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Abstract. A q−fractional generalization of the Poisson process has been provided by replacing the first
time derivative in the relaxation equation of the survival probability with a q−fractional derivative of
order ν (0 < ν ≤ 1). For 0 < ν < 1, 1/q−renewal processes have been obtained where, the 1/q−exponential
probability densities, typical for the 1/q−Poisson processes, are replaced by functions of 1/q−Mittag–Leffler
type, that decay in a power law manner with an exponent related to ν. The distributions obtained by
considering the 1/q−sum of k independent identically distributed random variables distributed according
to the 1/q−Mittag-Leffler law provide the q−fractional generalization of the corresponding 1/q−Erlang
distributions.

Two fitting scenarios are built on a data set including the records of serious earthquakes in Turkey. The
first fitting scenario compares the 1/q−Poisson distribution with the Poisson and the negative binomial
distributions. In the second fitting scenario, the 1/q−Erlang and the Erlang distributions are discussed. The
presented results suggest that the 1/q−Poisson and the 1/q−Erlang are more suitable for the observed data
compared to the other distributions considered. The parameters of the 1/q−Poisson and the 1/q−Erlang
distributions are estimated by the maximum likelihood method.

1. Introduction

The concept of renewal process has been developed as a stochastic model for describing the class of
counting processes for which the times between successive events are independent identically distributed
(i.i.d.) non-negative random variables, obeying a given probability law. These times are referred to as
waiting times or inter-arrival times. In the context of renewal processes, the inter-arrival times play a
crucial role in understanding the behavior of the counting process. By characterizing the distribution of
these inter-event times, we can gain insights into the long-term properties and fluctuations of the process.
This framework has found applications in various fields, including reliability theory, queuing theory, and
stochastic modeling of phenomena such as customer arrivals, equipment failures, and more. For more
details see e.g. [12], [14], [18], [21], and [23].

2020 Mathematics Subject Classification. Primary 60C05; Secondary 05A30.
Keywords. q−fractional calculus, Fractional derivatives, Convolution, Mittag-Leffler function, Stochastic model.
Received: 22 February 2024; Revised: 03 July 2024; Accepted: 22 July 2024
Communicated by Aleksandar Nastić
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F. Gharari et al. / Filomat 38:28 (2024), 10029–10044 10030

Time scale calculus [7, 8, 20] offers a unified framework for continuous and discrete calculus, extending it
to any closed subset, known as a time scale, of the real lineT. The caseT = R corresponds to real analysis and
the caseT = Z to discrete analysis. After the appearance of the time scale calculus, the use of its techniques
in fractional calculus was started. Reference [26] extended fractional Riemann-Liouville calculations for
arbitrary time scales. Fractional Riemann-Liouville calculus extends the mth Riemann integration of a
function ( by Cauchy formula, which, for repeated integration, allows for compressing m integrations of a
function into a single integral) to fractional orders. Quantum fractional calculus (q−fractional calculus) is a
special case of fractional calculus on quantum time scale Tαq = {qn+α; n ∈N, α ∈ R+} ∪ {0}.

As detailed in references [15–17], the fractional paradigm for probability theory appears in the nature
of fractional moments in classifying them as Taylor monomials associated by some different phases based
on time scale theory. In these works, some interesting probability distributions constructed by this method
are studied. In this paper, a generalization of renewal theory called 1/q−renewal theory is presented by
applying q−fractional calculus. The 1/q−Poisson process has a fundamental role in 1/q−renewal theory.
The use of the 1/q−Mittag-Leffler functions allows us to provide a generalization of the process and also
construct interesting subordinated stochastic processes of q−fractional diffusion.

The benefit of using specific probability distributions for corresponding stochastic processes lies in the
ability to accurately model and analyze the behavior of the processes. Different distributions have different
properties and characteristics, which can be useful for understanding and making predictions about the
stochastic process in question. The Poisson distribution plays a crucial role in the analysis and simulation
of stochastic processes where events occur at a constant rate and independently of the time since the last
event. It is often used to model the number of events that occur in a fixed interval of time or space, like
the arrival of customers in a queue, the number of phone calls received in a call center, the number of
radioactive particles emitted from a radioactive source, and many other similar processes. In the context of
stochastic processes, the Erlang distribution can be used to model the time between events in a process that
occurs at a constant rate, such as the arrival of customers at a service center or the occurrence of radioactive
decay. By fitting an Erlang distribution to the inter-arrival times of events in a stochastic process, one can
better understand and predict the behavior of the process. Here, we explore whether the 1/q−Poisson and
the 1/q−Erlang distributions exhibit similar behavior in 1/q−processes.

