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Abstract. Let V be an n-dimensional vector space over GF(q) and [V
k ] denote the family of all k-dimensional

subspaces of V. Suppose that F ⊆ [V
k ] denotes a non-trivial t-intersecting family with t ≥ 2. Cao et al. [2]

determined the structures of F with maximum size for large n. Wang et al. [12] improved the applicable
range to n ≥ 2k + 2. In this paper, we determine the structures of F with maximum size for n = 2k + 1 and
q ≥ 3.

1. Introduction

The study of intersecting family is an important topic in combinatorics and has a long research history
ever since Erdős, Ko, and Rado [4] determined the maximum-sized intersecting family of subset, which is
usually called EKR theorem. The extremal structures of families with the maximum sizes were characterized
as the family of all subsets containing a fixed element x of an n-element set X if n ≥ 2k + 1.

Let V be an n-dimensional vector space over GF(q) and
[V

k
]

q denotes the family of k-dimensional sub-
spaces. For any complex number x and nonnegative integer k, the generalized q-binomial coefficient is

defined by
[x

k
]

q =
∏k−1

i=0
qx−i
−1

qk−i−1 . Simple counting can prove that the size of
[V

k
]

q is
[n

k
]

q. Without causing
confusion, the subscript q will be omitted in the following text.

The q-analogue of questions about sets and subsets are questions about vector spaces and subspaces.
The study on the EKR theorem for vector spaces can be seen in [3, 5, 8, 10]. In [2, 12], for some k-space U
and t-space E such that dim(U

⋂
E) = t − 1 the authors defined

FHM =

{
W ∈

[
V
k

]
: E ≤W and dim(W ∩U) ≥ t

}
∪

[
E +U

k

]
.

For k ≥ t + 2, the authors also defined

FA(t+2) =

{
F ∈

[
V
k

]
: dim(A ∩ F) ≥ t + 1 for some fixed A ∈

[
V

t + 2

]}
.
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The EKR structure is commonly referred to as a trivial structure in some literature. Relatively speaking,
a family is called t-intersecting and non-trivial if the intersection of any two elements of the family is not
less than t and the intersection of all elements is less than t. For vector spaces, it can be expressed as a family
F is t-intersecting and non-trivial if dim(F1 ∩ F2) ≥ t for any F1,F2 ∈ F and dim(

⋂
F∈F F) ≤ t − 1. Hilton

and Milner [7] determined the maximum size of an intersecting non-trivial family of sets and characterized
extremal structures of the families with the maximum sizes. Recently, some studies have extended the
Hilton-Milner theorem to vector spaces. Blokhuis et al. [1] generalized the Hilton-Milner theorem for t = 1
and n ≥ 2k + 1 + δ2,q. J. Wang et al. [11] shows the proof of the case n ≥ 2k + 1 and t = 1 as a corollary of a
Kruskal-Katona-type theorem. M. Cao et al. [2] generalizes the theorem to t-intersection and proved that
FHM,FA(t+2) are the maximal non-trivial family with n ≥ 2k + t +min{4, 2t}. Y. Wang et al. [12] improve this
parameter to n ≥ 2k + 2 and t ≥ 2. The rest problem of the t-intersecting Hilton-Milner theorem for vector
spaces is the case n = 2k + 1 and t ≥ 2.

Due to some cases of t-intersecting Hilton-Milner theorem for n = 2k + 1, t ≥ 2 and q ≥ 3 that cannot
be solved using the methods mentioned in the article above, this paper solves these problems by counting
basis vectors. Our main result is as follows:

Theorem 1.1. Suppose that n = 2k + 1, q ≥ 3, t ≥ 2 and k ≥ t + 2. For any t-intersecting and non-trivial family
F ⊆

[V
k
]
, there holds |F | ≤ |FHM|, if k ≥ 2t + 2; |F | ≤ |FA(t+2)|, if t + 2 ≤ k ≤ 2t + 1. Equality holds if and only if

(i) F = FHM, if k ≥ 2t + 2;
(ii) F = FA(t+2), if t + 2 ≤ k ≤ 2t + 1.

In the next section, we introduce commonly used symbols. Some preliminary results will be given in
Section 3. The proof of the main result is in Section 4.

2. Notation

Let A,B,E,L ≤ V. We have the following notation.
• A + B denote the sum of A and B. In particular, if A ∩ B = 0, we write their sum as A ⊕ B, the direct

sum of A and B.
•LetF be a t-intersecting family of k-spaces and L be an ℓ-space t-intersecting each F ∈ F with minimum

dimension and let

Lt = {H ≤ V : dim(H ∩ L) = t,dim(H ∩ F) ≥ t f or any F ∈ F },
F0 = {F ∈ F : dim(F ∩ L) = t},
F1 = {F ∈ F : dim(F ∩ L) ≥ t + 1},
F (i, t, l, k; H,L) = {F ∈ F : H ∈ Lt and dim(F ∩ L ∩H) = i}.

Then |F | =
∑t

i=0 |F (i, t, ℓ, k; H,L)| = |F0| + |F1|.
• Let i, λ be nonnegative integers and t, ℓ, k be positive integers. Define

f (i, ℓ, k, λ) =
[
t
i

][
ℓ − t
t − i

][
ℓ − t + λ

t − i

][
k − t + 1

1

]ℓ−2t+i+λ[n − ℓ − λ
k − ℓ − λ

]
q2(t−i)2

.

and S(a, ℓ, k, λ) =
∑t

i=a f (i, ℓ, k, λ). Let H ∈ Lt such that dim(H) = ℓ + λ. If H is the vector space with
minimum dimension inLt, then f (i, ℓ, k, λ) is an upper bound of the number of vector spaces that t-intersect
each F ∈ F and exactly i-intersect H ∩ L. Therefore, S(a, ℓ, k, λ) is an upper bound of the number of vector
spaces that t-intersect each F ∈ F and a-intersect H ∩ L. In particular, S(max{0, 2t − ℓ}, ℓ, k, λ) is an upper
bound of |F | under this assumption.
• For any family, the covering number τt(F ) is the minimum dimension of a vector space that t-intersects

all elements of F .
• For any family F ⊆

[V
k
]
, define FM = {F ∈ F : M ≤ F}.
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3. Lemmas

In this paper, we let q be a prime power and δi, j denote the Kronecker delta. To prove Theorem 1.1, we
apply the following lemmas.

Lemma 3.1. Let a, b, c, d be positive integers such that b < a and d < c < a.

(i) If q ≥ 3, then

q(a−b)b
≤

[
a
b

]
≤ 21−δb,0 qb(a−b). (1)

(ii) If d ≤ min{b, a − b}, then[
a
b

]
q(c−d)d

≥

[
c
d

]
q(a−b)b. (2)

(iii) If d ≤ a − b and b ≥ 2, then

qd
− 1

(q − 1)2[a
b
] ≤ q + 1

qb(a−b)−d+3
≤

1
(q − 1)qb(a−b)−d+1

. (3)

Proof. From [9, Lemma 2.1], it can be seen that q(a−b)b
≤

[a
b
]
≤ 2qb(a−b) for q ≥ 3. Observe that

[a
0
]
= 1.

