and incidence algebras [6] were determined.
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For λ, µ ∈ C, the algebra Lλ,µ = spanC{Ln,Wn |n ∈ Z} is an infinite-dimensional Lie algebra and satisfies
the following brackets

[Ln,Lm] = (m − n) Lm+n, [Ln,Wm] =
(
m + µ + λn

)
Wm+n, [Wn,Wm] = 0, ∀ m,n ∈ Z.

It is also called W(µ, λ) [7, 17], which can be seen as the semi-direct product of the Witt algebraW and the
tensor density module ofW [15]. In addition, this algebra includes some famous algebras as subclass. For
example, L0,0 is the Heisenberg-Virasoro algebra with the one-dimensional center and L−1,0 is the centerless
W-algebra W(2, 2). More results on Lλ,µ refer to [7, 13, 17].

The aim of this paper is to determine all (multiplicative) Hom-Lie structures on Lλ,µ. Note that multi-
plicative Hom-Lie structures on L0,0 [12], and L−1,0 [3] were characterized. We use a different method to
recover and generalize these results. The paper is organized as follows. In Section 2, we recall some basic
definitions and useful lemmas. In Section 3, we determine all (multiplicative) Hom-Lie structures on Lλ,µ
by dividing parameters λ, µ into various cases. We find that any Hom-Lie structure on Lλ,µ can be written
in the form of a direct sum of some special Hom-Lie structures, and there exist non-trivial multiplicative
Hom-Lie structures only on L0,µ and L1,µ.

Throughout this paper, we denote by C, Z, and Z∗ the sets of complex numbers, integers, and nonzero
integers, respectively. All algebras and vector spaces are considered over C.

2. Preliminaries

In this section, we recall some basic definitions and known results used later.

Definition 2.1. [11] Given a Lie algebra g, a linear map σ: g→ g is called a Hom-Lie structure on g if the Hom-Jacobi
identity (1) holds. In particular, a scalar map σ = α · id is called a trivial Hom-Lie structure, where α ∈ C.

Definition 2.2. [11] Given a Lie algebra g, a Hom-Lie structure σ on g is called multiplicative (resp. regular) if the
map σ is an endomorphism (resp. automorphism) of g.

Note that a trivial Hom-Lie structure on g is multiplicative if and only if α ∈ {0, 1}. We denote by HS(g)
and MHS(g) the sets of Hom-Lie structures and multiplicative Hom-Lie structures on g, respectively. It
should be pointed out that HS(g) is a subspace of End(g) and MHS(g) is merely a subset of HS(g). Obviously,

HS(g) ⊇ Cidg, MHS(g) ⊇ {0, idg}.

Moreover, HS(g) is also a representation of g, which has been proved in [14].

Lemma 2.3. [14] Given a Lie algebra g, HS(g) forms a g-submodule of End(g).

Definition 2.4. [18] Given a Lie algebra g, a nonempty subset s of g is called a commutant generating set if
{[x, y] | x, y ∈ s} generates the whole g.

Lemma 2.5. [19] Assume that g is a centerlessZ-graded Lie algebra with a finite commutant generating set
s. Then, HS(g) is a Z-graded subspace of End(g) =

⊕
n∈Z End(g)n, where End(g)n = {τ ∈ End(g) | τ(gm) ∈

gm+n, ∀ m ∈ Z}.

Next, we recall some properties of Lλ,µ.

Lemma 2.6. [7] For the Lie algebra Lλ,µ, the following statements hold.
(1) Lλ,µ � Lλ,µ+k for any k ∈ Z.

(2) Up to isomorphism, the center of Lλ,µ is Z(Lλ,µ) =

CW0, if (λ, µ) = (0, 0),
0, otherwise .

(3) Lλ,µ has a natural Z-grading defined by Lλ,µ =
⊕

n∈Z(Lλ,µ)n,where (Lλ,µ)n = CLn ⊕ CWn.

By Lemma 2.6 (1), we may assume µ = 0 when µ is an integer in this paper.
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3. (Multiplicative) Hom-Lie structures on Lλ,µ

In this section, we will determine all (multiplicative) Hom-Lie structures on Lλ,µ. First, we will show
any Hom-Lie structure on Lλ,µ is Z-graded. Next, by dividing parameters λ, µ into different cases, all
(multiplicative) Hom-Lie structures on Lλ,µ are determined. Finally, we summarize the main results in this
paper and consider whether all Hom-structures on Lλ,µ constitute a Jordan algebra.

Lemma 3.1. HS(Lλ,µ) is Z-graded, that is,

HS(Lλ,µ) =
⊕
k∈Z

HS(Lλ,µ)k,

where HS(Lλ,µ)k = {τ ∈ HS(Lλ,µ) | τ((Lλ,µ)m) ⊆ (Lλ,µ)k+m, ∀ m ∈ Z}.

Proof. If µ , 0, note that s = {L−2,L−1,L0,L1,L2,W0} is a commutant generating set of Lλ,µ. By Lemmas 2.5
and 2.6 (2), it is obvious that HS(Lλ,µ) is Z-graded.

If µ = 0, from Lemma 2.6 (3), we have Lλ,0 =
⊕

k∈Z(Lλ,0)k, where (Lλ,0)k = CLk ⊕ CWk. By the definition
of Lλ,0, we find that CL0 is the Cartan subalgebra of Lλ,0. Then, Lλ,0 = (Lλ,0)0 ⊕

⊕
k∈Z∗ (Lλ,0)k can be

seen as the root space decomposition with respect to the action of L0. Hence, according to Lemma 2.3,
this action induces a semisimple action on HS(Lλ,0), with the corresponding root space decomposition
HS(Lλ,0) =

⊕
k∈(Z∗−Z∗) HS(Lλ,0)k, where Z∗ −Z∗ denotes the set of all differences between two roots in Z∗,

and HS(Lλ,0)k = {τ ∈ HS(Lλ,0) | τ((Lλ,0)m) ⊆ (Lλ,0)k+m, ∀ m ∈ Z∗ ∪ {0}}. It is obvious thatZ∗ −Z∗ = Z. Hence,
HS(Lλ,0) is also Z-graded. We complete the proof.

Lemma 3.2. For k ∈ Z, suppose that ck,m ∈ C satisfies

ck,m(n − p)(p + n − k −m) = 0, ∀ m,n, p ∈ Z. (2)

Then, ck,m = 0 for any m ∈ Z.

Proof. Let n = −1 and p = 1 in Eq. (2). Then, we have

ck,m(k +m) = 0, ∀ m ∈ Z. (3)

Again taking n = 0 and p = 1 in Eq. (2) gives us that

ck,m(−1 + k +m) = 0, ∀ m ∈ Z. (4)

By Eqs. (3)-(4), we have ck,m = 0 for any m ∈ Z.

To describe all (multiplicative) Hom-Lie structures on Lλ,µ conveniently, we give some special Hom-Lie
structures on this algebra by Lemmas 3.3-3.5.

Lemma 3.3. Suppose that ρ : L0,0 → C and σρ : L0,0 → CW0 are two linear maps. If σρ(x) = ρ(x)W0, ∀ x ∈ L0,0,
then σρ is a Hom-Lie structure on L0,0, called the central Hom-Lie structure.