The paper is organized in the following way. In Sections 2 and 3, we provide a set of definitions and
related results, which are essential and will be used in the proceeding discussions. In Section 4, we provide
via fractional calculus on quantum time scales the generalization of the Poisson process, and then define the
1/q−renewal theory including its fundamental concepts, like waiting time between events and the survival
probability. If the waiting time is 1/q−exponentially distributed we have the 1/q−Poisson process, this is
the topic of Subsection 4.1. However, other waiting time distributions are also relevant in applications,
in particular such ones with a fat tail caused by a power law decay of their density. In Subsection 4.2 we
analyze the 1/q−renewal processes with waiting time distributions described by functions of 1/q−Mittag-
Leffler, that exhibit a similar power law decay. It depends on a parameter ν ∈ (0, 1) related to the common
exponent in the power law. In the limit ν = 1 that becomes the Poisson process. Section 5 is devoted to
the estimation of the unknown parameters, where the maximum likelihood method is tested on simulated
data. In Section 6, we examine a dataset containing records of major earthquakes in Turkey during the
20th century. The observed data are modeled through two fitting schemes, where the 1/q−Poisson and the
1/q−Erlang distributions are used. The section presents the obtained results highlighting the superiority of
the 1/q−Poisson distribution over the Poisson and negative binomial distributions, as well as the advantage
of 1/q−Erlang over the Erlang distribution. The concluding remarks are given in Section 7.

2. Definitions and essential lemmas

The observation limq→1−
1−qx

1−q = x plays a basic role in the theory of q−calculus, where x, q ∈ C.We define

[x]q =
1−qx

1−q as the q−number of x. Also, the factorial of the q−number [x]q of order k,which is defined by

[x]k,q = [x]q[x − 1]q ...[x − k + 1]q.



F. Gharari et al. / Filomat 38:28 (2024), 10029–10044 10031

Clearly, limq→1− [x]q = x. The q−factorial of n is given by [n]q! = [1]q[2]q...[n]q and the q−Gauss binomial
coefficients are defined by[

n
k

]
q
=

[n]q!
[k]q![n − k]q!

.

For the exponential function, it has given two q−analogues as eq(x) =
∑

n≥0
xn

[n]q! and Eq(x) =
∑

n≥0
q(n

2)xn

[n]q! ,where

the series converges for | x |< 1
1−q and x ∈ C, respectively. In this work, we call them the 1/q−exponential and

q−exponential functions, respectively. The q−derivative of an arbitrary function f (x) (see [13]) is defined by

∇q( f (x)) =
f (qx) − f (x)

x(q − 1)
,

where x , 0 and the definite Jackson q−integral is given by∫ x

0
f (t)∇qt = (1 − q)

∞∑
a=0

f (qax)xqa.

Obviously, if the function f is differentiable then limq→1− ∇q( f (x)) = d
dx f (x). Clearly, ∇q(eq(ax)) = aeq(ax) and

∇q(Eq(ax)) = aEq(aqx) for | ax |< 1
1−q and a, x ∈ C, respectively. The q−extension of gamma function is defined

by

Γq(t) =
∫
∞

0
xt−1Eq(−qx)∇qx, t > 0 (1)

and by Eq. (1) we obtain [n]q! = Γq(n + 1) and Γq(t + 1) = [t]qΓq(t). The q−factorial function for n ∈ N is
defined by (t − s)n

q =
∏n−1

i=0 (t − sqi).When α is a non-positive integer, the q−factorial is of the form

(t − s)αq = tα
∞∏

i=0

1 − s
t qi

1 − s
t qi+α .

For t, s > 0, the q−beta function is given by

βq(t, s) =
∫
∞

0
xt−1(1 − qx)s−1

q ∇qx,

with βq(t, s) = Γq(t)Γq(s)/Γq(t + s).
Reference [9] introduced a q−analogue of the Laplace transform, referred to as the q−Laplace transform

and throughout this paper, we will denote by f̃ (s) the q−Laplace transform of a sufficiently function f (t)
according to

Lq{ f }(s) = f̃ (s) =
∫
∞

0
Eq(−qst) f (t)∇qt, s > 0.

Lemma 2.1 ([9]). For any α ∈ R with α > −1, we have Lq{tα}(s) = Γq(α+1)
sα+1 .

Definition 2.2 ([1]). Let α > 0. If α < N, then the α−order Caputo left q−fractional derivative of a function f is
defined by

qCαa f (t) =q I(n−α)
a ∇

n
q f (t) =

1
Γq(n − α)

∫ t

a
(t − qs)n−α−1

q ∇
n
q f (s)∇qs,
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where n = [α] + 1 and

qIαa f (t) =
1
Γq(α)

∫ t

a
(t − qs)α−1

q f (s)∇qs

is the left q−fractional integral of order α. If α = n ∈N, then

qCαa f (t) = ∇n
q f (t).

Example 2.3. For 0 < α ≤ 1 the α−order Caputo left q−fractional difference of a function f defined on R+q is

qCα0 f (t) =q I1−α
0 ∇q f (t)

=
1

Γq(1 − α)

∫ t

0
(t − qs)−αq ∇q f (s)∇qs,

where qIα0 =
1
Γq(α)

∫ t

0 (t − qs)α−1
q f (s)∇qs is the left q−fractional integral of order α.

The definition for 1/q−Mittag-Leffler functions is given by [1] while they named it ”modified q−Mittag-
Leffler functions”. We rewrite their definition by introducing this modification.

Definition 2.4. For z, z0 ∈ C and R(α) > o, the 1/q−Mittag-Leffler functions are defined by

1/qEα,β(λ, z − z0) =
∞∑

k=0

λk
(z − z0)αk+(β−1)

q

Γq(kα + β)
.