Therefore, we obtain (i). The inequality of (ii) is due to [12, Lemma 2.3].
Now we prove (iii). According to the definition of q-binomial coefficients, it follows that[

a
b

]
=

(qa−b+1
− 1)(qa−b+2

− 1)
(q − 1)(q2 − 1)

b∏
i=3

qa−b+i
− 1

qi − 1
≥

(qa−b+1
− 1)(qa−b+2

− 1)q(a−b)(b−2)

(q − 1)(q2 − 1)
. (4)

Recall that d ≤ a − b. Since (qd
− 1)q2a−2b+3

≤ (qa−b+1
− 1)(qa−b+2

− 1)qd, then by (4) we have

qd
− 1

(q − 1)2[a
b
] ≤ q + 1

qb(a−b)−d+3
≤

1
(q − 1)qb(a−b)−d+1

. (5)

Lemma 3.2. Let n ≥ k + ℓ − t + 1, k ≥ ℓ ≥ t + 2 and ai(ℓ) = q( i
2)[ℓ−t+1

i
][n−t−i

k−t−i
]
. Then[

n − t
k − t

]
− q(k−t)(ℓ−t+1)

[
n − ℓ − 1

k − t

]
=

k−t∑
i=1

(−1)i−1ai(ℓ). (6)

Furthermore,

|FHM| > a1(k) − a2(k) >
(
1 −

1
(q2 − 1)qn−2k+t−1

)
a1(k). (7)

Proof. In [12, Lemma 2.4], the authors prove this Lemma for n ≥ 2k + 1. In fact, using the same method, it
can be proven that this Lemma holds for n ≥ k + ℓ − t + 1.

Lemma 3.3. [12, Lemma 2.9] Let H,T,L be h, t, ℓ-spaces, respectively, such that H ≤ T ≤ L and for m ≥ 2 let

Fm = {M : M ≤ L, H =M ∩ T and dim(M) = m}.

Then |Fm| =
[ ℓ−t

m−h
]
q(t−h)(m−h).
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Lemma 3.4. Let H,F1 be 2k − t, k-spaces, respectively. If dim(H ∩ F1) ≤ k − 1, then the number of vector spaces in[H
k
]

t-intersecting F1 is no more than
[k−t+1

1
][2k−t−1

k−t−1
]
.

Proof. The number of vector spaces in
[H

k
]

t-intersecting F1 increases with dim(H ∩ F1) increases. Thus
we only need to consider the case dim(H ∩ F1) = k − 1. Let F ′ =

{
F ∈

[H
k
]

: dim(F ∩ (F1 ∩H)) ≥ t
}

and

F ′ = {F ∈
[H

k
]

: dim(F ∩ (F1 ∩ H)) = t − 1}. Recall that dim(H) = 2k − t. For each F ∈
[H

k
]
, we have

dim(F)+dim(F1∩H) = dim(F∩(F1∩H))+dim(F+(F1∩H)). Since F+(F1∩H) ≤ H, then dim(F+(F1∩H)) ≤ 2k−t.
It follows that dim(F ∩ (F1 ∩H)) ≥ t − 1. Hence F ′ ⊎ F ′ =

[H
k
]
, where ’⊎’ is known for the disjoint union of

two set. It follows from Lemma 3.3 that |F ′| =
[k−1

t−1
]
q(k−t+1)(k−t). Then we have |F ′| =

[2k−t
k

]
−

[k−1
t−1

]
q(k−t+1)(k−t).

Substituting n = 2k and ℓ = k in (6) gives that[
2k − t
k − t

]
− q(k−t)(k−t+1)

[
k − 1
k − t

]
=

k−t∑
i=1

(−1)i−1q( i
2)
[
k − t + 1

i

][
2k − t − i
k − t − i

]
. (8)

Let ai = q( i
2)[k−t+1

i
][2k−t−i

k−t−i
]
. Then a calculation of q-binomial coefficients shows that

ai

ai+1
=

q( i
2)[k−t+1

i
][2k−t−i

k−t−i
]

q(i+1
2 )[k−t+1

i+1
][2k−t−i−1

k−t−i−1
] = (qi+1

− 1)(q2k−t−i
− 1)

qi(qk−t+1−i − 1)(qk−t−i − 1)
≥

3
4

qt+i
≥ 1. (9)

The identity (8) can be rewritten as[
2k − t
k − t

]
− q(k−t)(k−t+1)

[
k − 1
k − t

]
=

a1 −
∑(k−t−1)/2

j=1 (a2 j − a2 j+1), i f 2 ∤ (k − t),

a1 −
∑(k−t−2)/2

j=1 (a2 j − a2 j+1) − ak−t, i f 2 | (k − t).
(10)

Combining (9) and (10) leads to that |F ′| ≤ a1 =
[k−t+1

1
][2k−t−1

k−t−1
]
. The proof is complete.

Lemma 3.5. Let F be a t-intersecting family and S be an s-subspace of V, where t − 1 ≤ s ≤ k − 1 and L be the
minimum dimensional space t-intersecting each F ∈ F with s < dim(L) = ℓ. Then |FS| ≤

[k−t+1
1

]ℓ−s[n−ℓ
k−ℓ

]
.

Proof. Lemma 3.5 is a spacial case of [12, Remark 2.6].

Lemma 3.6. [2, Lemma 2.8] Let n ≥ 2k + 1 and t ≥ 2. Then |FHM| > |FA(t+2)|, if k ≥ 2t + 2; |FHM| < |FA(t+2)|, if
t + 2 ≤ k ≤ 2t + 1.

Remark 3.7. In [12, (1.1)] and (7), the authors shows that

|FHM| =

[
n − t
k − t

]
−

[
n − k − 1

k − t

]
q(k−t)(k−t+1) +

[
t
1

]
qk−t+1, (11)

|FA(t+2)| =

[
n − t − 2
k − t − 2

]
+

[
t + 2
t + 1

] ([
n − t − 1
k − t − 1

]
−

[
n − t − 2
k − t − 2

])
. (12)

For q ≥ 3, k ≥ t + 2 and t ≥ 2, a calculation of q-binomial coefficients yields that

|FA(t+2)| >

(
1 −

1
qk+1

) [
t + 2

1

][
n − t − 1
k − t − 1

]
≥

242
243

[
t + 2

1

][
n − t − 1
k − t − 1

]
. (13)

It follows from (11) that

|FHM| >

[
n − t
k − t

]
−

[
n − k − 1

k − t

]
q(k−t)(k−t+1).
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Substituting n = 2k + 1 and ℓ = k into (6) yields that[
2k + 1 − t

k − t

]
− q(k−t)(k−t+1)

[
k − 1
t − 1

]
=

k−t∑
i=1

(−1)i−1ai(k) ≥
[
k − t + 1

1

][
2k − t

k − t − 1

]
−

[
k − t + 1

2

][
2k − t − 1
k − t − 2

]
q.

Combining the two equalities above, we can get

|FHM| >

(
1 −

(qk−t
− 1)(qk−t−1

− 1)q
(q2 − 1)(q2k−t − 1)

) [
k − t + 1

1

][
2k − t

k − t − 1

]
≥

(
1 −

1
(q2 − 1)qt

) [
k − t + 1

1

][
2k − t

k − t − 1

]
.

For q ≥ 3, k ≥ t + 2 and t ≥ 2, there holds

|FHM| >
71
72

[
k − t + 1

1

][
2k − t

k − t − 1

]
. (14)

For simplicity, let

|F
∗

HM| =

[
k − t + 1

1

][
n − t − 1
k − t − 1

]
, |F ∗A(t+2)| =

[
t + 2

1

][
n − t − 1
k − t − 1

]
.

By (13) and (14), we will prove that |F | ≤ 0.986 max{|F ∗HM|, |F
∗

A(t+2)|} instead of |F | < max{|FHM|, |FA(t+2)|} in most
cases.

