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On moments of order statistics from a kappa distribution
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Abstract. The kappa distribution, known as K3D, is a skewed generalization of the well-known logistic
distribution and has many useful applications in modelling extreme value events occurred usually in
hydrology and environmental sciences. The distribution also nests the Gumbel distribution in the limiting
case of its shape parameter. In this paper, we consider the order statistics from the distribution and derive
expressions and relations for both single and product moments of order statistics in computable forms.
These relations can be used effectively in the computation of higher moments given the lower order ones.
The relations also generalize those relations for the logistic distribution. The moment tables obtained can
be used in the computation of the location-scale parameter estimation.

1. Introduction

Extreme value theory deals with modelling very rare or extreme events and proposes methods to
estimate the probability of them. The kappa distribution was introduced by [13] to model the maximum
precipitation data. It has four parameters and is known its flexibility compared to the generalized extreme
value distribution. This probability model has been used, especially in the hydrology and environmental
sciences literature, extensively since then. Recent works include Shin and Park [23], Anghel and Ilinca [1]
and O’Shea et al. [17], among others. Further theoretical properties were also studied in the literature.
These include Seenoi et al. [24], Papukdee et al. [16], Guayjarernpanishk et al. [12], Costa and Nascimento
[8], among others.

If one takes one of the shape parameters 0 in the standard form of the four-parameter kappa distribution,
the following distribution with the CDF (cumulative distribution function)

F(x;α) = (1 − αe−x)1/α, −∞ < x < ∞,

where α < 0 is the shape parameter, is obtained. The corresponding PDF (probability density function) is

f (x;α) = e−x(1 − αe−x)(1−α)/α.

The quantile function of the distribution is given by

F−1(u;α) = ln
(

α
1 − uα

)
,
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where 0 < u < 1.
Jeong et al. [14] studied the location-scale form of this distribution. They called it the three-parameter

kappa distribution (K3D) since it is a special case of the four-parameter kappa distribution. They studied the
properties of the distribution such as the moment generating function, moments, L-moments, LH-moments
and asymptotic distribution of extreme order statistics. They also estimate the parameters by both method
of L-moments and maximum likelihood. From now on, we will denote both the maximum likelihood
estimate and maximum likelihood estimator by MLE.

The K3D is also used as a model for probabilistic extreme events. The further statistical properties of the
distribution defined on positive real numbers were studied by some authors (see e.g. [22]). Throughout the
paper we use the symbol K3D for the distribution even in the standard form. The PDF of the distribution
for various choices of α is sketched in Figure 1. When α = −1, the K3D becomes the logistic distribution.
When α tends to 0, the K3D becomes the Gumbel distribution. Thus, it can be viewed as a generalized
version of the logistic and Gumbel distributions.
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Figure 1: Plots of the density function of the K3D for various choices of the parameter α.

The distribution gives the following characterizing differential equations

α f (x;α) = F1−α(x;α) − F(x;α) (1)

ex f (x;α) = F1−α(x;α) (2)

and

ex f (x;α)(1 − αe−x) = F(x;α). (3)

The identities above are especially useful when obtaining moment relations of order statistics from the
distribution. Order statistics are obtained from a sample by ordering the sample items in their magnitudes.
So the first order statistic is the sample minimum and the last order statistic corresponds to the sample
maximum. Symbolically, if we let X1, X2,. . . , Xn denote the random sample from a distribution, then we let
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X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics corresponding to that random sample. The order statistics
have its own theory in statistics and useful applications in other disciplines from reliability to optimizing
production processes (see e.g. Arnold et al. [2], David and Nagaraja [9], Esmailian and Doostparast [10],
Silva et al. [21]). The statistical inference based on the best linear unbiased estimation (BLUE) and some
approximate maximum likelihood methods need moments of order statistics (see e.g. Balakrishnan and
Cohen [3] and Tumlinson et al. [26]).

In the literature, there are many works on moments of order statistics arising from a specific distribu-
tion. For example, Raqab [19], Balakrishnan and Aggarwala [4], Thomas and Samuel [25], Barakat and
Abdelkader [6], Balakrishnan et al. [5], Roghaye et al. [20] and Castellares et al. [7]. On the other hand, the
moment recurrence relations, when they are available, are especially useful and efficient in the computa-
tions since the higher moments can be obtained from the available lower order moments, without resorting
to computation of a moment expression.