In the case β = 1, we may use

1/qEα(λ, z − z0) :=1/q Eα,1(λ, z − z0).

Fractional difference equations model the systems with memory and non-local effects in various fields like
physics, engineering, and finance. A Caputo fractional difference equation utilizes the Caputo fractional
derivative [3, 4]. Caputo q−fractional difference equations use the Caputo q−derivative operator instead of
the Caputo fractional derivative [1, 2].

Example 2.5. Let 0 < α ≤ 1 and consider the left Caputo q−fractional difference equation

qCαa y(t) = λy(t) + f (t), y(a) = a0, t ∈ Tq. (2)

The solution for Eq. (2) has the form

y(t) = a0 1/qEα(λ, t − a) +
∫ t

a
1/qEα,α(λ, t − qs) f (s)∇qs.

We will show that 1/qFα(x) = 1 −1/q Eα(−λ, x) has the q−Laplace transform Lq(s) = λ(λ + sα)−1 which is
completely monotone for 0 < α ≤ 1 and λ > 0, and therefore it is a 1/q−distribution function. We call
1/qFα(x) for 0 < α ≤ 1 a 1/q−Mittag-Leffler distribution. 1/qF1(x) is the 1/q−exponential distribution.

Lemma 2.6 ([9]). Let f be defined on R+q . Then,

Lq{∇q( f (t))}(s) = sLq{ f (t)}(s) − f (0).

Lemma 2.7. Define the convolution ( f ∗ 1)(t) =
∫ t

0 (t − qτ)β−1
q f (τ)∇qτ with 1(t) = tβ−1. Assume that f is of the type

Lq{( f ∗ 1)} = Lq{ f }Lq{1} is valid. then for 0 < α ≤ 1, we have

Lq{qCα0 f }(s) = sαLq{ f (t)}(s) − sα−1 f (0).
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Proof. Following the discussion of Example 2.3, Lemmas 2.1, and 2.6 we can conclude that

Lq{qCα0 f }(s) =Lq{
1

Γq(1 − α)
1−α ∗ ∇q f (t)}(s)

=sα−1(Lq{∇q f })(s)

=sα−1
{sLq( f (t)) − f (0)}

=sαLq{ f (t)}(s) − sα−1 f (0).

In the convolution formula of the recent lemma, let f (t) = tα, then by using the definition of the q−beta
function and Lemma 2.1, we obtain Lq{( f ∗ 1)} = Lq{ f }Lq{1},which implies that if f (t) =

∑
i aitαi , then

Lq{( f ∗ 1)} =
∑

i

aiLq{tαi ∗ 1} =
∑

i

aiLq{tαi }Lq{1} = Lq{
∑

i

aitαi }Lq{1} = Lq{ f }Lq{1}. (3)

We will use Eq. (3) to obtain the q−Laplace transform of the 1/q−Mittag-Leffler function.
As follows, the 1/q−Mittag-Leffler function 1/qEα,β(λ, z − z0) is a generalization of the 1/q−exponential

function eq(t), therefore, the 1/q−exponential function is a particular case of the 1/q−Mittag-Leffler function.
We will outline here the way to obtain the q−Laplace transform of the 1/q−Mittag-Leffler function with
the help of the analogy between this function and the function eq(t). To do this, we obtain the q−Laplace
transform of the function tkeq(at) in the following way. First, let us prove that∫

∞

0
Eq(−qt)eq(±zt)∇qt =

1
1 ∓ z

, |z| < 1. (4)

By using the series expansion for eq(z),we obtain∫
∞

0
Eq(−qt)eq(±zt)∇qt =

1
1 ∓ z

=

∞∑
k=0

(±z)k

[k]q!

∫
∞

0
Eq(−qt)tk

∇qt

=

∞∑
k=0

(±z)k =
1

1 ∓ z
.

Then, we q−differentiate both sides of Eq. (4) with respect to z. This yields the following result:∫
∞

0
Eq(−qt)tkeq(±zt)∇qt =

q−(
k+1

2 )[k]q!∏k
n=0(q−n ∓ z)

.

After straightforward substitutions, we obtain the well-known pair of q−Laplace transforms of the function
tkeq(±at) as

∫
∞

0
Eq(−qpt)tkeq(±at)∇qt =

q−(
k+1

2 )[k]q!∏k
n=0(pq−n ∓ a)

.

Now, we consider the 1/q−Mittag-Leffler function where the substitution of the function in the integral
leads to∫

∞

0
Eq(−qpt)1/qEα,1(z, t)∇qt =

pα−1

pα − z
. (5)
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From Eq. (5) we obtain a pair of q−Laplace transforms of the function tαk+β−1
1/qE⟨k⟩α (±λ, t), where 1/qE⟨k⟩α,β(y) =

∇
k
q

∇q yk 1/qEα,β(y), as:

∫
∞

0
Eq(−qpt)tαk+β−1

1/qE⟨k⟩α (±λ, t)∇qt =
q−(

k+1
2 )[k]q!pα−β∏k

n=0(pαq−n ∓ λ)
.