Proof. For any x, y, z ∈ L0,0, it follows from Lemma 2.6 (2) that

[σρ(x), [y, z]] + [σρ(y), [z, x]] + [σρ(z), [x, y]] = [ρ(x)W0, [y, z]] + [ρ(y)W0, [z, x]] + [ρ(z)W0, [x, y]] = 0.

This completes the proof.

We denote by CHS(L0,0) the set of all central Hom-Lie structures on L0,0.
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Lemma 3.4. For any k,m ∈ Z, let σ1
k , σ2

k and σ3
k be the linear maps of Lλ,µ such that

σ1
k(Lm) = Lk+m, σ

1
k(Wm) =Wk+m,

σ2
k(Lm) =Wk+m, σ

2
k(Wm) = 0,

σ3
k(Lm) = mWk+m, σ

3
k(Wm) = 0.

Then,
(1) σ1

k and σ2
k are Hom-Lie structures on L−1,µ,

(2) σ1
k , σ2

k and σ3
k are Hom-Lie structures on L1,µ,

(3) σ1
0, σ2

k are Hom-Lie structures on Lλ,µ (λ , 0,±1) and L0,0.

Proof. We only prove (2) as an example, and the proofs of (1) and (3) are similar. For any k,m,n, p ∈ Z, we
easily have

[σ1
k(Lm), [Ln,Lp]] + [σ1

k(Ln), [Lp,Lm]] + [σ1
k(Lp), [Lm,Ln]]

=[Lk+m, (p − n)Ln+p] + [Lk+n, (m − p)Lp+m] + [Lk+p, (n −m)Lm+n]
=((p − n)(n + p − k −m) + (m − p)(p +m − k − n) + (n −m)(m + n − k − p))Lk+m+n+p = 0,

[σ1
k(Lm), [Ln,Wp]] + [σ1

k(Ln), [Wp,Lm]] + [σ1
k(Wp), [Lm,Ln]]

=[Lk+m, (p + µ + n)Wn+p] + [Lk+n,−(p + µ +m)Wp+m] + [Wk+p, (n −m)Lm+n],
=(n + p + µ + k +m)((p + µ + n) − (p + µ +m) − (n −m))Wk+m+n+p = 0,

[σ1
k(Lm), [Wn,Wp]] + [σ1

k(Wn), [Wp,Lm]] + [σ1
k(Wp), [Lm,Wn]]

=[Wk+n,−(p + µ +m)Wp+m] + [Wk+p, (n + µ +m)Wm+n] = 0,

[σ1
k(Wm), [Wn,Wp]] + [σ1

k(Wn), [Wp,Wm]] + [σ1
k(Wp), [Wm,Wn]] = 0.

So, σ1
k is a Hom-Lie structure on L1,µ.

For any k,m,n, p ∈ Z,

[σ2
k(Lm), [Wn,Wp]] + [σ2

k(Wn), [Wp,Lm]] + [σ2
k(Wp), [Lm,Wn]] = 0,

[σ2
k(Wm), [Wn,Wp]] + [σ2

k(Wn), [Wp,Wm]] + [σ2
k(Wp), [Wm,Wn]] = 0

are obvious. Moreover, we obtain

[σ2
k(Lm), [Ln,Lp]] + [σ2

k(Ln), [Lp,Lm]] + [σ2
k(Lp), [Lm,Ln]]

=[Wk+m, (p − n)Ln+p] + [Wk+n, (m − p)Lp+m] + [Wk+p, (n −m)Lm+n]
= − (k +m + µ + n + p)((p − n) + (m − p) + (n −m))Wk+m+n+p = 0,

[σ2
k(Lm), [Ln,Wp]] + [σ2

k(Ln), [Wp,Lm]] + [σ2
k(Wp), [Lm,Ln]]

=[Wk+m, (p + µ + n)Wn+p] + [Wk+n,−(p + µ +m)Wp+m] = 0.

From these equations above, σ2
k is a Hom-Lie structure on L1,µ.

By a easy calculation, we have for any k,m,n, p ∈ Z,

[σ3
k(Lm), [Ln,Lp]] + [σ3

k(Ln), [Lp,Lm]] + [σ3
k(Lp), [Lm,Ln]]

=[mWk+m, (p − n)Ln+p] + [nWk+n, (m − p)Lp+m] + [pWk+p, (n −m)Lm+n]
= − (k +m + µ + n + p)(m(p − n) + n(m − p) + p(n −m))Wk+m+n+p = 0,

[σ3
k(Lm), [Ln,Wp]] + [σ3

k(Ln), [Wp,Lm]] + [σ3
k(Wp), [Lm,Ln]]

=[mWk+m, (p + µ + n)Wn+p] + [nWk+n,−(p + µ +m)Wp+m] = 0,

[σ3
k(Lm), [Wn,Wp]] + [σ3

k(Wn), [Wp,Lm]] + [σ3
k(Wp), [Lm,Wn]] = 0,

[σ3
k(Wm), [Wn,Wp]] + [σ3

k(Wn), [Wp,Wm]] + [σ3
k(Wp), [Wm,Wn]] = 0.

Thus, σ3
k is a Hom-Lie structure on L1,µ. The proof is finished.
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Lemma 3.5. For any k,m ∈ Z, let σ4
k , σ5

k and σ6
k be the linear maps of L0,µ (µ < Z) such that

σ4
k(Lm) = Lk+m, σ

4
k(Wm) =

m + µ
k +m + µ

Wk+m,

σ5
k(Lm) =

1
k +m + µ

Wk+m, σ
5
k(Wm) = 0,

σ6
k(Lm) =

m
k +m + µ

Wk+m, σ
6
k(Wm) = 0.

Then, σ4
k , σ5

k and σ6
k are Hom-Lie structures on L0,µ.

Proof. For any k,m,n, p ∈ Z, it is obvious that

[σ4
k(Wm), [Wn,Wp]] + [σ4

k(Wn), [Wp,Wm]] + [σ4
k(Wp), [Wm,Wn]] = 0.

By a calculation, we also have

[σ4
k(Lm), [Ln,Lp]] + [σ4

k(Ln), [Lp,Lm]] + [σ4
k(Lp), [Lm,Ln]]

=[Lk+m, (p − n)Ln+p] + [Lk+n, (m − p)Lp+m] + [Lk+p, (n −m)Lm+n]
=((p − n)(n + p − k −m) + (m − p)(p +m − k − n) + (n −m)(m + n − k − p))Lk+m+n+p = 0,

[σ4
k(Lm), [Ln,Wp]] + [σ4

k(Ln), [Wp,Lm]] + [σ4
k(Wp), [Lm,Ln]]

=[Lk+m, (p + µ)Wn+p] + [Lk+n,−(p + µ)Wp+m] + [
p + µ

k + p + µ
Wk+p, (n −m)Lm+n]

=((p + µ)(n + p + µ) − (p + µ)(p +m + µ) − (n −m)(p + µ))Wk+m+n+p = 0,

[σ4
k(Lm), [Wn,Wp]] + [σ4

k(Wn), [Wp,Lm]] + [σ4
k(Wp), [Lm,Wn]]

=[
n + µ

k + n + µ
Wk+n,−(p + µ)Wp+m] + [

p + µ
k + p + µ

Wk+p, (n + µ)Wm+n] = 0,

So, σ4
k is a Hom-Lie structure on L0,µ.