In this paper, we consider the K3D from order statistics point of view. Since the K3D is another
useful probabilistic model especially in hydrology and environmental sciences, it deserves to be studied
for further statistical properties. Our main motivation here is the K3D may be a useful alternative for
skewed generalizations of the ordinary logistic and Gumbel distributions. This fact attracts attention of the
distribution for skewed data modelling encountered in various practical situations such as environmental
and actuarial sciences. Another point, characterizing differential equations between the PDF and the CDF
may make it easier in deriving some distributional properties such as moment relations. Although the ML
and the L-moment estimation methods for the distribution parameters are given in Jeong et al. [14], our
another motivation is to search another estimation method using the moments of order statistics. With this
paper, we also correct some expressions given in Jeong et al. [14]. The paper is summarized as follows.
In Section 2, we present single moments and moment generating function of order statistics. In Section 3,
we derive some moments relations of order statistics. In Section 4, we derive product moments of order
statistics and give a relation. In Section 5, we consider the location-scale estimation problem and solve the
problem by both the MLE and BLUE methods. In Section 6, we apply the theoretical results obtained to
real data set. Paper is finalized with conclusions.

2. Single Moments of Order Statistics

Let X1, X2,. . . , Xn denote the random sample from the K3D. Applying the general formula for absolutely
continuous models given in Arnold et al. [2], the PDF of the rth order statistic is given by

fr:n(x;α) = Cr,ne−x
n−r∑
i=0

(
n − r

i

)
(−1)i(1 − αe−x)(r−α+i)/α, −∞ < x < ∞,

where Cr,n = n!/((r − 1)!(n − r)!). Especially for two extremes, we have

f1:n(x;α) = ne−x
n−1∑
i=0

(
n − 1

i

)
(−1)i(1 − αe−x)(1−α+i)/α, −∞ < x < ∞

and

fn:n(x;α) = ne−x(1 − αe−x)(n−α)/α, −∞ < x < ∞.

In this section, we will find closed form expressions for moments of order statistics. Throughout the
paper let N and Z− denote the sets of positive and negative integers, respectively. We first start with the
two ordinary moments which are also meaningful in order statistics. Corrected moments in Jeong et al.
[14] are given by

E(X) ≡ µ1:1 = γ + ln(−α) + ψ
(
−

1
α

)
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and

E(X2) ≡ µ(2)
1:1 =

[
γ + ψ

(
−

1
α

)
+ ln(−α)

]2

+
π2

6
+ ψ

′

(
−

1
α

)
,

where γ is the Euler’s constant, ψ(·) is the digamma function defined by ψ(x) = Γ
′

(x)/Γ(x). For the rth order
statistic Xr:n, we first look at the moment generating function.

Theorem 2.1.

Mr:n(t) = Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i

(
−1
α

)1−t Γ
(
t − r+i

α

)
Γ(1 − t)

Γ
(
1 − r+i

α

) ,

where t < 1 and α < 0.

Proof.

Mr:n(t) = E(etXr:n )

= Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i

∫
∞

−∞

e−x(1−t)(1 − αe−x)(r−α+i)/α dx.

We change the variable x in the last integral to u by u = 1 − αe−x. Then the integral becomes

−
1
α1−t

∫
∞

1
u(r+i)/α−1(1 − u)−t du.

It is evaluated for t < 1 as(
−1
α

)1−t Γ
(
t − r+i

α

)
Γ(1 − t)

Γ
(
1 − r+i

α

)
by using Formula 3.191.2 in [11]. If we put this evaluation into Mr:n(t), the theorem follows.

Remark 2.2. When α = −1, Mr:n(t) is reduced to

Mr:n(t) = Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i Γ(t + r + i)Γ(1 − t)

Γ(1 + r + i)
.

Using the formula 0.160.2 in [11], we can get the following nicer formula:

Mr:n(t) =
Γ(r + t)Γ(n − r + 1 − t)
Γ(r)Γ(n − r + 1)

.

Differentiating once and twice of Mr:n(t) with respect to t, and then evaluating these derivatives at t = 0,
one can get the moments E(Xr:n) and E(X2

r:n), respectively. They are given in the following corollary.