For the case β = 1,we have,∫
∞

0
Eq(−qpt)tαk

1/qE⟨k⟩α (±λ, t)∇qt =
q−(

k+1
2 )[k]q!pα−1∏k

n=0(pαq−n ∓ λ)
. (6)

The Eq. (6) has been used to obtain a fractional generalization of the 1/q−Poisson distribution.

3. 1/q−Poisson and 1/q−gamma distributions

Consider a non-negative integer-valued random variable X with the probability mass function fX(x) =

P(X = x), x = 0, 1, ... . We refer to the 1/q−number transformation Y = [X]1/q =
1−q−X

1−q−1 as a 1/q−deformation
similar to the q−deformation in the language of quantum physics [22]. The distribution of the random
variable Y,with the probability function

fY([x]1/q) = P(Y = [x]1/q) = P(X = x) = fX(x), x = 0, 1, . . . ,

which is referred to as a 1/q−deformed distribution (similar to the q−deformed distribution in quantum
physics). The mean and the variance of the 1/q−deformed distribution of Y are the 1/q−mean and the
1/q−variance of the distribution of X.

Definition 3.1. The random variable [X]1/q has a 1/q− Poisson distribution with (λ, q) parameters if its probability
mass function (pmf) is given by

P([X]1/q = [x]1/q) = eq(−λ)
q(x

2)λx

[x]q!
, x = 0, 1, . . . ,

where 0 < q < 1, 0 < λ < ∞. The distribution is denoted by [X]1/q ∼ Po1/q(λ).

Since [X]r,1/q = q−xr+(r+1
2 )[X]r,q, for this distribution we have

E([X]r,1/q) = eq(−λ)
∞∑

x=r

[X]r,1/qq−rx+(r+1
2 )qx(x−1)/2λx

[x]q!

= λreq(−λ)
∞∑

x=r

q−rx+(r+1
2 )qr(x−r)qr(r−1)/2q(x−r)(x−r−1)λx−r

[x − r]q!

= λreq(−λ)Eq(λ) = λr,

then E([X]1/q) = λ and Var([X]1/q) = λ(1 − λ(1 − 1/q)), where Var([X]1/q) = 1/qE[X]2,1/q + E[X]1/q − E2[X]1/q.
For convenience, in the rest of the paper, we denote [X]1/q as X1/q.

Definition 3.2. It is said that the random variable X1/q has a 1/q−gamma distribution with (α, β, q) parameters if
its pdf is given by

fX1/q (x1/q) =
eq(−βx)q(α2)xα−1βα

Γq(α)
, x ∈ R+q ,
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where α > 0, β > 0, 0 < q < 1 and
(α

2
)
=

Γ(α+1)
2!Γ(α−2+1) . The distribution is denoted as Γ1/q(α, β). A special case of

the 1/q−gamma distribution is important for us: when the parameter α is an integer value, we call it 1/q−Erlang
distribution. The special case α = 1, fX1/q (x1/q) = βeq(−βx) is 1/q−exponential distribution. To continue, we will
investigate whether there is a relationship between the 1/q−Poisson and 1/q−Erlang distributions.

Theorem 3.3 (1/q−gamma−Poisson relationship). Suppose that X1/q ∼ Γ1/q(α, 1) and Y1/q ∼ Po1/q(x, q), where
α is an integer, then P(X1/q ⩽ x) = P(Y1/q ⩾ α).

Proof. Let us show that∫ x

0

eq(−qt)tα−1q(α2)

Γq(α)
∇qt =

∞∑
y=α

eq(−x)xyq(y
2)

[y]q!
,

the right-hand side is equal to 1 − eq(−x)
∑α−1

y=0
xyq(y

2)

[y]q!
. Now, we apply the product rule for the q−derivative

and get

=eq(−x)
α−1∑
y=0

(qx)yq(y
2)

[y]q!
− eq(−x)

α−1∑
y=1

xy−1q(y
2)

[y − 1]q!

=eq(−x)
α−1∑
y=0

(qx)yq(y
2)

[y]q!
− eq(−x)

α−2∑
y=0

xyq(y+1
2 )

[y]q!

=eq(−x)
xα−1q(α2)

Γq(α)
.

4. Poisson Process on Quantum Time Scale

In this section, the intention is to provide a generalization of the Poisson processes via fractional calculus
on quantum time scales, which are known to play a fundamental role in 1/q−renewal theory. We first
provide the basic 1/q−renewal theory including its fundamental concepts like waiting time between events,
the survival probability, and the counting function. If the waiting time is 1/q−exponentially distributed
we have a 1/q−Poisson process. In this context, we analyze a 1/q−renewal process with a waiting time
distribution described by the 1/q−Mittag-Leffler function. This distribution contains the 1/q−exponential
as a particular case.

4.1. Renewal Theory on Quantum Time Scale

A renewal process is a stochastic model that describes a class of counting processes where the time
intervals between consecutive events are i.i.d. non-negative random variables with a specified probability
distribution. These times are referred to as waiting times or inter-arrival times. For waiting times T1,T2, . . .
we define variables

t0 = 0, tk =

k∑
j=1

q j−kT j, k ≥ 1.

and named them the 1/q−sum of the first k waiting times. So, t1 = T1 is the time of the first 1/q−renewal,
t2 = q−1T1 + T2 is the time of the second 1/q−renewal and so on. In general, tk denotes the kth 1/q−renewal.
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Now we determine the probability distribution for the waiting times in this process. To this end, we define
the pdf ϕ(t) and the distribution function Φ(t) as:

ϕ(t) :=
∇q

∇qt
Φ(t), Φ(t) := P(T ⩽ t) =

∫ t

0
φ(t′)∇qt′.