For any k,m,n, p ∈ Z,we get

[σ5
k(Lm), [Ln,Lp]] + [σ5

k(Ln), [Lp,Lm]] + [σ5
k(Lp), [Lm,Ln]]

=
p − n

k +m + µ
[Wk+m,Ln+p] +

m − p
k + n + µ

[Wk+n,Lp+m] +
n −m

k + p + µ
[Wk+p,Lm+n]

= − ((p − n) + (m − p) + (n −m))Wk+m+n+p = 0,

[σ5
k(Lm), [Ln,Wp]] + [σ5

k(Ln), [Wp,Lm]] + [σ5
k(Wp), [Lm,Ln]]

=[
1

k +m + µ
Wk+m, (p + µ)Wn+p] + [

1
k + n + µ

Wk+n,−(p + µ)Wp+m] = 0.

These equations together with

[σ5
k(Lm), [Wn,Wp]] + [σ5

k(Wn), [Wp,Lm]] + [σ5
k(Wp), [Lm,Wn]] = 0,

[σ5
k(Wm), [Wn,Wp]] + [σ5

k(Wn), [Wp,Wm]] + [σ5
k(Wp), [Wm,Wn]] = 0

show that σ5
k is a Hom-Lie structure on L0,µ.
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In addition, for any k,m,n, p ∈ Z, it follows from

[σ6
k(Lm), [Ln,Lp]] + [σ6

k(Ln), [Lp,Lm]] + [σ6
k(Lp), [Lm,Ln]]

=
m(p − n)
k +m + µ

[Wk+m,Ln+p] +
n(m − p)
k + n + µ

[Wk+n,Lp+m] +
p(n −m)
k + p + µ

[Wk+p,Lm+n]

= − (m(p − n) + n(m − p) + p(n −m))Wk+m+n+p = 0,

[σ6
k(Lm), [Ln,Wp]] + [σ6

k(Ln), [Wp,Lm]] + [σ6
k(Wp), [Lm,Ln]]

=[
m

k +m + µ
Wk+m, (p + µ)Wn+p] + [

n
k + n + µ

Wk+n,−(p + µ)Wp+m] = 0.

[σ6
k(Lm), [Wn,Wp]] + [σ6

k(Wn), [Wp,Lm]] + [σ6
k(Wp), [Lm,Wn]] = 0,

[σ6
k(Wm), [Wn,Wp]] + [σ6

k(Wn), [Wp,Wm]] + [σ6
k(Wp), [Wm,Wn]] = 0

that σ6
k is a Hom-Lie structure on L0,µ. We complete the proof.

Note that σ1
0 = idLλ,µ and σ4

0 = idL0,µ . Next, by dividing parameters λ, µ into five cases, we determine all
(multiplicative) Hom-Lie structures on Lλ,µ.

3.1. The case for λ = −1
By the definition, L−1,µ has the following Lie brackets

[Ln,Lm] = (m − n) Lm+n, [Ln,Wm] = (m + µ − n)Wm+n, [Wn,Wm] = 0, ∀ m,n ∈ Z.

Lemma 3.6. For any k,m ∈ Z, suppose that τk is a Hom-Lie structure on L−1,µ satisfying τk((L−1,µ)m) ⊆ (L−1,µ)k+m.
Then, τk = akσ1

k + bkσ2
k , where ak, bk ∈ C and the action of σi

k (i = 1, 2) on L−1,µ is defined in Lemma 3.4.

Proof. For any m ∈ Z, assume that

τk(Lm) = ak,mLk+m + bk,mWk+m, τk(Wm) = ck,mLk+m + dk,mWk+m,

where ak,m, bk,m, ck,m, dk,m ∈ C.
Claim 1. ak,m = ak,0, bk,m = bk,0, ∀ m ∈ Z.
For any m,n, p ∈ Z, let x = Lm, y = Ln, z = Lp and σ = τk in Eq. (1). Then, we obtain

ak,m(p − n)(k +m − n − p) + ak,n(m − p)(k + n − p −m) + ak,p(n −m)(k + p −m − n) = 0, (5)

bk,m(p − n)(k +m + µ − n − p) + bk,n(m − p)(k + n + µ − p −m) + bk,p(n −m)(k + p + µ −m − n) = 0. (6)

Note that Eq. (5) is a special case of Eq. (6), i.e., when µ = 0, Eq. (6) becomes Eq. (5). Hence, we only need
to consider Eq. (6). Taking n = 1 and p = 0 in Eq. (6) gives us that for any m ∈ Z,

−bk,m(k +m + µ − 1) + bk,1m(k −m + µ + 1) + bk,0(1 −m)(k −m + µ − 1) = 0. (7)

For any m ∈ Z, let n = m + 1 and p = m + 2 in Eq. (6). Then, we have

bk,m(k −m + µ − 3) − 2bk,m+1(k −m + µ − 1) + bk,m+2(k −m + µ + 1) = 0. (8)

Case 1. µ = 0.
Obviously, from Eq. (7), we have

bk,m =
bk,1m(k −m + 1) − bk,0(m − 1)(k −m − 1)

k +m − 1
, m , −k + 1. (9)

Again taking m = −k + 1 in Eq. (7), we have (bk,1 − bk,0)k(k − 1) = 0.
Subcase 1. k , 0, 1.
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It is easy to see that bk,1 = bk,0. Then, Eq. (9) becomes bk,m = bk,0, m , −k + 1. Taking m = −k in Eq. (8)
gives that bk,−k+1 = bk,0. Hence, bk,m = bk,0, ∀ m ∈ Z.

Subcase 2. k = 0.
Eq. (9) can be written as b0,m = −b0,1m+ b0,0(m+1), m , 1. Putting m = 1 into Eq. (8), we obtain b0,1 = b0,0

easily. Hence, b0,m = b0,0, ∀ m ∈ Z.
Subcase 3. k = 1.
It is obvious that Eq. (9) becomes b1,m = b1,1(2 − m) + b1,0(m − 1), m , 0. Let m = 1 in Eq. (8). Then, we

have b1,1 = b1,0. Hence, b1,m = b1,0, ∀ m ∈ Z.
Case 2. µ < Z.
Eq. (7) becomes

bk,m =
bk,1m(k −m + µ + 1) − bk,0(m − 1)(k −m + µ − 1)

k +m + µ − 1
, ∀ m ∈ Z.

So, one immediately gets

bk,2 =
2bk,1(k + µ − 1) − bk,0(k + µ − 3)

k + µ + 1
, bk,3 =

3bk,1(k + µ − 2) − 2bk,0(k + µ − 4)
k + µ + 2

.