Corollary 2.3. (a) The first moment of Xr:n is given by

µr:n = E(Xr:n)

= Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i

γ + ln(−α) + ψ
(
−

r+i
α

)
r + i

 ,
where ψ(·) is the digamma function, γ is the Euler’s constant and α < 0.
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(b) The second moment of Xr:n is given by

µ(2)
r:n = E(X2

r:n)

= Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i

r + i

{[
ln(−α) + γ + ψ

(
−

r + i
α

)]2

+
π2

6
+ ψ

′

(
−

r + i
α

)}
,

where α < 0.

We can also find an expression for the kth moment of Xr:n.

Theorem 2.4. Let µ(k)
r:n denote the kth moment of the rth order statistic Xr:n. Then we have

µ(k)
r:n = Cr,n

(
−1
α

) n−r∑
i=0

k∑
j=0

(
n − r

i

)(
k
j

)
(−1)i+k− j ln j(−α)

∂k− j

∂ρk− j

Γ
(
−

r+i
α − ρ

)
Γ(ρ + 1)

Γ
(
1 − r+i

α

) 
∣∣∣∣∣∣∣
ρ=0

. (4)

Proof.

µ(k)
r:n = E(Xk

r:n)

= Cr,n

∫
∞

−∞

xk f (x;α)Fr−1(x;α)(1 − F(x;α))n−r dx

= Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i

∫
∞

−∞

xke−x(1 − αe−x)(r−α+i)/α dx.

We change the variable x in the last integral to u by u = 1 − αe−x. Then the integral becomes

−1
α

k∑
j=0

(
k
j

)
(−1)k− j ln j(−α)

∫
∞

1
u(r+i)/α−1 lnk− j(u − 1) du.

Note that∫
∞

1
u(r+i)/α−1 lnk− j(u − 1) du =

∂k− j

∂ρk− j

∫
∞

1
(u − 1)ρu(r+i)/α−1 du

∣∣∣∣∣∣
ρ=0

=
∂k− j

∂ρk− j

Γ
(
−

r+i
α − ρ

)
Γ(ρ + 1)

Γ
(
1 − r+i

α

) 
∣∣∣∣∣∣∣
ρ=0

,

by using Formula 3.191.2 in [11]. If we put these evaluations into µ(k)
r:n, the theorem follows.

The derivative in (4) can be easily computed in a computer package like Mathematica [27] so that the
kth moment of any order statistic can be found. These expressions are all well computable and some
calculations are reported in Table 1. We observe from that table that the moments increase with increasing
r for fixed n.

3. Relations for the Single Moments

In this section we derive some relations for single moments of order statistics from the K3D. These
relations may be useful in the computation of higher moments given the lower ones. We first give a relation
about moment generating function.
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Theorem 3.1. Let α < 0 and t , 1. Then we have

Mr:n(t) =
(
α −

r
t − 1

)
Mr:n(t − 1) +

( r
t − 1

)
Mr+1:n(t − 1), (5)

where 1 ≤ r ≤ n − 1.

Proof. Using (3), we have

Mr:n(t) − αMr:n(t − 1) = Cr,n

∫
∞

−∞

e(t−1)xFr(x;α)[1 − F(x;α)]n−r dx.

Then using integration by parts by treating e(t−1)x for integration and Fr(x;α)[1−F(x;α)]n−r for differentiation,
we can get

Mr:n(t) − αMr:n(t − 1) = Cr,n
n − r
t − 1

∫
∞

−∞

e(t−1)xFr(x;α)[1 − F(x;α)]n−r−1 f (x;α) dx

− Cr,n
r

t − 1

∫
∞

−∞

e(t−1)xFr−1(x;α)[1 − F(x;α)]n−r f (x;α) dx

=
( r

t − 1

)
[Mr+1:n(t − 1) −Mr:n(t − 1)] ,

as required.

Corollary 3.2. Let α < 0 and k ∈N. Then we have

µ(k)
r+1:n =

(
Cr,n

r

) n−r∑
i=0

(
n − r

i

)
(−1)i+1 1

Γ
(
1 − r+i

α

) ∂k

∂tk
(−α)tΓ

(
t −

r + i
α
+ 1

)
Γ(1 − t)

∣∣∣∣∣
t=0

+ µ(k)
r:n −

(
kα
r

)
µ(k−1)

r:n , (6)

where 1 ≤ r ≤ n − 1 and µ(0)
r:n ≡ 1.