We refer to Φ(t) as the failure probability. Then the survival probability will be

Ψ(t) := P(T > t) =
∫
∞

t
φ(t′)∇qt′ = 1 −Φ(t). (7)

The non-negative random variable represents the lifetime of technical systems, and Φ(t) and Ψ(t) are the
respective probabilities that the system does or does not fail in the interval (0,T]. Also, we need a function
that represents the effective number of events before or at instant t. A such quantity is the counting function
N(t) defined as:

N(t) := max{k|tk ≤ t ≤ t, k = 0, 1, 2, . . .}.

In a particular case, we haveΨ(t) = P(N(t) = 0). Let us set F1(t) = Φ(t), f1(t) = ϕ(t). In general,

Fk(t) := P(tk = q1−kT1 + q2−kT2 + ... + Tk ≤ t), fk(t) =
∇q

∇qt
Fk(t), k ≥ 1,

thus Fk(t) represents the probability that the 1/q−sum of the first k waiting times is less or equal t and fk(t)
is its density. It can be easily seen that for any fixed k ≥ 1, the normalization condition for Fk(t) is satisfied,
because

lim
t→∞

Fk(t) = P(tk = q1−kT1 + q2−kT2 + ... + Tk < ∞) = 1.

In fact, the 1/q−sum of k random variables each of which is finite with probability 1 is finite with probability
1 itself. Note that for k ≥ 0 we have

P(N(t) = k) := P(tk ≤ t, tk+1 > t) =
∫ t

0
fk(t′)Ψ(t − qt′)q∇t′. (8)

We now find it convenient to introduce the simplified ” ∗ ” notation for the q−Laplace convolution between
two functions f (t) and 1(t) as

( f ∗ 1)(t) =
∫ t

0
f (t′)1(t − qt′)q∇t′,

such that if 1(t) = tβ−1, then we have the same convolution as in Lemma 2.7.
The main importance of q−Laplace transforms in 1/q−renewal theory lies in the connection with 1/q−sums
of independent random variables. Using the fact that fk(t) is the pdf of the 1/q−sum of the k i.i.d. random
variables T1, . . . ,Tk whose pdf is ϕ(t), we can easily obtain that fk(t) turns out to be the k−fold convolution
of ϕ(t) with itself:

fk(t) = (ϕ∗k)(t).

Therefore, Eq. (8) can be simply written as

P(N(t) = k) = (ϕ∗k ∗Ψ)(t). (9)

For example, we can see that if

Ψ(t) = eq(−λt)
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and

fk(t′) = λq(k
2) (λt′)k−1

[k − 1]q!
eq(−λt′),

then, we can write∫ t

0
λq(k

2) (λt′)k−1

[k − 1]q!
eq(−λt′)eq(−λ(t − qt′)q)∇qt′

=
λkq(k

2)

[k − 1]q!

∫ t

0
(t′)k−1eq(−λt′)eq(−λ(t − qt′)q)∇qt′

= eq(−λt)
q(k

2)

[k]q!
(λt)k,

Note that the result follows from the definition of the nabla q−integral given by∫ t

0
(t′)k−1

∇qt′ = (1 − q)t
∞∑

i=0

qi(tqi)k−1 =
tk

[k]q
.

Further, we have

eq(−λt′)eq(−λ(t − qt′)q) =

∞∑
n=0

(−λt′)n

[n]q!

∞∑
n=0

(−λ(t − qt′)q)n

[n]q!

=

∞∑
n=0

n∑
k=0

 (t′)k

[k]q!

(t − qt′)n−k
q

[n − k]q!

λn

=

∞∑
n=0

λn

[n]q!

n∑
k=0

[
n
k

]
q

(t − qt′)n−k
q (t′)k

=

∞∑
n=0

λn

[n]q!

n∑
k=0

[
n
k

]
q

tn−k(1 − q
t′

t
)n−k
q t′k.

where we apply the result of [11], i.e.

n∑
k=0

[
n
k

]
q

tn−k(1 − q
t′

t
)n−k
q t′k = 1.

By applying the q−Laplace convolutions, a 1/q−renewal process can be suited for the q−Laplace trans-
form method. We recognize that Eq. (9) can be written in the q−Laplace domain as

Lq{P(N(t) = k); s} = (ϕ̃(s))k
qΨ̃(s),

where (.)k
q means the q−factorial function. By using Eq. (7), Theorems 2.1 and 2.3 from [9], we get the

following identity

Ψ̃(s) =
1 − ϕ̃(s)

s
.

Similarly, one can define the q−Poisson process as a q−Renewal process. The q−Poisson process or the Euler
stochastic process (see Section 3.4 in [10]), is a q−renewal process that can be characterized by a waiting
time pdf of q−exponential type,

ϕ(t) = λEq(−qλt), λ > 0, t ≥ 0, 0 < q < 1.
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Its moments turn out to be

E(T) =
1
λ
, E(T2) =

[2]q!
λ2 , . . . ,E(Tn) =

[n]q!
λn , . . .