Let m = 1 in Eq. (8). Then, we obtain bk,1(k+µ−4)−2bk,2(k+µ−2)+bk,3(k+µ) = 0.Put the expressions of bk,2 and
bk,3 into the equation above. By a simple calculation, we get bk,1 = bk,0.Hence, we have bk,m = bk,0, ∀ m ∈ Z.

Claim 2. ck,m = 0, dk,m = ak,0, ∀ m,n ∈ Z.
For any m,n, p ∈ Z, take x = Lp, y = Ln, z =Wm and σ = τk in Eq. (1). Then, by Claim 1, we have

ck,m(n − p)(p + n − k −m) = 0,

(dk,m − ak,0)(n − p)(k +m + µ − p − n) = 0. (10)

From Lemma 3.2, we have ck,m = 0, ∀ m ∈ Z. Let n = −1 and p = 1 in Eq. (10). Then, we have

(dk,m − ak,0)(k +m + µ) = 0, ∀ m ∈ Z. (11)

Again let n = 0 and p = 1 in Eq. (10). So,

(dk,m − ak,0)(k +m + µ − 1) = 0, ∀ m ∈ Z. (12)

It is obvious from Eqs. (11)-(12) that dk,m = ak,0 for any m ∈ Z.
From Claims 1-2, we have

τk(Lm) = ak,0Lk+m + bk,0Wk+m, τk(Wm) = ak,0Wk+m,

where ak,0, bk,0 ∈ C. Let ak = ak,0 and bk = bk,0. Therefore, by Lemma 3.4, we obtain τk = akσ1
k + bkσ2

k .

Theorem 3.7. For the linear map σi
k on L−1,µ defined in Lemma 3.4, where i = 1, 2, we have

HS(L−1,µ) =
⊕
k∈Z

(Cσ1
k ⊕ Cσ

2
k).

Proof. From Lemmas 3.1, 3.4 and 3.6, this theorem is obvious.

Corollary 3.8. Any multiplicative Hom-Lie structure on L−1,µ is trivial, that is MHS(L−1,µ) = {0, idL−1,µ }.

Proof. Obviously, {0, idL−1,µ } ⊆ MHS(L−1,µ). Conversely, from Theorem 3.7, we may assume that for any
τ ∈MHS(L−1,µ) ⊆ HS(L−1,µ),

τ =
∑
k∈Z

(akσ
1
k + bkσ

2
k),
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where ak, bk ∈ C.
If {k ∈ Z | ak , 0} = ∅, we have bk = 0 for any k ∈ Z, that is, τ = 0. In fact, for any n ∈ Z∗,we have

τ([L0,Ln]) =
∑
k∈Z

bkσ
2
k([L0,Ln]) = n

∑
k∈Z

bkσ
2
k(Ln) = n

∑
k∈Z

bkWk+n,

[τ(L0), τ(Ln)] = [
∑
k∈Z

bkσ
2
k(L0),

∑
k′∈Z

bk′σ
2
k′ (Ln)] = [

∑
k∈Z

bkWk,
∑
k′∈Z

bk′Wk′+n] = 0.

Hence, it is obvious that bk = 0 for all k ∈ Z.
If {k ∈ Z | ak , 0} , ∅, take l, l ∈ {k ∈ Z | ak , 0} such that l is minimal and l is maximal. For any n ∈ Z∗,

τ([L0,Ln]) = (
l∑

l=l

alσ
1
l +
∑
k∈Z

bkσ
2
k)([L0,Ln]) = n(

l∑
l=l

alσ
1
l +
∑
k∈Z

bkσ
2
k)(Ln) = n(

l∑
l=l

alLl+n +
∑
k∈Z

bkWk+n), (13)

[τ(L0), τ(Ln)] =[(
l∑

l=l

alσ
1
l +
∑
k∈Z

bkσ
2
k)(L0), (

l∑
l′=l

al′σ
1
l′ +
∑
k′∈Z

bk′σ
2
k′ )(Ln)]

=[
l∑

l=l

alLl +
∑
k∈Z

bkWk,
l∑

l′=l

al′Ll′+n +
∑
k′∈Z

bk′Wk′+n]

=

l∑
l=l

l∑
l′=l

alal′ (l′ − l + n)Ll+l′+n +

l∑
l=l

∑
k′∈Z

albk′ (k′ + n + µ − l)Wl+k′+n

−

l∑
l′=l

∑
k∈Z

al′bk(k + µ − l′ − n)Wl′+k+n. (14)

It follows from Eqs. (13)-(14) that

alLl+n = a2
l L2l+n, alLl+n = a2

l
L2l+n.

These imply that l = l = 0 and a0 = 1. Then, it is easy to compute that bk = 0 for all k ∈ Z. Hence, τ = σ1
0,

that is, τ = idL−1,µ .
Therefore, we obtain MHS(L−1,µ) ⊆ {0, idL−1,µ }. The proof is finished.

Remark 3.9. When µ = 0, Corollary 3.8 is consistent with [3, Theorem 4.1]. The proof of [3, Theorem 4.1] is to
determine all endomorphisms of L−1,0 first, and then to characterize MHS(L−1,0). However, we start from HS(L−1,µ)
for any µ ∈ C, and then use the multiplicative property to obtain MHS(L−1,µ).

3.2. The case for λ = 1
By the definition, L1,µ has the following Lie brackets

[Ln,Lm] = (m − n) Lm+n, [Ln,Wm] = (m + µ + n)Wm+n, [Wn,Wm] = 0, ∀ m,n ∈ Z.

Lemma 3.10. For any k,m ∈ Z, suppose that τk is a Hom-Lie structure on L1,µ satisfying τk((L1,µ)m) ⊆ (L1,µ)k+m.
Then, τk = akσ1

k + bkσ2
k + ckσ3

k , where ak, bk, ck ∈ C and the action of σi
k (i = 1, 2, 3) on L1,µ is defined in Lemma 3.4.

Proof. For any m ∈ Z, we may assume that

τk(Lm) = ak,mLk+m + bk,mWk+m, τk(Wm) = ck,mLk+m + dk,mWk+m,
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where ak,m, bk,m, ck,m, dk,m ∈ C.
For any m,n, p ∈ Z, let x = Lm, y = Ln, z = Lp and σ = τk in Eq. (1). Then, we obtain

ak,m(p − n)(k +m − n − p) + ak,n(m − p)(k + n − p −m) + ak,p(n −m)(k + p −m − n) = 0,

(bk,m(p − n) + bk,n(m − p) + bk,p(n −m))(k +m + µ + n + p) = 0. (15)

From the proof of Lemma 3.6, we have ak,m = ak,0 for any m ∈ Z.
Taking n = 1 and p = 0 in Eq. (15) gives us that for any m ∈ Z,

(−bk,m + bk,1m + bk,0(1 −m))(k +m + µ + 1) = 0. (16)

If µ < Z, it is obvious that bk,m = bk,1m + bk,0(1 −m) = (bk,1 − bk,0)m + bk,0, ∀ m ∈ Z. If µ ∈ Z, Eq. (16) can be
written as bk,m = bk,1m + bk,0(1 −m), m , −k − 1. So, we have

bk,−k−2 = −bk,1(k + 2) + bk,0(k + 3), bk,−k = −bk,1k + bk,0(k + 1).