Lemma 3.8. Let t, ℓ, k, a, λ be integers satisfying 4 ≤ t + 2 ≤ ℓ ≤ min{k − λ, k − 1} and a ≥ max{1, 2t + 1 − ℓ} and
q ≥ 3. Then

S(a, ℓ, k, λ)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 8φ(a, ℓ, t, λ)
qk−ℓ+t−1+a2+(ℓ−2t+λ−2)a(q − 1)ℓ−2t+λ+a−1

+
1

q(ℓ−t+λ−1)t(q − 1)ℓ−t+λ−1
. (15)

where S(a, t, ℓ, k) is defined in Section 2 and

φ(a, ℓ, t, λ) =
q2a+ℓ−2t+λ−1(q − 1)

q2a+ℓ−2t+λ−1(q − 1) − 1
. (16)

Proof. Since t − i ≤ ℓ − t ≤ k − t − 1, it follows from Lemma 3.1(ii) that[ℓ−t
t−i

][ 2k−t
k−t−1

] ≤ q(ℓ−2t+i)(t−i)

q(k+1)(k−t−1)
. (17)

By Lemma 3.1(i), we can get[
ℓ − t
t − i

]
=

[
ℓ − t

l − 2t + i

]
≤ 21−δℓ−t,t−i q(ℓ−t)(t−i) and

[
2k + 1 − ℓ − λ

k − ℓ − λ

]
≤ 2q(k+1)(k−ℓ−λ). (18)

Combining (17) and (18), we can obtain

f (i, ℓ, k, λ)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 23−δi,0−δℓ−t,t−i qi(t−i)+(2ℓ−2t+λ)(t−i)+(k−t+1)(ℓ−2t+λ+i−1)+(k+1)(k−ℓ−λ)

q(k+1)(k−t−1)(q − 1)ℓ−2t+λ+i−1
.

Simplifying the right-hand side of the inequality above leads to

f (i, ℓ, k, λ)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 23−δi,0−δℓ−t,t−i

q(k−ℓ)(t−i)+i2+(ℓ−2t+λ−1)i(q − 1)ℓ−2t+λ+i−1
. (19)
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Assume that i ≤ t−1. Since (k−ℓ)(t− i)+ i2+(ℓ−2t+λ−1)i = k−ℓ+t−1+(k−ℓ−1)(t− i−1)+ i2+(ℓ−2t+λ−2)i
and (k − ℓ − 1)(t − i − 1) ≥ 0, it follows that

f (i, ℓ, k, λ)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 23−δi,0−δℓ−t,t−i

qk−ℓ+t−1+i2+(ℓ−2t+λ−2)i(q − 1)ℓ−2t+λ+i−1
. (20)

Recall that a ≥ {1, 2t + 1 − ℓ}. It is easy to see that (a + j)2
≥ a2 + (2a + 1) j for j ≥ 1. Therefore, it can be seen

from the formula for the summations formula of geometric series that∑t−1
i=a f (i, ℓ, k, λ)[k−t+1

1
][ 2k−t

k−t−1
] ≤

8
qk−ℓ+t−1+a2+(ℓ−2t+λ−2)a(q − 1)ℓ−2t+λ+a−1

×
q2a+ℓ−2t+λ−1(q − 1)

q2a+ℓ−2t+λ−1(q − 1) − 1
. (21)

In view of Lemma 3.1 (ii), we see that
[ 2k−t

k−t−1
]
≥

[2k+1−ℓ−λ
k−ℓ−λ

]
q(k+1)(ℓ−t+λ−1) for ℓ + λ ≥ t + 1. Then

f (t, ℓ, k, λ)[k−t+1
1

][n−t−1
k−t−1

] = [k−t+1
1

]ℓ−t+λ−1[2k+1−ℓ−λ
k−ℓ−λ

][ 2k−t
k−t−1

] ≤
1

q(ℓ−t+λ−1)t(q − 1)ℓ−t+λ−1
. (22)

Combining (21) and (22) yields (15). The proof is complete.

Lemma 3.9. Let ℓ be an integer such that t+2 ≤ ℓ ≤ k and L be the ℓ-space with minimum dimension that t-intersects
each F ∈ F . If q ≥ 3 and dim(L ∩ F) ≥ t + 1 for any F ∈ F , then |F | < 2

9 |F
∗

HM|.

Proof. Select a (t+ 1)-space on L. The number of choices is
[ ℓ

t+1
]
. Expand this (t+ 1)-space to ℓ-spaces and by

Lemma 3.5 we see that the number of the spaces (t+ 1)-intersecting L is no more than
[ ℓ

t+1
][k−t+1

1
]ℓ−t−1[2k+1−ℓ

k−ℓ
]
.

By Lemma 3.1 (i) and (ii), we can get
[ ℓ

t+1
]
≤ 2q(ℓ−t−1)(t+1) and

[2k+1−ℓ
k−ℓ

]
q(k+1)(k−t−1)

≤
[ 2k−t

k−t−1
]
q(k+1)(k−ℓ), respectively.

A calculation of q-binomial coefficients shows that[ ℓ
t+1

][k−t+1
1

]ℓ−t−1[2k+1−ℓ
k−ℓ

][k−t+1
1

][ 2k−t
k−t−1

] ≤
2q(ℓ−t−1)(t+1)+(k−t+1)(ℓ−t−2)

(q − 1)ℓ−t−2q(k+1)(ℓ−t−1)
=

2
qk−ℓ+2(q − 1)ℓ−t−2

≤
2
9
. (23)

The proof is complete.

4. Proof of Theorem 1.1

Proof. In this section, we always assume that q ≥ 3. Let V be a (2k + 1)-dimensional space and F ∈
[V

k
]

be
a maximum-sized t-intersecting non-trivial family. We divide the proof into three cases according to the
value of τt(F ). Since the ratio of |F ∗HM| to |FHM| and the ratio of |F ∗A(t+2)| to |FA(t+2)| are easy to estimate, then
the trick of the proof is to compare the upper bound of |F |with max{|F ∗HM|, |F

∗

A(t+2)|}.

4.1. τt(F ) = t + 1

In this subsection, we first estimate upper bounds of |F |and then compare them with max{|F ∗HM|, |F
∗

A(t+2)|}.

Proposition 4.1. [2, Lemma 3.7] Assume that τt(F ) = t + 1 and define T to be the family of (t + 1)-subspaces of V
that t-intersect all subspaces in F . One of the three possibilities holds:

(i) |T | = 1 and

|F | ≤

[
n − t − 1
k − t − 1

]
+

[
k − t

1

][
t + 1

1

][
k − t + 1

1

][
n − t − 2
k − t − 2

]
q.
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(ii) |T | > 1, τ(T ) = t and there is an ℓ-subspace W (t + 2 ≤ ℓ ≤ k + 1), and a t-space E, such that T = {M : E ≤
M ≤W,dimM = t + 1}. In this case,

|F | ≤

[
ℓ − t

1

][
n − t − 1
k − t − 1

]
+

[
t
1

][
n − ℓ

k − ℓ + 1

]
qk−ℓ+1 +

[
k − ℓ + 1

1

][
k − t + 1

1

][
n − t − 2
k − t − 2

]
qℓ−t. (24)

(iii) F = FA(t+2). In this case,

|F | =

[
n − t − 2
k − t − 2

]
+

[
t + 2
t + 1

] ([
n − t − 1
k − t − 1

]
−

[
n − t − 2
k − t − 2

])
.