(see corollary 3.1 in [10]). The survival probability is

Ψ(t) := P(T > t) = Eq(−qλt), λ > 0, t ≥ 0, 0 < q < 1.

In this case, the probability that k events occur in the interval of length t is

P(N(t) = k) =
(λt)k

[k]q!
Eq(−λt), t ≥ 0, k = 0, 1, 2, . . . . (10)

The probability distribution related to the q−sum of k i.i.d. q−exponential random variables is known to be
the so-called q−Erlang distribution (of order k). Then, the corresponding density (the q−Erlang pdf) is

fk(t) = λ
(λt)k−1

[k − 1]q!
Eq(−qλt), t ≥ 0, k = 1, 2, . . . .

So, the q−Erlang distribution function of order k turns out to be

Fk(t) =
∫ t

0
fk(t)∇qt = 1 −

k−1∑
n=0

(λt)n

[n]q!
Eq(−qλt) =

∞∑
n=k

(λt)n

[n]q!
Eq(−qλt), t ≥ 0. (11)

The results (10 )-(11) can be easily obtained by using the technique of the q−Laplace transform sketched in
the previous section. Further, for the q−Poisson process, we have

ϕ̃(s) =
λ
λ + s

, Ψ̃(s) =
1
λ + s

,

and for the q−Erlang distribution:

f̃k(s) = [ϕ̃(s)]k =
λk

(λ + s)k
q
, F̃k(s) =

[ϕ̃(s)]k

s
=

λk

s(λ + s)k
q
.

Also, the survival probability for the q−Poisson renewal process obeys the q−differential equation

∇qΨ(t)
∇q

= −λΨ(qt), t ≥ 0; Ψ(0+) = 1.

4.2. The 1/q−Renewal Process of 1/q−Mittag-Leffler Type
In this section, we introduce a fractional generalized 1/q−Poisson distribution by replacing the first

q−derivative operator with the Caputo q−fractional difference of order ν in its generating difference equa-
tion. Hence, we have now the new ordinary q−fractional difference equation,

qCν0Ψ(t) = −λΨ(t), t ≥ 0, 0 < ν ≤ 1, Ψ(0+) = 1. (12)

We also allow the limiting case ν = 1 where all the results of the previous section are expected to be
recovered. For our purpose, we need to recall the 1/q−Mittag-Leffler function as the natural fractional
generalization of the 1/q−exponential function, that characterizes the 1/q−Poisson process. By taking a
q−Laplace transform from both sides of Eq. (12) and applying Lemma 2.7, it can be written as:

Lq{qCν0Ψ(t)} = −λLq{Ψ(t)}, (13)

sνΨ̃(s) − sν−1Ψ(0+) = −λΨ̃(s),

Ψ̃(s) = sν−1(sν + λ)−1.
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On the other hand, we know that

Lq{1/qEν(−λ, t)} = sν−1(sν + λ)−1.

By simple inspection, we can see that Eq. (13) automatically yields the solutionΨ(t),which is the 1/q−Mittag-
Leffler function

1/qEν(−λ, t) =
∞∑

n=0

(−λtν)n

Γq(1 + νn)
,

mentioned earlier.
Furthermore, the 1/q−Poisson and 1/q−Erlang distributions (corresponding to the nth arrival or event

time, n ∈N) are generalized in the following way. By considering corollary 2.5 in [9], it can be shown that

Lq{
q(n

2)(λt)n

[n]q!
eq(−λt)} =

λn

(s + λ)n
1/q(s + qnλ)

,

Lq{λ
q(n

2)(λt)n−1

[n − 1]q!
eq(−λt)} =

λn

(s + λ)n
1/q
.

We see from Eq. (6),

Lq{tνn 1/qE
(n)

ν (−λ, t)} =
q−(

n+1
2 )[n]q!sν−1

(sν + λ)n
1/q(sν + qnλ)

,

where

1/qE
(n)

ν (y) =
∇

n
q 1/qEν(y)

∇qyn .

This implies that a generalization of the 1/q−Poisson distribution is given by

Pνn(t) = P(Nν(t) = n) =
q(n

2)tνnλn

[n]q! 1/qE
(n)

ν (−λ, t), (14)

where the q−Laplace transform of the pmf is

Lq{Pνn(t)} =
λnsν−1

(sν + λ)n
1/q(sν + qnλ)

.

Accordingly, a generalization of the 1/q−Erlang distribution is shown to be

f (T = q1−nT1 + q2−nT2 + ... + Tn) = f νn (t) = λnν
q(n

2)tνn−1

[n − 1]q! 1/qE
(n)

ν (−λ, t), (15)

where the q−Laplace transform of the pdf is

Lq{ f νn (t)} =
λn

(sν + λ)n
1/q
.