Let m = −k − 2, n = −k − 1, p = −k and put two equations above into Eq. (15). Then, bk,−k−1 = −bk,1(k + 1) +
bk,0(k + 2). Hence, we have

bk,m = bk,1m + bk,0(1 −m) = (bk,1 − bk,0)m + bk,0, ∀ m ∈ Z.

Similar to the proof of Lemma 3.6, we easily get ck,m = 0, dk,m = ak,0, ∀ m ∈ Z. Then, we have

τk(Lm) = ak,0Lk+m + ((bk,1 − bk,0)m + bk,0)Wk+m, τk(Wm) = ak,0Wk+m,

where ak,0, bk,0, bk,1 ∈ C. Let ak = ak,0, bk = bk,0 and ck = bk,1 − bk,0. Therefore, by Lemma 3.4, we obtain
τk = akσ1

k + bkσ2
k + ckσ3

k .

From Lemmas 3.1, 3.4 and 3.10, we easily get the following theorem.

Theorem 3.11. For the linear map σi
k on L1,µ defined in Lemma 3.4, where i = 1, 2, 3, we have

HS(L1,µ) =
⊕
k∈Z

(Cσ1
k ⊕ Cσ

2
k ⊕ Cσ

3
k).

Corollary 3.12. Suppose that τ is a linear map of L1,µ. Then τ ∈ MHS(L1,µ) if and only if τ is 0 or possesses the
following form τ = idL1,µ +

∑
k∈Z ck((k + µ)σ2

k + σ
3
k), where ck ∈ C and the actions of σ2

k and σ3
k on L1,µ are defined in

Lemma 3.4.

Proof. It is obvious that the linear maps 0 and idL1,µ +
∑

k∈Z ck((k + µ)σ2
k + σ

3
k) are multiplicative Hom-Lie

structures on L1,µ, where ck ∈ C. Conversely, by Theorem 3.11, we may assume that for any τ ∈MHS(L1,µ) ⊆
HS(L1,µ),

τ =
∑
k∈Z

(akσ
1
k + bkσ

2
k + ckσ

3
k),

where ak, bk, ck ∈ C.
If {k ∈ Z | ak , 0} = ∅, then bk = ck = 0 for all k ∈ Z, i.e., τ = 0. Indeed, for any n ∈ Z∗,we have

τ([L0,Ln]) = n
∑
k∈Z

(bk + nck)Wk+n,

[τ(L0), τ(Ln)] = [
∑
k∈Z

bkWk,
∑
k′∈Z

(bk′ + nck′ )Wk′+n] = 0.

We easily get bk + nck = 0 for all n ∈ Z∗,which deduces that bk = ck = 0.
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If {k ∈ Z | ak , 0} , ∅, take l, l ∈ {k ∈ Z | ak , 0} such that l is minimal and l is maximal. Similar to the
proof of Corollary 3.8, it is easy to see l = l = 0 and a0 = 1. So, for any n ∈ Z∗, we have

τ([L0,Ln]) = n(Ln +
∑
k∈Z

(bk + nck)Wk+n),

[τ(L0), τ(Ln)] = n(Ln +
∑
k∈Z

(k + n + µ)ckWk+n).

We obtain bk = (k + µ)ck. Then, τ = idL1,µ +
∑

k∈Z ck((k + µ)σ2
k + σ

3
k). The proof is completed.

3.3. The case for λ , 0,±1
Lemma 3.13. For any k,m ∈ Z, suppose that the actions of σ1

0, σ2
k on Lλ,µ are defined in Lemma 3.4 and τk is a

Hom-Lie structure on Lλ,µ satisfying τk((Lλ,µ)m) ⊆ (Lλ,µ)k+m. Then, τk = δk,0a0σ1
0 + bkσ2

k , where a0, bk ∈ C and δk,m
is the Kronecker delta.

Proof. For any m ∈ Z, assume that

τk(Lm) = ak,mLk+m + bk,mWk+m, τk(Wm) = ck,mLk+m + dk,mWk+m,

where ak,m, bk,m, ck,m, dk,m ∈ C.
Claim 1. ak,m = ak,0, bk,m = bk,0, ∀ m ∈ Z.
From the proof of Lemma 3.6, we have ak,m = ak,0 for any m ∈ Z. For any m,n, p ∈ Z, let x = Lm, y = Ln,

z = Lp and σ = τk in Eq. (1). Then, we obtain

bk,m(p−n)(k+m+µ+λ(n+ p))+ bk,n(m− p)(k+n+µ+λ(p+m))+ bk,p(n−m)(k+ p+µ+λ(m+n)) = 0. (17)

For any m ∈ Z, let n = m + 1 and p = m + 2 in Eq. (17). Then, we have

bk,m(k+m+µ+λ(2m+ 3))− 2bk,m+1(k+m+ 1+µ+λ(2m+ 2))+ bk,m+2(k+m+ 2+µ+λ(2m+ 1)) = 0. (18)

Case 1. µ < Z and there exists n0 ∈ Z such that µ + λn0 ∈ Z.
It is easy to see n0 , 0 and λ < Z. Taking n = n0 and p = 0 in Eq. (17) gives us that for any m ∈ Z,

−bk,mn0(k +m + µ + λn0) + bk,n0 m(k + n0 + µ + λm) + bk,0(n0 −m)(k + µ + λ(m + n0)) = 0. (19)

This implies that

bk,m =
bk,n0 m(k + n0 + µ + λm) + bk,0(n0 −m)(k + µ + λ(m + n0))

n0(k +m + µ + λn0)
, m , −k − µ − λn0. (20)

Let m = −k − µ − λn0 in Eq. (19). Then,

(bk,n0 − bk,0)(λ − 1)(k + µ + n0 + λn0)(k + µ + λn0) = 0. (21)

Subcase 1. k , −µ − n0 − λn0, −µ − λn0.
From Eq. (21), we have bk,n0 = bk,0. Eq. (20) becomes bk,m = bk,0, m , −k−µ−λn0. Let m = −k−µ−λn0−1

and m = −k − µ − λn0 in Eq. (18), respectively. Then, we have

(bk,−k−µ−λn0 − bk,0)(n0 + 2(k + µ + λn0)) = 0, (bk,−k−µ−λn0 − bk,0)(n0 + 2(k + µ + λn0) − 3) = 0.

These two equations above show that bk,−k−µ−λn0 = bk,0. Hence, bk,m = bk,0, ∀ m ∈ Z.
Subcase 2. k = −µ − n0 − λn0.
Eq. (20) becomes

b−µ−n0−λn0,m =
b−µ−n0−λn0,n0λm − b−µ−n0−λn0,0(λm − n0)

n0
, m , n0.
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Taking m = n0 + 1 in Eq. (18) gives us that λ(λ − 1)(b−µ−n0−λn0,n0 − b−µ−n0−λn0,0) = 0, which implies that
b−µ−n0−λn0,n0 = b−µ−n0−λn0,0. Hence, b−µ−n0−λn0,m = b−µ−n0−λn0,0, ∀ m ∈ Z.