Proof. From (5), we have

tMr:n(t + 1) = (αt − r)Mr:n(t) + rMr+1:n(t). (7)

Now, using Theorem 2.1, we have

tMr:n(t + 1) = Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i+1

(−α)tΓ
(
t − r+i

α + 1
)
Γ(1 − t)

Γ
(
1 − r+i

α

) .

Putting this into (7) and differentiating k times of both sides of the resulting equation with respect to t, and
then evaluating these derivatives at t = 0, one can get the moment recurrence relation given in the theorem.

One can use the relation (6) appropriately to obtain the other moments by fixing k = 1. For example,
given µ1:n, µr:n, 2 ≤ r ≤ n, can be computed recursively.

Theorem 3.3. Let α ∈ Z−. Then we have

Mr−α+1:n−α(t) =Mr−α:n−α(t) +
(n − α)!

(n − r)!(r − α)!

n−r∑
i=0

(
n − r

i

)
(−1)i+1

×

(−α)tΓ
(
t − r+i

α + 1
)
Γ(1 − t)

Γ
(
1 − r+i

α

)
where 1 ≤ r ≤ n − 1.
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Proof. Using (2),

Mr:n(t + 1) = Cr,n

∫
∞

−∞

e(t+1)x f (x;α)Fr−1(x;α)[1 − F(x;α)]n−r dx

becomes

Cr,n

∫
∞

−∞

etxFr−α(x;α)[1 − F(x;α)]n−r dx.

Then using integration by parts by treating etx for integration and Fr−α(x;α)[1−F(x;α)]n−r for differentiation,
we can get

Mr:n(t + 1) =
n!(r − α)!

(r − 1)!(n − α)!t
[Mr−α+1:n−α(t) −Mr−α:n−α(t)] ,

where 1 ≤ r ≤ n − 1.
Now, using Theorem 2.1, we have

tMr:n(t + 1) = Cr,n

n−r∑
i=0

(
n − r

i

)
(−1)i+1

(−α)tΓ
(
t − r+i

α + 1
)
Γ(1 − t)

Γ
(
1 − r+i

α

) .

Combining these expressions, the result in the theorem follows.

Corollary 3.4. Let α ∈ Z−. We have

µ(k)
r−α+1:n−α = µ

(k)
r−α:n−α +

(n − α)!
(n − r)!(r − α)!

n−r∑
i=0

(
n − r

i

)
(−1)i+1 1

Γ
(
1 − r+i

α

)
×
∂k

∂tk
(−α)tΓ

(
t −

r + i
α
+ 1

)
Γ(1 − t)

∣∣∣∣∣
t=0
.

Especially,

µr−α+1:n−α = µr−α:n−α +
(n − α)!

(n − r)!(r − α)!

n−r∑
i=0

(
n − r

i

)
(−1)i+1 [

γ + ln(−α)

+ψ
(
1 −

r + i
α

)]
,

where γ is the Euler’s constant, and ψ(·) is the digamma function.

Theorem 3.5. Let α ∈ Z−. We have

µ(k)
r−α:n−α = µ

(k)
r−α:n−α−1 +

r!(n − α − 1)!
n!(r − α − 1)!

[
µ(k)

r:n − µ
(k)
r+1:n −

kα
r
µ(k−1)

r:n

]
,

where 1 ≤ r ≤ n − 1.

Proof. Using (1), we have

µ(k−1)
r:n = Cr,n

∫
∞

−∞

xk−1 f (x;α)Fr−1(x;α)[1 − F(x;α)]n−r dx

=
Cr,n

α

∫
∞

−∞

xk−1Fr−α(x;α)[1 − F(x;α)]n−r dx

−
Cr,n

α

∫
∞

−∞

xk−1Fr(x;α)[1 − F(x;α)]n−r dx.
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Then we use integration by parts by treating xk−1 for integration, and Fr−α(x;α)[1−F(x;α)]n−r and Fr−α(x;α)[1−
F(x;α)]n−r for differentiation in the first and second integrals above, respectively. After some manipulations,
one can get

µ(k−1)
r:n =

n!(r − α)!
(r − 1)!(n − α)!kα

[
µ(k)

r−α+1:n−α − µ
(k)
r−α:n−α

]
+

r
αk

[
µ(k)

r:n − µ
(k)
r+1:n

]
.