According to Proposition 4.1, we only need compare the upper bounds of the first two cases with
max{|F ∗HM|, |F

∗

A(t+2)|}. Record the upper bounds of the first two cases in Proposition 4.1 as |F (i)
upper| and |F (ii)

upper|,

respectively. Recall that n = 2k + 1. By Lemma 3.1(ii), we have
[2k−t−1

k−t−2
]
qk+1
≤

[ 2k−t
k−t−1

]
. Then

|F
(i)

upper|[k−t+1
1

][n−t−1
k−t−1

] ≤ q − 1
qk−t+1 − 1

+
(qk−t

− 1)(qt+1
− 1)q

qk+1(q − 1)2
≤

q − 1
qk−t+1 − 1

+
q

(q − 1)2 .

Recall that q ≥ 3 and k ≥ t + 2. It is easy to see that the right-hand side of the inequality above achieves its
maximum value when q = 3 and k = t + 2. Hence |F (i)

upper| ≤ 0.827|F ∗HM|.
Now we consider |F (ii)

upper|. Let ℓ be defined as in Proposition 4.1 (ii). In this case, if ℓ = k+1, thenF = FHM

by [2, Lemma 3.4]. Assume that t + 2 ≤ ℓ ≤ k. It follows from Lemma 3.1(ii) that
[2k+1−ℓ

k−ℓ+1
]
q(k+1)(k−t−1)

≤[ 2k−t
k−t−1

]
qk(k−ℓ+1). Then

|F
(ii)

upper|

max
{[t+2

1
]
,
[k−t+1

1
]} [n−t−1

k−t−1
] ≤ qℓ−t

− 1
qk−t+1 − 1

+
q(k+1)(k−ℓ+1)(qt

− 1)
q(k+1)(k−t−1)(qt+2 − 1)

+
(qk−ℓ+1

− 1)qℓ−t

qk+1(q − 1)

≤
1

qk−ℓ+1
+

1
q(k+1)(ℓ−t−2)+2

+
1

qt(q − 1)
.

A simple argument shows that the right-hand side of the inequality above achieves its maximum value at
(k, ℓ, t, q) = (4, 4, 2, 3). It follows that |F (ii)

upper| ≤ 0.5 max{|F ∗HM|, |F
∗

A(t+2)|}.

4.2. t + 2 ≤ τt(F ) = ℓ ≤ k − 1
In this subsection, we assume that t + 2 ≤ τt(F ) = ℓ ≤ k − 1 and L is the vector space with minimum

dimension that t-intersects each F ∈ F . Recall the definition of Lt. We categorize the discussion by the
dimension of the vector space in Lt. By Lemma 3.9, |F | < 2

9 |F
∗

HM| if dim(F ∩ L) ≥ t + 1 for each F ∈ F .
In the following we may assume that there exists an F ∈ F such that dim(F ∩ L) = t. Hence Lt , ∅, if
|F | > 0.986 max{|F ∗HM|, |F

∗

A(t+2)|}|.
Let H ∈ Lt. Our proof process is mainly divided into two parts. Firstly, we assume dim(H) = t and prove

|F | ≤ 0.986 max{|F ∗HM|, |F
∗

A(t+2)|}. Secondly, if |F | > 0.986 max{|F ∗HM|, |F
∗

A(t+2)|}, then we have dim(H) ≥ t + 1.
From this we can get |F | ≤ 0.986 max{|F ∗HM|, |F

∗

A(t+2)|}, which is a contradiction.

Proposition 4.2. Let H ∈ Lt and dim(H) = ℓ. Then |F | ≤ 0.986 max{|F ∗HM|, |F
∗

A(t+2)|}.

Proof. It follows from [12, Lemma 2.12] that |F | < S(max{0, 2t − ℓ}, ℓ, k, 0). A calculation of q-binomial
coefficients yields that

f (t − 2, t + 2, k, 0)[t+2
1
][n−t−1

k−t−1
] =

[t
2
][2k−t−1

k−t−2
]
q8[t+2

1
][ 2k−t

k−t−1
] = (qt

− 1)(qt−1
− 1)(qk−t−1

− 1)q8

(q2k−t − 1)(q2 − 1)(qt+2 − 1)
, (25)

f (t − 1, t + 2, k, 0)[k−t+1
1

][n−t−1
k−t−1

] =

[t
1
][2

1
]2[2k−t−1

k−t−2
]
q2[ 2k−t

k−t−1
] =

(qt
− 1)(q + 1)2(qk−t−1

− 1)q2

(q2k−t − 1)(q − 1)
. (26)
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The following proof process needs to be discussed in detail.
Case 1. ℓ ≥ 2t + 1. Substituting a = 2, λ = 0 into (16), we have φ(2, ℓ, k, 0) ≤ 162

161 . It follows from (15) that

S(2, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 8
qk+ℓ−3t−1(q − 1)ℓ−2t+1

×
162
161
+

1
q(ℓ−t−1)t(q − 1)ℓ−t−1

. (27)

The right-hand side of (27) obtains its maximum value when (k, ℓ, t, q) = (6, 5, 2, 3). Hence

S(2, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 0.028. (28)

Substituting i = 0, λ = 0 and i = 1, λ = 0 into (20) respectively yields that

f (0, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 4
qk−ℓ+t−1(q − 1)ℓ−2t−1

≤
4
9
, (29)

f (1, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 8
qk−t−2(q − 1)ℓ−2t

≤
4
9
. (30)

Combining the (28), (29) and (30), we see that S(0, ℓ, k, λ) ≤ 0.917|F ∗HM|.
Case 2. ℓ = t + 2. If t = 2 and ℓ = 4, then a simple argument shows that the right-hand sides of both

inequalities (25) and (26) reach their maximums when (q, k) = (3, 5), respectively. That is

f (0, 4, k, 0)[4
1
][2k−2

k−3
] ≤ (q − 1)(q2

− 1)q8

(q4 − 1)(q8 − 1)
≤ 0.201, (31)

f (1, 4, k, 0)[k−1
1
][2k−2

k−3
] ≤ (q2

− 1)4q2

(q8 − 1)(q − 1)3 ≤ 0.703. (32)

According to (22), it follows that

f (2, 4, k, 0)[k−1
1
][2k−2

k−3
] ≤ 1

q2(q − 1)
≤ 0.056. (33)

Combining (31), (32) and (33), we see that |F | ≤ 0.96 max{|F ∗A(t+2)|, |F
∗

HM|}.