Subcase 3. k = −µ − λn0.
Eq. (20) becomes

b−µ−λn0,m =
b−µ−λn0,n0 (−λn0 + n0 + λm) + b−µ−λn0,0λ(n0 −m)

n0
, m , 0.

Let m = 1 in Eq. (18). Then, we obtain λ(λ − 1)(b−µ−λn0,n0 − b−µ−λn0,0) = 0, thus b−µ−λn0,n0 = b−µ−λn0,0. Hence,
b−µ−λn0,m = b−µ−λn0,0, ∀ m ∈ Z.

Case 2. µ < Z and µ + λn < Z for any n ∈ Z.
Taking n = 1 and p = 0 in Eq. (17) shows that for any m ∈ Z,

−bk,m(k +m + µ + λ) + bk,1m(k + 1 + µ + λm) + bk,0(1 −m)(k + µ + λ(m + 1)) = 0.

Then, we have

bk,m =
bk,1m(k + 1 + µ + λm) − bk,0(m − 1)(k + µ + λ(m + 1))

k +m + µ + λ
, ∀ m ∈ Z.

So, one can immediately get

bk,2 =
2bk,1(k + 1 + µ + 2λ) − bk,0(k + µ + 3λ)

k + 2 + µ + λ
, bk,3 =

3bk,1(k + 1 + µ + 3λ) − 2bk,0(k + µ + 4λ)
k + 3 + µ + λ

.

Let m = 1 in Eq. (18). Then, we obtain bk,1(k+ 1+ µ+ 5λ)− 2bk,2(k+ 2+ µ+ 4λ)+ bk,3(k+ 3+ µ+ 3λ) = 0. Put
the expressions of bk,2 and bk,3 into the equation above. By a simple calculation, we get bk,1 = bk,0.Hence, we
have bk,m = bk,0, ∀ m ∈ Z.

Case 3. µ = 0 and λ ∈ Z \ {0,±1}.
Taking n = 1 and p = 0 in Eq. (17) gives us that for any m ∈ Z,

−bk,m(k +m + λ) + bk,1m(k + 1 + λm) + bk,0(1 −m)(k + λ(m + 1)) = 0, (22)

which implies that

bk,m =
bk,1m(k + 1 + λm) − bk,0(m − 1)(k + λ(m + 1))

k +m + λ
, m , −k − λ. (23)

Taking m = −k − λ in Eq. (22), we have (bk,1 − bk,0)(λ − 1)(k + λ + 1)(k + λ) = 0.
Subcase 1. k , −λ − 1, −λ.
It is easy to see that bk,1 = bk,0. Then, Eq. (23) becomes bk,m = bk,0, m , −k − λ. Taking m = −k − λ − 1 in

Eq. (18) gives that bk,−k−λ = bk,0. Hence, bk,m = bk,0, ∀ m ∈ Z.
Subcase 2. k = −λ − 1.
Eq. (23) can be written as b−λ−1,m = b−λ−1,1λm − b−λ−1,0(λm − 1), m , 1. Put m = 1 into Eq. (18). It is easy

to compute that b−λ−1,1 = b−λ−1,0. Hence, we obtain b−λ−1,m = b−λ−1,0, ∀ m ∈ Z.
Subcase 3. k = −λ.
It is obvious that Eq. (23) becomes b−λ,m = b−λ,1(−λ + 1 + λm) − b−λ,0λ(m − 1), m , 0. Let m = 1 in Eq.

(18). Then, by a simple calculation, we have b−λ,1 = b−λ,0. Hence, b−λ,m = b−λ,0, ∀ m ∈ Z.
Case 4. µ = 0 and λ < Z.
Take n = 1 and p = 0 in Eq. (17). For any m ∈ Z, we have

−bk,m(k +m + λ) + bk,1m(k + 1 + λm) + bk,0(1 −m)(k + λ(m + 1)) = 0,

which implies that

bk,m =
bk,1m(k + 1 + λm) − bk,0(m − 1)(k + λ(m + 1))

k +m + λ
, ∀ m ∈ Z.
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Similar the proof of Case 2, we easily get bk,m = bk,0, ∀ m ∈ Z.
Claim 2. ck,m = 0, dk,m = ak,0 = δk,0a0,0, ∀ m ∈ Z.
For any m,n, p ∈ Z, take x = Lp, y = Ln, z =Wm and σ = τk in Eq. (1). Then, we have

ck,m(n − p)(p + n − k −m) = 0,

(n − p)(dk,m(k +m + µ + λ(p + n)) − ak,0(λ2k +m + µ + λ(p + n))) = 0. (24)

From Lemma 3.2, we have ck,m = 0, ∀ m ∈ Z. Let n = −1 and p = 1 in Eq. (24). It is obvious that

dk,m(k +m + µ) − ak,0(λ2k +m + µ) = 0, ∀ m ∈ Z. (25)

Again let n = 0 and p = 1 in Eq. (24). So,

dk,m(k +m + µ + λ) − ak,0(λ2k +m + µ + λ) = 0, ∀ m ∈ Z. (26)

From Eqs. (25)-(26), it is obvious that (dk,m − ak,0)λ = 0, which implies that dk,m = ak,0 for any m ∈ Z.
Moreover, note that Eq. (25) or Eq. (26) can be written as dk,mk(λ − 1)(λ + 1) = 0, ∀ m ∈ Z. Hence, if k , 0,
we have dk,m = ak,0 = 0.

From Claims 1-2, we get

τk(Lm) = δk,0a0,0Lk+m + bk,0Wk+m, τk(Wm) = δk,0a0,0Wk+m,

where a0,0, bk,0 ∈ C. Let a0 = a0,0 and bk = bk,0. Therefore, by Lemma 3.4, we obtain τk = δk,0a0σ1
0 + bkσ2

k .

From Lemmas 3.1, 3.4 and 3.13, the following theorem is easy to obtain.

Theorem 3.14. For the linear maps σ1
0 and σ2

k on Lλ,µ defined in Lemma 3.4, we have

HS(Lλ,µ) =
⊕
k∈Z

(Cδk,0σ
1
0 ⊕ Cσ

2
k).

Corollary 3.15. Any multiplicative Hom-Lie structure on Lλ,µ is trivial, that is MHS(Lλ,µ) = {0, idLλ,µ }.

Proof. It is clear that {0, idLλ,µ } ⊆ MHS(Lλ,µ). Now, for any τ ∈ MHS(Lλ,µ) ⊆ HS(Lλ,µ), from Theorem 3.14,
we may assume τ = a0σ1

0 +
∑

k∈Z bkσ2
k ,where a0, bk ∈ C.

If a0 = 0, it is easy to compute that τ = 0.
If a0 , 0, we have τ = idLλ,µ . In fact, for any n ∈ Z∗,we have

τ([L0,Ln]) = n(a0Ln +
∑
k∈Z

bkWk+n),

[τ(L0), τ(Ln)] = n(a2
0Ln +

∑
k∈Z

a0bk(1 − λ)Wk+n).

We have a0 = 1 and bk = 0 for all k ∈ Z, i.e., τ = idLλ,µ . Hence, we obtain MHS(Lλ,µ) ⊆ {0, idLλ,µ }. The proof is
completed.