It is interesting to know that, when ν → 1 the distributions (14) and (15) converge to 1/q−Poisson and
1/q−Erlang distributions, respectively. Also, when ν → 1 and q → 1, the distributions (14) and (15)
converge to Poisson and Erlang distributions, respectively.
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5. Simulation study

In this section, we discuss the maximum likelihood (ML) method for the estimation of the distributions
parameters. The two distributions that we consider in this context are the 1/q−Poisson and 1/q−Erlang
distributions. The function that we maximize is of the form

L =
N∑

i=1

log f (Xi;θ),

where f (.) is the corresponding probability function, and θ is the vector of parameters. The maximization
of the above function, for a given data set {Xi}i=1,N, is obtained numerically.

The ML method is tested on the simulated data sets. Using the 1/q−Poisson distribution we generate
100 samples of lengths 100, 250, and 500. The samples are generated with three sets of parameters: a)
λ = 0.7, ν = 0.7, q = 0.8; b) λ = 1, ν = 0.5, q = 0.3; and c) λ = 0.5, ν = 0.1, q = 0.8. On this simulated
data sets the efficiency of the ML method for parameter estimation is tested. Beside the estimated values,
the standard error of the estimates is observed and discussed. The parameters values were chosen to be
similar to the values that will be met in the next section when we discuss the real-world data examples.
The same procedure is conducted for the 1/q−Erlang distribution where the three sets of parameters used
to generated data sets are: a) λ = 1.5, ν = 0.8, q = 0.5; b) λ = 1, ν = 0.3, q = 0.7; and c). For all three sets,
the value of k is set to k = 3. The results are presented in Table 1. Under the estimated values, the standard
errors of the estimates are given.

Table 1: Estimated parameters with their standard errors obtained with the ML method:

(a) 1/q-Poisson distributions.

size λ ν q
a) λ = 0.7, ν = 0.7, q = 0.8

100 0.8464 0.7406 0.8142
(0.1788) (0.0455) (0.1414)

250 0.7953 0.6504 0.8201
(0.0118) (0.0404) (0.0928)

500 0.7406 0.7199 0.8117
(0.0105) (0.0280) (0.0752)

b) λ = 1.0, ν = 0.5, q = 0.3
100 0.9528 0.6141 0.2834

(0.1531) (0.1738) (0.1025)
250 0.9828 0.5711 0.3434

(0.1405) (0.1029) (0.0799)
500 1.0273 0.4402 0.3360

(0.0891) (0.0758) (0.0535)
c) λ = 0.5, ν = 0.1, q = 0.8

100 0.4654 0.2576 0.9151
(0.0789) (0.0849) (0.1066)

250 0.4426 0.2045 0.7541
(0.0505) (0.0234) (0.0845)

500 0.4755 0.1583 0.8190
(0.0383) (0.0176) (0.0581)

(b) 1/q-Erlang distributions.

size λ ν q
a) λ = 1.5, ν = 0.8, q = 0.5

100 1.408 0.6685 0.5975
(0.0329) (0.0521) (0.034)

250 1.4086 0.6865 0.5981
(0.0218) (0.0211) (0.0237)

500 1.4839 0.7676 0.4495
(0.0035) (0.009) (0.0032)

b) λ = 1.0, ν = 0.3, q = 0.7
100 0.9196 0.2152 0.6627

(0.0642) (0.0587) (0.1250)
250 0.9736 0.3193 0.6688

(0.0534) (0.0317) (0.1034)
500 1.039 0.2997 0.6781

(0.038) (0.0085) (0.0038)
c) λ = 2.0, ν = 0.5, q = 0.5

100 1.846 0.4517 0.5718
(0.115) (0.0348) (0.0884)

250 2.071 0.4553 0.5384
(0.0701) (0.0102) (0.0352)

500 2.064 0.4727 0.5178
(0.0331) (0.0012) (0.0109)

As we can conclude from Table 1, the estimated values converge to their true values as we increase the
sample size. Also, the standard errors of the estimates become smaller with the increase of the sample size.
For the 1/q−Poisson distribution, the convergence of estimates for parameter ν are a bit slower, especially
when the true value of ν is a small number. While some estimates are off their true values for samples
of the length 100, the values estimated from samples 500 are quite close to the true values. The similar
conclusions can be made for the 1/q−Erlang distribution.



F. Gharari et al. / Filomat 38:28 (2024), 10029–10044 10041

6. Applicability to practical data

In this section, we discuss the application of the 1/q−Poisson distribution where we observe a data
set from the real world and compare the results with the standard Poisson distribution and the negative
binomial distribution (NB). The data set that we observe contains the records of serious earthquakes in
Turkey (the region of the North Anatolian Fault Zone) in the 20th century. The data was gathered at the
Kandilli Observatory (Turkish observatory) and includes the date and time, location, magnitude, number
of fatalities, and the count of damaged structures. The interested reader can also find these data in the
research paper [5].
We fit the distributions to the data where we observe the number of earthquakes per year. The mean value
and the variance are 0.81 and 0.97, respectively, which shows the small over-dispersed behavior of the data.
The bar plot of the data is presented with Figure 1, and the main statistical values are presented in Table 2.

Table 2: Properties of the observed data set.