If t ≥ 3, then multiplying both sides of (26) by
[k−t+1

1
]
/
[t+2

1
]

at the same time yields that

f (t − 1, t + 2, 0)[t+2
1
][ 2k−t

k−t−1
] =

(qt
− 1)(q + 1)2(qk−t+1

− 1)(qk−t−1
− 1)q2

(q2k−t − 1)(qt+2 − 1)(q − 1)
≤

(q + 1)2

qt(q − 1)
≤

8
27
. (34)

Observe that the right-side hand of (25) reach its maximum when (k, q) = (t+3, 3). Substituting (k, q) = (t+3, 3)
into (25) and (ℓ, q) = (t + 2, 3) into (22) yields that

f (t − 2, t + 2, t + 3, 0)[t+2
1
][t+6

2
] ≤

(qt
− 1)(qt−1

− 1)q8

(qt+6 − 1)(qt+2 − 1)
≤

1
3
, (35)

f (t, t + 2, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 1
qt(q − 1)

≤
1
54
. (36)

Combining (34), (35) and (36) yields that |F | ≤ 0.649 max{|F ∗HM|, |F
∗

A(t+2)|}.
Case 3. t + 3 ≤ ℓ ≤ 2t. It is clear that t ≥ 3. Since t + 3 ≤ ℓ ≤ 2t, then 2t + 2 − ℓ ≥ 2. Therefore

φ(2t + 2 − ℓ, ℓ, t, 0) ≤ 54
53 by (16). It follows from (15) that

S(2t + 2 − ℓ, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤
8

qt(q − 1)
×

54
53
+

1
q2t(q − 1)2 ≤ 0.152. (37)
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By Lemma 3.1(i) and (ii), we can obtain
[ t

2t+ℓ−l
]
≤ 2q(ℓ−t−1)(2t+1−ℓ) and

[2k+1−ℓ
k−ℓ

]
q(k+1)(ℓ−t−1)

≤
[ 2k−t

k−t−1
]
, respectively.

A calculation of q-binomial coefficients shows that

f (2t + 1 − ℓ, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] =

[ t
2t+1−ℓ

][ ℓ−t
ℓ−t−1

]2[k−t+1
1

][2k+1−ℓ
k−ℓ

]
q2(ℓ−t−1)2[k−t+1

1
][ 2k−t

k−t−1
] ≤

2q(ℓ−t−1)(2t+1−ℓ)+2ℓ−2t+2(ℓ−t−1)2

(q − 1)2q(k+1)(ℓ−t−1)
.

Observe that k ≥ ℓ + 1 ≥ t + 4. Simplification of the right-hand side of the inequality above gives

f (2t + 1 − ℓ, ℓ, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤
2

(q − 1)2q(k−ℓ)(ℓ−t−1)−2
≤

1
2
. (38)

Again by Lemma 3.1(i), we can get
[ t

2t−ℓ
]
≤ 2q(ℓ−t)(2t−ℓ) and

[t+2
1
]
≥ qt+1. Then

f (2t − ℓ, ℓ, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤

2q(ℓ−t)(2t−ℓ)+2(ℓ−t)2

q(k+1)(ℓ−t−1)+t+1
=

2
q(k−ℓ)(ℓ−t−1)

≤
2
9
. (39)

Combining (37), (38) and (39), we see that |F | ≤ S(2t − ℓ, ℓ, k, 0) ≤ 0.875 max{|F ∗A(t+2)|, |F
∗

HM|}.

Let H ∈ Lt and dim(H) = ℓ + λ. If λ = 0, then |F | ≤ 0.986 max{|F ∗HM|, |F
∗

A(t+2)|} by Proposition 4.2.
Recall that |FA(t+2)| > 0.995|F ∗A(t+2)| and |FHM| > 0.986|F ∗HM| by (13) and (14), respectively. That is, |F | <
max{|FHM|, |FA(t+2)|}. If |F | ≥ max{|FHM|, |FA(t+2)|}, then dim(H) ≥ ℓ + 1. In the following, we may assume
that λ ≥ 1. Let a ≥ max{1, 2t + 1 − ℓ}. Then φ(a, ℓ, k, λ) ≤ 18

17 by (16). It follows from (15) that

S(max{1, 2t + 1 − ℓ}, ℓ, k, λ)[k−t+1
1

][ 2k−t
k−t−1

] ≤
8

qk−ℓ+t−1(q − 1)
×

18
17
+

1
q2t(q − 1)2 ≤ 0.474. (40)

If 2t + 1 ≤ ℓ ≤ k − 1, substituting i = 0 into (19) we can get

f (0, ℓ, k, λ)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 4
(q − 1)ℓ−2t+λ−1q(k−ℓ)t

≤
2
9
. (41)

If t+ 2 ≤ ℓ ≤ 2t and t ≥ 3, then qt+2
− 1 ≥ 242

243 qt+2. Substituting i = 2t− ℓ into (19) and multiplying
[k−t+1

1
]
/
[t+2

1
]

on both sides of (19) we can get

f (2t − ℓ, ℓ, k, λ)[t+2
1
][ 2k−t

k−t−1
] ≤

486
121(q − 1)λ−1q(k−ℓ)(ℓ−t)+2t+1−k

=
486

121(q − 1)λ−1q(k−ℓ−1)(ℓ−t−1)+t
≤

18
121
. (42)

If t = 2, then ℓ = 4 and f (0, 4, k, λ) =
[2+λ

2
][k−1

1
]λ[2k−3−λ

k−4−λ
]
q8. By Lemma 3.1 (ii), we have

[2k−3−λ
k−4−λ

]
q(k+1)(λ+1)

≤
[2k−2

k−3
]
.

It follows that

f (0, 4, k, λ)[k−1
1
][2k−2

k−3
] ≤ q2λ+11+(k−1)(λ−1)

(q − 1)λ(q2 − 1)q(k+1)(λ+1)
=

1
(q − 1)λ(q2 − 1)q2k−11

≤
q

(q − 1)(q2 − 1)
≤

3
16
. (43)

Combining (40), (41) and (43) yields that

S(max{0, 2t − ℓ}, ℓ, k, λ) ≤


0.697|F ∗HM|, i f ℓ ≥ 2t + 1,
0.623 max{|F ∗A(t+2)|, |F

∗

HM|}, i f t + 2 ≤ ℓ ≤ 2t and t ≥ 3,
0.662|F ∗HM|, i f (ℓ, t) = (4, 2).

(44)

It follows from [12, Lemma 2.12] that |F | ≤ S(max{0, 2t − ℓ}, ℓ, k, λ) + |F1|. According to the definition of F1,
any F ∈ F1 must contain a (t + 1)-subspace E on L and the number of choices for E is

[ ℓ
t+1

]
. Since τt(F) = ℓ,

then by Lemma 3.5 we have |F1| ≤
[ ℓ

t+1
][k−t+1

1
]ℓ−t−1[2k+1−ℓ

k−ℓ
]
. It follows from Lemma 3.1(i) and (ii) that

|F1|[k−t+1
1

][ 2k−t
k−t−1

] ≤ 2q(ℓ−t−1)(t+1)+(k−t+1)(ℓ−t−2)

q(k+1)(ℓ−t−1)(q − 1)ℓ−t−2
≤

2
qk−ℓ+2

≤
2

27
. (45)

Combining (44) and (45) yields that |F | ≤ S(max{0, 2t − ℓ}, ℓ, k, λ) + |F1| ≤ 0.772 max{|F ∗A(t+2)|, |F
∗

HM|}.
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4.3. τt(F ) = k > t + 1
In this subsection, we assume that τt(F ) = k > t + 1. By Lemma 3.9, |F | < 2

9 |F
∗

HM| if dim(F ∩ L) ≥ t + 1
for each F ∈ F . In the following we may assume that there exists an L1,L2 ∈ F such that dim(L1 ∩ L2) = t.