3.4. The case for (λ, µ) = (0, 0)
By the definition, L0,0 has the following Lie brackets

[Ln,Lm] = (m − n) Lm+n, [Ln,Wm] = mWm+n, [Wn,Wm] = 0, ∀ m,n ∈ Z.

Lemma 3.16. For any k ∈ Z, suppose that the actions of σ1
0, σ2

k on L0,0 are defined in Lemma 3.4. Let τk be a Hom-Lie
structure on L0,0 satisfying τk((L0,0)m) ⊆ (L0,0)k+m for any m ∈ Z. Then,

τk = δk,0a0σ
1
0 + bkσ

2
k + up to a central Hom-Lie structure,

where a0, bk ∈ C and δk,m is the Kronecker delta.
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Proof. For any m ∈ Z, one may assume that

τk(Lm) = ak,mLk+m + bk,mWk+m, τk(Wm) = ck,mLk+m + dk,mWk+m,

where ak,m, bk,m, ck,m, dk,m ∈ C. From the proof of Lemma 3.6, we have ak,m = ak,0 for any m ∈ Z.
For any m,n ∈ Z, let x = Lm, y = Ln, z = L−k and σ = τk in Eq. (1). Then, we obtain (bk,m−bk,n)(k+m)(k+n) =

0,which deduces that bk,m = bk,n, m , −k, n , −k. Then, we have bk,m = bk,−k+1+δm,−k(bk,−k−bk,−k+1), ∀ m ∈ Z.
For any m,n, p ∈ Z, let x = Lp, y = Ln, z =Wm and σ = τk in Eq. (1). Then,

ck,m(n − p)(p + n − k −m) = 0,

(n − p)(dk,m(k +m) − ak,0m) = 0. (27)

From Lemma 3.2, it is easy to see ck,m = 0, ∀ m ∈ Z. For any m ∈ Z, let n = 1, p = −1 in Eq. (27). Then,
(k +m)dk,m = ak,0m, ∀ m ∈ Z. If k = 0, we have d0,m = a0,0 + δm,0(d0,0 − a0,0). If k , 0, it is easy to compute that
ak,0 = 0 and dk,m = δm,−kdk,−k.

Hence, we obtain

τ0(Lm) = a0,0Lm + b0,1Wm + δm,0(b0,0 − b0,1)W0, τ0(Wm) = a0,0Wm + δm,0(d0,0 − a0,0)W0,

and for k , 0

τk(Lm) = bk,−k+1Wk+m + δm,−k(bk,−k − bk,−k+1)W0, τk(Wm) = δm,−kdk,−kW0.

Now, for any k ∈ Z, define the linear map ρk : L0,0 → C such that

ρ0(Lm) = δm,0(b0,0 − b0,1), ρ0(Wm) = δm,0(d0,0 − a0,0),

and for k , 0

ρk(Lm) = δm,−k(bk,−k − bk,−k+1), ρk(Wm) = δm,−kdk,−k.

Obviously, σρk is a central Hom-Lie structure on L0,0. Let a0 = a0,0 and bk = bk,−k+1. Then, τk = δk,0a0σ1
0 +

bkσ2
k + σρk .

Theorem 3.17. For any k ∈ Z and the linear maps σ1
0, σ2

k defined in Lemma 3.4, we have

HS(L0,0) =
⊕
k∈Z

(Cδk,0σ
1
0 ⊕ Cσ

2
k)
⊕

CHS(L0,0).

Proof. By Lemmas 3.1, 3.3-3.4 and 3.16, this theorem is obvious.

Corollary 3.18. For any k ∈ Z, suppose that the action of σ2
k on L0,0 is defined in Lemma 3.4. Then, τ ∈MHS(L0,0)

if and only if τ is 0 or possesses the following form τ = idL0,0 +
∑

k∈Z bkσ2
k . where bk ∈ C.

Proof. Obviously, the linear maps 0 and idL0,0 +
∑

k∈Z bkσ2
k are multiplicative Hom-Lie structures on L0,0,

where bk ∈ C. In addition, from Theorem 3.17, we may assume that for any τ ∈MHS(L0,0) ⊆ HS(L0,0),

τ = a0σ
1
0 +
∑
k∈Z

bkσ
2
k + σρ,

where a0, bk ∈ C and σρ is a central Hom-Lie structure on L0,0 defined in Lemma 3.3.
If a0 = 0, we have τ = 0.More specifically, for any n ∈ Z∗,

τ([L0,Ln]) = n(
∑
k∈Z

bkWk+n + ρ(Ln)W0),
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[τ(L0), τ(Ln)] = [
∑
k∈Z

bkWk + ρ(L0)W0,
∑
k′∈Z

bk′Wk′+n + ρ(Ln)W0] = 0.

We have
∑

k∈Z bkWk+n + ρ(Ln)W0 = 0 for any n ∈ Z∗. If we take n1,n2 ∈ Z∗ such that n1 , n2, then

bk = 0, k , −n1,

bk = 0, k , −n2.

Hence, bk = 0 for any k ∈ Z. This deduces that ρ(Ln) = 0 for any n ∈ Z∗. By the multiplicative property, it is
easy to see that ρ(x) = 0 for any x ∈ L0,0. This shows that σρ = 0. Hence, τ = 0.

If a0 , 0, for any n ∈ Z∗,we have

τ([L0,Ln]) = n(a0Ln +
∑
k∈Z

bkWk+n + ρ(Ln)W0), [τ(L0), τ(Ln)] = n(a2
0Ln + a0

∑
k∈Z

bkWk+n).

We have a0 = 1 and ρ(Ln) = 0 for any n ∈ Z∗. Because of the multiplicative property, it is easy to compute
that ρ(x) = 0 for any x ∈ L0,0,which deduces that σρ = 0. So, τ = idL0,0+

∑
k∈Z bkσ2

k .We complete the proof.

Remark 3.19. Using the endomorphism ofL0,0, multiplicative Hom-Lie structures on this algebra are also determined
in [12, Theorem 4.1]. Corollary 3.18 contains the result in [12, Theorem 4.1] and gives a more complete characterization
of MHS(L0,0).

Now, we give two examples of multiplicative Hom-Lie structures on L0,0.

Example 3.20. Let σ2
0 be a linear map on L0,0, where the action of σ2

0 is defined in Lemma 3.4, i.e.,

σ2
0(Lm) =Wm, σ

2
0(Wm) = 0, ∀ m ∈ Z.

Obviously, τ = idL0,0 + σ
2
0 is a multiplicative Hom-Lie structure on L0,0, which is contained in both [12, Theorem 4.1]

and Corollary 3.18.

Example 3.21. Assume that σ2
−1, σ2

1 are linear maps on L0,0, where the actions of σ2
−1 and σ2

1 are defined in Lemma
3.4, i.e.,

σ2
−1(Lm) =Wm−1, σ

2
−1(Wm) = 0,

σ2
1(Lm) =Wm+1, σ

2
1(Wm) = 0, ∀ m ∈ Z.