Mean Variance Index of dispersion
0.81 0.97 1.19

Before we start the modeling of the data, let us perform some tests to confirm that the series is inde-
pendent, stationary and that the data set follows the Poisson distribution. The results of these tests are
summarized in Table 3 and analyzed in the forthcoming discussion.

Table 3: Statistical tests of the observed data set.

Test statistics value p-value
Von-Neumann’s -1.86 0.062
Wald–Wolfowitz 1.91 0.055
χ2 6.58 0.086

To test the independency, we used Von-Neumann’s test (e.g. [24], [6], [19]). The null hypothesis is that
the data are i.i.d. random quantities, and the alternative is that the data are not randomly distributed. The
value of the test statistics is -1.86, while the p-value is 0.062. Thus we accept the null hypothesis.

For testing the stationarity the Wald–Wolfowitz test was applied (e.g. [25]). The null hypothesis is that
the data are stationary. The test statistics returns a value of 1.91, while the p-value is 0.055, so we accept the
null hypothesis.

Finally, we used the χ2-test to test the hypothesis that the data follows the Poisson distribution. The
obtained value of the test statistics is 6.58, while the p-value is 0.086. Thus we can conclude that the data
can be modeled with the Poisson distribution.

In all these tests, we observe that the p-value is near the critical value, yet none of the tests indicate
rejecting the null hypothesis for the confidence level α = 0.05.

The parameters of the observed distributions are estimated by the maximum likelihood method. The
results are summarized in Table 4, where the estimated parameters and the values of the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) are given. According to the values shown in
Table 4, we can conclude that 1/q−Poisson slightly better fits the observed data than the other two considered
distributions. The maximum likelihood for the NB(n, p) distribution is obtained for n = 3. We included in
the discussion the NB distribution since the index of dispersion of the observed data is slightly over one,
i.e. it is 1.19. The theoretical index of dispersion for 1/q−Poisson distribution (Eq. (16)) is 1.11, while for
the NB it is 1.27. So, they are both really close to the empirical value. Additionally, to justify the adequacy
of the 1/q−Poisson distribution for the observed data, we perform the χ2 test. The value of the test is 5.982,
while the p-value is 0.112. Also, it should be noticed that the value of the χ2 test for the NB distribution is
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1.356 with the p-value 0.715. Thus, all three discussed distributions can be applied to the observed data set.

ID = 1 − λ
(
1 −

1
q

)
(16)

Figure 1: Number of earthquakes per year in the North Anatolian Fault Zone, Turkey, and the corresponding
autocorrelation values of the series.

Table 4: Estimated parameters and AIC, BIC, and χ2-test values obtained from 1/q-Poisson, Poisson, and
NB distributions.

distribution parameters AIC BIC χ2-test p-value
1/q−Poisson λ = 0.7016, ν = 0.714, q = 0.858 127.06 134.91 5.982 0.112
Poisson λ = 0.811 251.82 254.43 6.58 0.086
NB n = 3, p = 0.787 251.82 257.05 1.356 0.715

Considering the same data set, we apply the 1/q−Erlang and Erlang distributions to model the probabil-
ity of striking three earthquakes in the period of one decade. For this purpose, the data set is restructured to
represent the time between earthquakes. The time between two earthquakes is set as a fraction of decade.
For this test, we set k = 3, but we can utilize a different value if needed. The results are presented in
Table 5. We can notice that AIC and BIC values are lower for the 1/q−Erlang distribution than for the Erlang
distribution, which makes it a little bit more favourable for the particular data set, and the pre-assumed test
specifications.

Table 5: Estimated parameters and AIC and BIC values obtained from 1/q-Erlang, and Erlang distributions
for k = 3.

distribution parameters AIC BIC
1/q−Erlang λ = 1.877, ν = 0.208, q = 0.893 373.92 381.76
Erlang λ = 3.71 447.6 450.21
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Conclusion

Firstly, we provided the basics of the 1/q−renewal theory, including its fundamental concepts like
waiting time between events, the survival probability, and the counting function. If the waiting time is
1/q−exponentially distributed, we have a 1/q−Poisson process. Also, we analyzed a 1/q−renewal process
with a waiting time distribution described by the 1/q−Mittag-Leffler function. The probability distribution
related to the 1/q−sum of i.i.d. 1/q− random variables is the 1/q−distribution.

Choosing the appropriate distribution for a stochastic process results in more accurate predictions and
inferences about the process. Using the real-world data, we found that the fitting with the 1/q−Poisson
distribution yields a higher log-likelihood, a smaller AIC value, and a smaller BIC value than the fitting
with the Poisson and the NB distributions. We used the 1/q−Poisson distribution to fit the number of
earthquakes per year, where the distribution function results from the fractional calculation on quantum
time scale.

As another application, we applied the 1/q−Erlang and the Erlang distributions to model the waiting
time for three earthquakes to occur within a ten-year span. The AIC and the BIC values are lower for the
1/q−Erlang distribution than for the Erlang distribution. Both fitting schemes confirm the superiority of
quantum distributions over ordinary distributions.

The parameters of the 1/q−Poisson and the 1/q−Erlang distributions were estimated by the maximum
likelihood method and performance of the method was discussed on simulated data sets. Future topics
for an interested researcher might be exploring in details the estimation methods for parameters of the
presented distributions.
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