In this section, we still use the method of comparing the upper bound of |F | with max{|F ∗HM|, |F
∗

A(t+2)|}.
However, for some special cases, S(max{0, 2t−l}, k, k, 0) is ineffective for this method. Therefore, we introduce
a third vector space beyond L1,L2 to prove |F | ≤ 0.986 max{|F ∗HM|, |F

∗

A(t+2)|} by intersection.
Observe that

f (i, k, k, 0)

max
{[t+2

1
]
,
[k−t+1

1
]} [ 2k−t

k−t−1
] = [k−t

t−i
][ 2k−t

k−t−1
] × [

t
i

][
k − t
t − i

]
×

[
k − t + 1

1

]k−2t+i

q2(t−i)2
. (46)

Estimating the first term of the right-hand side of (46) by Lemma 3.1 (ii) and estimating the second term of
the right-hand side of (46) by Lemma 3.1 (i) yields that

f (i, k, k, 0)

max
{[t+2

1
]
,
[k−t+1

1
]} [ 2k−t

k−t−1
] ≤ 22−δi,0−δk−t,t−i qi(t−i)+(2k−2t)(t−i)+(k−t+1)(k−2t+i−1)

q(k+1)(k−t−1)+max{0,2t+1−k}(q − 1)k−2t+i−1
.

After simplification, we can get

f (i, k, k, 0)

max
{[t+2

1
]
,
[k−t+1

1
]} [ 2k−t

k−t−1
] ≤ 22−δi,0−δk−t,t−i

qi2+(k−2t−1)i+max{0,2t+1−k}(q − 1)k−2t+i−1
. (47)

If i ≥ 1 and k − t > t − i for i ≥ 1, then δi,0 = δk−t,t−i = 0. It follows that

f (i, k, k, 0)

max
{[t+2

1
]
,
[k−t+1

1
]} [ 2k−t

k−t−1
] ≤ 4

qi2+(k−2t−1)i+max{0,2t+1−k}(q − 1)k−2t+i−1
. (48)

Observe that (a + j)2
− a2 = 2aj + j2 ≥ (2a + 1) j. Then

S(a, k, k, 0)

max
{[t+2

1
]
,
[k−t+1

1
]} [ 2k−t

k−t−1
] ≤ 4

qa2+(k−2t−1)a+max{0,2t+1−k}(q − 1)k−2t+a−1
×

∑
j≥0

1
q(k−2t+2a) j(q − 1) j

. (49)

Applying the formula for the summations formula of geometric series to the second term on the right-hand
side of (49) yields that

S(a, k, k, 0)

max
{[t+2

1
]
,
[k−t+1

1
]} [ 2k−t

k−t−1
] ≤ 4

qa2+(k−2t−1)a+max{0,2t+1−k}(q − 1)k−2t+a−1
×

q(k−2t+2a)(q − 1)
q(k−2t+2a)(q − 1) − 1

. (50)

We divide our proof into four cases.
Case 1. k ≥ 2t + 2. If (k, q) = (2t + 2, 3), then by Lemma 3.1 (iii) we see that

f (0, k, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] = qt+3
− 1

(q − 1)(q2 − 1)
[ 2k−t

k−t−1
] × (qt+1

− 1)2(qt+2
− 1)2q2t2

(q − 1)2(q2 − 1)

≤
q3

(q − 1)2(q2 − 1)
=

27
32
. (51)

If (k, q) , (2t + 2, 3), by (47), there holds

f (0, k, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 2
(q − 1)k−2t−1

≤


2
3 , i f q ≥ 4,

1
2 i f k ≥ 2t + 3.

(52)
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It is not difficult to see that the right-hand side of (50) decreases as k increases. Substituting a = 1 and
k = 2t + 2 in (50) yields that

S(1, k, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 1
9
×

q4(q − 1)
q4(q − 1) − 1

≤
18

161
. (53)

Combining (51) and (53) yields that |F | ≤ f (0, k, k, 0)+S(1, k, k, 0) ≤ 0.956|F ∗HM|, if (k, q) = (2t+2, 3); Combining
(52) and (53) yields that |F | ≤ f (0, k, k, 0) + S(1, k, k, 0) ≤ 0.779|F ∗HM|, if (k, q) , (2t + 2, 3).

Case 2. t + 2 ≤ k ≤ 2t − 1. It is clear that t ≥ 3. It follows from Lemma 3.1(ii) that
[ t

2t−k
]
q(k+1)(k−t−1)

≤[ 2k−t
k−t−1

]
q(2t−k)(k−t). Then

f (2t − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] =

[ t
2t−k

]
q2(k−t)2[t+2

1
][ 2k−t

k−t−1
] ≤ q(k−t)(2t−k)+2(k−t)2

(q − 1)
(qt+2 − 1)q(k+1)(k−t−1)

= 1 −
qt+1
− 1

qt+2 − 1
. (54)

Since t ≥ 3 and q ≥ 3, then qt+1
− 1 ≥ 80

81 qt+1. In view of (54), we have

f (2t − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤ 1 −

80
81

1
q
. (55)

Again by Lemma 3.1(ii), we can obtain
[ t

2t+1−k
]
q(k+1)(k−t−1)

≤
[ 2k−t

k−t−1
]
q(2t+1−k)(k−t−1). Then

f (2t + 1 − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤

q(k−t−1)(2t+1−k)+2(k−t−1)2+2k−2t

(q − 1)2q(k+1)(k−t−1)+2t+1−k
=

1
q2t−1−k(q − 1)2

. (56)

According to k ≤ 2t − 1 and q ≥ 3, it follows from (56) that

f (2t + 1 − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤

1
q2t−1−k(q − 1)2

≤
9
4

1
q2 . (57)

Substituting a = 2t + 2 − k in (50) yields that

S(2t + 2 − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤

4q2t+4−k(q − 1)
(q − 1)q4t+3−2k(q2t+4−k(q − 1) − 1)

=
4

q2t−1−k(q2t+4−k(q − 1) − 1)
. (58)

Since k ≤ 2t − 1 and q ≥ 3, then q2t−1−k(q2t+4−k(q − 1) − 1) ≥ q6
− q5
− 1 ≥ 4q4. That is

S(2t + 2 − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤

1
q4 . (59)

Combining (55), (57) and (59), we see that

S(2t − k, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤ 1 −

80
81

1
q
+

9
4

1
q2 +

1
q4 = 1 −

1
q4

(80
81

q3
−

9
4

q2
− 1

)
≤ 1 −

1
q4 ≤ 1 −

1
qk+1
.

Hence |F | < S(2t − k, k, k, 0) ≤
(
1 − q−k−1

)
|F
∗

A(t+2)| ≤ |FA(t+2)| by (13).
Case 3. k = 2t. Substituting a = 2 and k = 2t in (50) yields that

S(2, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤ 4

q3(q − 1)
×

q4(q − 1)
q4(q − 1) − 1

≤
1
q2 . (60)
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By Lemma 3.1(i), it can be seen that
[ 2k−t

k−t−1
]
≥ q(k+1)(k−t−1). Then

f (0, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤ q2t2[t+2

1
][ 2k−t

k−t−1
] ≤ (q − 1)qt+1

qt+2 − 1
= 1 −

qt+1
− 1

qt+2 − 1
≤ 1 −

1
2q
. (61)

If |F (1, t, k, k; L1,L2)| = 0, then

|F |[t+2
1
][ 2k−t

k−t−1
] ≤ f (0, k, k, 0) + S(2, k, k, 0)[t+2

1
][ 2k−t

k−t−1
] ≤ 1 −

1
2q
+

1
q2 ≤ 1 −

1
q3 ≤ 1 −

1
qk+1
,

which implies |F | < |FA(t+2)|. Since k = 2t, then F (0, t, k, k; L1,L2) ⊆ L1 + L2. If |F (1, t, k, k; L1,L2)| > 0 and
F (1, t, k, k; L1,L2) ⊆