It is easy to verify that τ̃ = idL0,0 + σ
2
−1 + σ

2
1 is a multiplicative Hom-Lie structure on L0,0, which is included in

Corollary 3.18, not in [12, Theorem 4.1].

3.5. The case for λ = 0, µ < Z

By the definition, L0,µ has the following Lie brackets

[Ln,Lm] = (m − n) Lm+n, [Ln,Wm] = (m + µ)Wm+n, [Wn,Wm] = 0, ∀ m,n ∈ Z.

Lemma 3.22. For any k,m ∈ Z, suppose that τk is a Hom-Lie structure on L0,µ satisfying τk((L0,µ)m) ⊆ (L0,µ)k+m.
Then, τk = akσ4

k + bkσ5
k + ckσ6

k , where ak, bk, ck ∈ C and the action of σi
k (i = 4, 5, 6) on L0,µ is defined in Lemma 3.5.

Proof. For any m ∈ Z, assume that

τk(Lm) = ak,mLk+m + bk,mWk+m, τk(Wm) = ck,mLk+m + dk,mWk+m,

where ak,m, bk,m, ck,m, dk,m ∈ C.
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From the proof of Lemma 3.6, we have ak,m = ak,0 for any m ∈ Z. For any m,n, p ∈ Z, let x = Lm, y = Ln,
z = Lp and σ = τk in Eq. (1). Then, we obtain

bk,m(p − n)(k +m + µ) + bk,n(m − p)(k + n + µ) + bk,p(n −m)(k + p + µ) = 0. (28)

Taking n = 1 and p = 0 in Eq. (28) gives us that for any m ∈ Z,

bk,m =
bk,1m(k + 1 + µ) + bk,0(1 −m)(k + µ)

k +m + µ
=

(bk,1(k + 1 + µ) − bk,0(k + µ))m + bk,0(k + µ)
k +m + µ

.

For any m,n, p ∈ Z, let x = Lp, y = Ln, z =Wm and σ = τk in Eq. (1). Then, for any m ∈ Z,we have

ck,m(n − p)(p + n − k −m) = 0,

(n − p)(dk,m(k +m + µ) − ak,0(m + µ)) = 0. (29)

By Lemma 3.2, ck,m = 0, ∀ m ∈ Z. Taking n = 1 and p = 0 in Eq. (29) shows that

dk,m =
m + µ

k +m + µ
ak,0, ∀ m ∈ Z.

Hence, we have

τk(Lm) = ak,0Lk+m +
(bk,1(k + 1 + µ) − bk,0(k + µ))m + bk,0(k + µ)

k +m + µ
Wk+m, τk(Wm) =

m + µ
k +m + µ

ak,0Wk+m,

where ak,0, bk,0, bk,1 ∈ C. Let ak = ak,0, bk = bk,0(k + µ) and ck = bk,1(k + 1 + µ) − bk,0(k + µ). So, τk = akσ4
k + bkσ5

k +

ckσ6
k .

From Lemmas 3.1, 3.5 and 3.22, we determine all Hom-Lie structures on L0,µ.

Theorem 3.23. For the linear map σi
k on L0,µ defined in Lemma 3.5, where i = 4, 5, 6, we have

HS(L0,µ) =
⊕
k∈Z

(Cσ4
k ⊕ Cσ

5
k ⊕ Cσ

6
k).

Corollary 3.24. Suppose that the actions of σ5
k , σ6

k on L0,µ are defined in Lemma 3.5. Then τ ∈ MHS(L0,µ) if and
only if τ is 0 or possesses the following form τ = idL0,µ +

∑
k∈Z ck((k + µ)σ5

k + σ
6
k), where ck ∈ C.

Proof. The proof is similar to Corollary 3.12.

We summarize the results concerning (multiplicative) Hom-Lie structures on Lλ,µ (λ, µ ∈ C) in the
following theorem and corollary.

Theorem 3.25. For k ∈ Z, assume that the actions of σρ, σi
k (i = 1, 2, 3) and σ j

k ( j = 4, 5, 6) on Lλ,µ are defined in
Lemmas 3.3, 3.4 and 3.5, respectively. Then

HS(Lλ,µ) =



⊕
k∈Z(Cσ1

k ⊕ Cσ
2
k), if λ = −1,⊕

k∈Z(Cσ1
k ⊕ Cσ

2
k ⊕ Cσ

3
k), if λ = 1,⊕

k∈Z(Cδk,0idLλ,µ ⊕ Cσ2
k), if λ , 0,±1,⊕

k∈Z(Cδk,0idL0,0 ⊕ Cσ
2
k)
⊕

CHS(L0,0), if λ = 0, µ = 0,⊕
k∈Z(Cσ4

k ⊕ Cσ
5
k ⊕ Cσ

6
k), if λ = 0, µ < Z,

where δk,m is the Kronecker delta.
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Corollary 3.26. If λ , 0, 1, any multiplicative Hom-Lie structure on Lλ,µ is trivial. Moreover, for any k ∈ Z,
suppose that σi

k (i = 2, 3) and σ j
k ( j = 5, 6) are defined in Lemmas 3.4 and 3.5, respectively. Then, any τ ∈MHS(L0,µ)

or MHS(L1,µ) if and only if τ is 0 or possesses the following form

τ =


idL0,0 +

∑
k∈Z bkσ2

k if λ = 0, µ = 0,
idL0,µ +

∑
k∈Z ck((k + µ)σ5

k + σ
6
k) if λ = 0, µ < Z,

idL1,µ +
∑

k∈Z ck((k + µ)σ2
k + σ

3
k), if λ = 1,

where bk, ck ∈ C.

Observing [14, 18, 19], there is a common phenomenon that Hom-Lie structures on these given Lie
algebras g are closed with respect to Jordan product. More specifically, HS(g) forms a Jordan algebra with
respect to the usual multiplication σ ◦ τ = 1

2 (στ + τσ), where σ, τ ∈ HS(g). It should be noted that in [20],
when Hom-Lie structures form a Jordan algebra was studied, which is also valid for the algebra Lλ,µ, as the
following conclusion.

Corollary 3.27. HS(Lλ,µ) is a Jordan algebra with respect to the multiplication σ ◦ τ = 1
2 (στ + τσ), where σ, τ ∈

HS(Lλ,µ).

Acknowledgments The authors would like to thank the referees for valuable suggestions to improve the
paper.

References

[1] B. Agrebaoui, K. Benali, A. Makhlouf, Representations of simple Hom-Lie algebras, J. Lie Theory 29 (2019), 1119–1135.
[2] S. Benayadi, A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38–60.
[3] H. Chen, D. Lai, D. Liu, The Hom-Lie structure on the Lie algebra W(2, 2), Acta Math. Sinica (Chinese Ser.) 63 (2020), 403–408.
[4] Z. Chen, Y. Yu, Regular Hom-Lie structures on Borel subalgebras of finite-dimensional simple Lie algebras, Comm. Algebra 48 (2020),

2065–2071.
[5] Z. Chen, Y. Yu, Regular Hom-Lie structures on strictly upper triangular matrix Lie algebras, J. Algebra Appl. 21 (2022), 2250081, 10 pp.
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