[L1+L2
k

]
, then |F (0, t, k, k; L1,L2)| + |F (1, t, k, k; L1,L2)| ≤

[2k−t
k

]
. Observe that[2k−t

k
][t+2

1
][ 2k−t

k−t−1
] = (q − 1)(qk+1

− 1)
(qt+2 − 1)(qk−t − 1)

=
qk+2
− qk+1

− q + 1
qk+2 − qt+2 − qk−t + 1

. (62)

Since q ≥ 3 and t ≥ 2, then qk+1
− qt+2

− qk−t + q ≥ 1
2 qk+1. It follows that[2k−t

k
][t+2

1
][ 2k−t

k−t−1
] = 1 −

qk+1
− qt+2

− qk−t + q
qk+2 − qt+2 − qk−t + 1

≤ 1 −
1
2 qk+1

qk+2
≤ 1 −

1
2q
. (63)

Combining (60) and (63) yields that |F | ≤
(
1 − 1

2q +
1
q2

)
|F
∗

A(t+2)| < (1 − q−k−1)|F ∗A(t+2)| ≤ |FA(t+2)|. If there
exists an F1 ∈ F (1, t, k, k; L1,L2) such that F1 ≰ L1 + L2, then we re-estimate |F (0, t, k, k; L1,L2)|. Recall that
F (0, t, k, k; L1,L2) ⊆

[L1+L2
k

]
and dim(F1 ∩ (L1 + L2)) ≤ k − 1. By Lemma 3.4, the number of vector spaces in[L1+L2

k
]

t-intersecting F1 ∩ (L1 + L2) is no more than
[k−t+1

1
][2k−t−1

k−t−1
]
. Then

|F (0, t, k, k; L1,L2)|[t+2
1
][ 2k−t

k−t−1
] ≤

[k−t+1
1

][2k−t−1
k−t−1

][t+2
1
][ 2k−t

k−t−1
] = (qt+1

− 1)(q2t+1
− 1)

(qt+2 − 1)(q3t − 1)
≤

1
qt . (64)

By (56), we can get

f (1, k, k, 0)[t+2
1
][ 2k−t

k−t−1
] ≤ q

(q − 1)2 ≤
3
4
. (65)

Combining (60), (64) and (65), we see that |F | < |F (0, t, k, k; L1,L2)| + f (1, k, k, 0) + S(2, k, k, 0) ≤ 0.973|F ∗A(t+2)|.

Case 4. The case k = 2t + 1. Firstly, assume that F ⊆
[L1+L2

k
]
. Then |F | ≤

[2k−t
k

]
. By (63) and (13), we see

that
[2k−t

k
]
≤

(
1 − 1

2q

)
|F
∗

A(t+2)| < |FA(t+2)|.

Secondly, assume that F (0, t, k, k; L1,L2) ⊆
[L1+L2

k
]

and ∪t
i=1F (i, t, k, k; L1,L2) ⊈

[L1+L2
k

]
. Then there exists

an F2 ∈ ∪
t
i=1F (i, t, k, k; L1,L2) such that dim(F2 ∩ (L1 + L2)) ≤ k − 1. It is clear that |F (0, t, k, k; L1,L2)| is less

than the number of the vector spaces t-intersecting F2 in
[L1+L2

k
]
. Then |F (0, t, k, k; L1,L2)| <

[k−t+1
1

][2k−t−1
k−t−1

]
by

Lemma 3.4. It follows that

|F (0, t, k, k; L1,L2)|[t+2
1
][ 2k−t

k−t−1
] ≤

[k−t+1
1

][2k−t−1
k−t−1

][t+2
1
][ 2k−t

k−t−1
] = q2t+2

− 1
q3t+2 − 1

≤
1
qt , (66)

Substituting a = 2 and k = 2t + 1 in (50) yields that

S(2, k, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ 4
q4(q − 1)2 ×

q5(q − 1)
q5(q − 1) − 1

≤
6

485
. (67)
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By Lemma 3.1(iii), we can get

f (1, k, k, 0)[k−t+1
1

][ 2k−t
k−t−1

] ≤ qt+2
− 1

(q − 1)(q2 − 1)
[ 2k−t

k−t−1
] × (qt

− 1)3(qt+1
− 1)2q2(t−1)2

(q − 1)3(q2 − 1)
≤

q3

(q − 1)3(q2 − 1)
≤

27
64
. (68)

Combining (66), (67) and (68) yields |F | ≤ |F (0, t, k, k; L1,L2)| + f (1, k, k, 0) + S(2, k, k, 0) ≤ 0.546|F ∗A(t+2)|.

Finally, assume that F (0, t, k, k; L1,L2) ⊈
[L1+L2

k
]
. Then there exists an F3 ∈ F (0, t, k, k; L1,L2) such that

F3 <
[L1+L2

k
]
. Let E1 = F3 ∩ L1 and E2 = F3 ∩ L2. We divide the vector spaces in F (0, t, k, k; L1,L2) into three

classes as follows:

F
′ = {F ∈ F (0, t, k, k; L1,L1) : F ≤ L1 + L2} ,

F
′′ = {F ∈ F (0, t, k, k; L1,L2) : F ≰ L1 + L2 and dim(F ∩ E1) + dim(F ∩ E2) ≥ 1} ,
F
′′′ = {F ∈ F (0, t, k, k; L1,L2) : F ≰ L1 + L2 and dim(F ∩ E1) + dim(F ∩ E2) = 0} .

Recall that dim(F3∩(L1+L2)) = 2t and dim(L1+L2) = 2k−t. It follows from Lemma 3.4 that |F ′| ≤
[k−t+1

1
][2k−t−1

k−t−1
]
.

By (66), we have

|F
′
|[t+2

1
][ 2k−t

k−t−1
] ≤ 1

qt . (69)

If dim(F ∩ E1) + dim(F ∩ E2) ≥ 1, then select a 1-dimensional vector space A in E1 or E2. The number of
choices is 2

[t
1
]
. Without loss of generality, it is assumed that A ≤ E1. Let E = L1∩L2 where dim(E) = t. Select

a t-dimensional vector space containing A outside of E on L1 and a t-dimensional vector space outside of
E on L2. The numbers of choices are

[k−t−1
t−1

]
qt(t−1) and

[k−t
t
]
qt2

by Lemma 3.3, respectively. Now we have
selected a 2t-dimensional vector space. Since τt(F ) = k, then there exists a k-dimensional space in F that is
disjoint with this 2t-dimensional space, and by Lemma 3.5 we can obtain

|F
′′
| ≤ 2

[
t
1

][
k − t − 1

t − 1

][
k − t

t

][
k − t + 1

1

]
q2t2
−t. (70)

With the use of Lemma 3.1(iii), we can obtain

|F
′′
|[t+2

1
][ 2k−t

k−t−1
] ≤ qt+1

− 1

(q − 1)2[ 2k−t
k−t−1

] × 2(qt
− 1)2q2t2

−t

q − 1
≤

2(q + 1)
(q − 1)q2 . (71)

Assume that dim(F ∩ E1) + dim(F ∩ E2) = 0. Since dim(F ∩ F3) ≥ t and dim(F3 ∩ (L1 + L2)) = 2t, then
dim(F ∩ (F3 ∩ (L1 + L2))) ≥ t − 1. That is, F intersects F3 ∩ (L1 + L2) outside E1 and E2 at least (t − 1)-
dimensional vector space. Observe that dim((F ∩ L1) ∩ (F ∩ L2)) = 0. Then F ∩ (L1 + L2) = ((F ∩ L1) ⊕
(F ∩ L2)). Therefore, there is a unique decomposition of the basis vectors on F ∩ (F3 ∩ (L1 + L2)). Let
E = ⟨e1, e2, . . . , et⟩ and select a (t − 1)-dimensional subspace T on F ∩ (F3 ∩ (L1 + L2)). Then T can be
written as T = ⟨e′1,1 + e′2,1, e

′

1,2 + e′2,2, . . . , e
′

1,t−1 + e′2,t−1⟩, where ⟨e′i,1, e
′

i,2, . . . , e
′

i,t−1⟩ ≤ Ei for i ∈ {1, 2}. We now
consider the number of choices of T. Select a (t − 1)-dimensional space on F ∩ L1, which can be written as
T1 = ⟨e′1,1 +

∑t
i=1 λ1,iei, e′1,2 +

∑t
i=1 λ2,iei, . . . , e′1,t−1 +

∑t
i=1 λt−1,iei⟩, where 0 ≤ λ j,i ≤ q − 1 and

∑t
i=1 λ

2
j,i , 0 for

j ∈ {1, 2, . . . t − 1}. Let T′1 = ⟨e
′

1,1, e
′

1,2, . . . , e
′

1,t−1⟩. Then dim(T′1) = t − 1, otherwise dim(T1 ∩ E) > 0. Hence the
number of the choice of T′1 is

[ t
t−1

]
. For a fixed j, the number of the choices of e1, j +

∑t
i=1 λ j,iei is qt

− 1. If t ≥ 3,
then we have

∑t
i=1 λ j1,iei ,

∑t
i=1 λ j2,iei for different j1, j2 ∈ {1, 2, . . . t−1}. Otherwise dim(T1∩E1) ≥ 1. A simple

counting shows that the number of choices of T1 is no more than
[ t

t−1
]
(qt
− 1)t−1. Since T is decomposed in a

unique way, then we have to select T2 = ⟨e′2,1+
∑t

i=1(q−λ1,i)ei, e′2,2+
∑t

i=1(q−λ2,i)ei, . . . , e′2,t−1+
∑t

i=1(q−λt−1,i)ei⟩

on F ∩ L2. We first select a (t − 1)-dimensional subspace from E2, named T′2. The number of choices of T′2 is[ t
t−1

]
. Then we select (t− 1) vectors from T′2 one by one and name them e′2,1, e

′

2,2, . . . , e
′

2,t−1, respectively. Since
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T′2 has
[t−1

1
]

vectors, then the number of the choices of e′2,1, e
′

2,2, . . . , e
′

2,t−1 is no more than
[t−1

1
]t−1

. Therefore

the number of choices of T2 is no more than
[ t

t−1
][t−1

1
]t−1

. Now we also need to select two 1-dimensional
vector spaces outside of T1,E1,E on L1 and outside of T2,E2,E on L2, respectively. Since we have selected
(t − 1)-dimensional vector spaces in T1 + E and T2 + E, respectively, then the 1-dimensional spaces selected
have to be outside of T1+E and T2+E. Otherwise dim(F∩E) ≥ 1, according to the dimension sum formula.
Recall that k = 2t + 1 and dim(T1 + E) = dim(T2 + E) = 2t − 1. Then the numbers of choices of these two
1-spaces are both no more than

[2
1
]
qt by Lemma 3.3. Now we have selected 2t-dimensional vector space.

Since τt(F ) = k = 2t + 1, it follows from Lemma 3.5 that

|F
′′′
| ≤

[
2
1

]2[ t
t − 1

]2[t − 1
1

]t−1[k − t + 1
1

]
(qt
− 1)t−1q2t. (72)

By the definition of q-binomial coefficient and (72), we can get

|F
′′′
|[t+2

1
][ 2k−t

k−t−1
] ≤ qt

− 1

(q − 1)2[3t+2
t

] × (q + 1)2(qt
− 1)t(qt−1

− 1)t−1q2t

(q − 1)t−1 . (73)

Applying Lemma 3.1(iii) to the first term of the right-hand side of of inequality (73) yields that

|F
′′′
|[t+2

1
][ 2k−t

k−t−1
] ≤ (q + 1)3(qt

− 1)t(qt−1
− 1)t−1q3t

(q − 1)t−1q2t2+2t+3
≤

(q + 1)3

(q − 1)t−1qt+2 . (74)

By (74), we see that

|F
′′′
|[t+2

1
][ 2k−t

k−t−1
] ≤


16
243 , i f t ≥ 3,

54
625 , i f t = 2, q ≥ 5.

(75)

Combining (69),(71) and (75) yields that

|F (0, t, k, k; L1,L2)| = |F ′| + |F ′′| + |F ′′′| ≤


0.548|F ∗A(t+2)|, i f t ≥ 3,

0.247|F ∗A(t+2)|, i f t = 2 and q ≥ 5.
(76)

Combining (67), (68) and (76) yields that |F | ≤ |F (0, t, k, k; L1,L2)|+ f (1, k, k, 0)+S(2, k, k, 0) ≤ 0.983|F ∗A(t+2)| for
(t, q) < {(2, 3), (2, 4)}. Assume that (t, q) ∈ {(2, 3), (2, 4)}. By the definition of f (1, k, k, 0), (70) and (72), we list
the values of f (1, k, k, 0) and |F ∗A(t+2)|, as well as the upper bound values of |F ′′| and |F ′′′| in the following
table.

(q, t, k) f (1, 5, 5, 0) |F
′′
| |F

′′′
| |F

∗

A(t+2)|

(3, 2, 5) 9734400 12130560 6635520 35850400
(4, 2, 5) 254898000 365568000 204000000 2028024265

Combining (67), (69) and the table above yields that |F | ≤ |F (0, t, k, k; L1,L2)| + f (1, k, k, 0) + S(2, k, k, 0) ≤
0.919|F ∗A(t+2)|, if (t, q) = (2, 3); |F | ≤ 0.482|F ∗A(t+2)|, if (t, q) = (2, 4).

The proof is complete.

5. Conclusion

For n = 2k + 1, q ≥ 3, k ≥ t + 2 and t ≥ 2, we prove that FHM is the maximal non-trivial t-intersecting
family, if k ≥ 2t + 2; FA(t+2) is the maximal non-trivial t-intersecting family, if t + 2 ≤ k ≤ 2t + 1. This result
improves the applicable range of parameter n to n ≥ 2k + 1 + δ2,q for t-intersecting Hilton-Milner theorem
for vector spaces.
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[6] P. Frankl and Z. Füredi, Nontrivial intersecting families, J. Combin. Theory Ser. A, 41(1986), 150–153.
[7] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math., 18(1967), 369–384.
[8] W. N. Hsieh, Intersection theorems for systems of finite vector spaces, Discrete Math. , 12(1975), 1–16.
[9] F. Ihringer. Finite geometry intersecting algebraic combinatorics. PhD thesis, Justus-Liebig-Universität Gießen, 2015.

[10] J. Wang, Intersecting antichains and shadows in linear lattices, J. Combin. Theory Ser. A, 118(2011), 2092–2101.
[11] J. Wang, A. Xu, H. Zhang, A Kruskal-Katona-type theorem for graphs: q-Kneser graphs, J. Combin. Theory Ser. A, 198(2023),

105766.
[12] Y. Wang, A. Xu, J. Yang, A t-intersecting Hilton-Milner theorem for vector spaces, Linear Algebra Appl., 680(2024), 220-238.