Now if we use the following general relation (Relation 3.3.1 in [3])

rµ(k)
r+1:n + (n − r)µ(k)

r:n = nµ(k)
r:n−1 (8)

by taking r − α and n − α for r and n, respectively, the result in the theorem follows.

Remark 3.6. When α = −1, we can get the relation

µ(k)
r+1:n+1 = µ

(k)
r:n +

k
r
µ(k−1)

r:n

by taking r + 1 and n + 1 for r and n, respectively, in (8).

Table 1: Moments of order statistics, µr:n, for K3D.

r n α = −0.5 α = −1 α = −1.5 α = −2 α = −2.5 α = −3 α = −3.5 α = −4
1 1 0.30685 0.00000 -0.33555 -0.69315 -1.06788 -1.45621 -1.85554 -2.26394
1 2 -0.52648 -1.00000 -1.52175 -2.07944 -2.66425 -3.27001 -3.89229 -4.52789
2 2 1.14019 1.00000 0.85065 0.69315 0.52850 0.35759 0.18121 -0.00000
1 3 -0.90981 -1.50000 -2.15314 -2.85203 -3.58466 -4.34279 -5.12066 -5.91418
2 3 0.24019 0.00000 -0.25899 -0.53426 -0.82344 -1.12444 -1.43554 -1.75530
3 3 1.59019 1.50000 1.40547 1.30685 1.20447 1.09861 0.98958 0.87765
1 4 -1.15267 -1.83333 -2.58868 -3.39721 -4.24419 -5.11973 -6.01707 -6.93147
2 4 -0.18124 -0.50000 -0.84650 -1.21650 -1.60608 -2.01195 -2.43142 -2.86231
3 4 0.66161 0.50000 0.32852 0.14797 -0.04080 -0.23693 -0.43966 -0.64829
4 4 1.89971 1.83333 1.76445 1.69315 1.61955 1.54379 1.46600 1.38629
1 5 -1.32846 -2.08333 -2.92260 -3.82090 -4.76118 -5.73222 -6.72645 -7.73864
2 5 -0.44950 -0.83333 -1.25301 -1.70245 -2.17621 -2.66977 -3.17957 -3.70279
3 5 0.22114 0.00000 -0.23673 -0.48756 -0.75090 -1.02523 -1.30919 -1.60158
4 5 0.95527 0.83333 0.70536 0.57166 0.43261 0.28860 0.14002 -0.01275
5 5 2.13582 2.08333 2.02922 1.97352 1.91629 1.85759 1.79749 1.73606
1 6 -1.46541 -2.28333 -3.19391 -4.16827 -5.18738 -6.23886 -7.31451 -8.40875
2 6 -0.64376 -1.08333 -1.56606 -2.08401 -2.63021 -3.19903 -3.78612 -4.38808
3 6 -0.06097 -0.33333 -0.62691 -0.93934 -1.26820 -1.61125 -1.96649 -2.33223
4 6 0.50325 0.33333 0.15344 -0.03579 -0.23359 -0.43921 -0.65189 -0.87094
5 6 1.18128 1.08333 0.98132 0.87538 0.76571 0.65250 0.53597 0.41634
6 6 2.32673 2.28333 2.23880 2.19315 2.14641 2.09861 2.04980 2.00000
1 7 -1.57715 -2.45000 -3.42263 -4.46303 -5.55035 -6.67130 -7.81715 -8.98202
2 7 -0.79491 -1.28333 -1.82155 -2.39976 -3.00952 -3.64420 -4.29870 -4.96917
3 7 -0.26589 -0.58333 -0.92735 -1.29466 -1.68192 -2.08612 -2.50465 -2.93533
4 7 0.21226 0.00000 -0.22631 -0.46557 -0.71657 -0.97808 -1.24894 -1.52809
5 7 0.72149 0.58333 0.43825 0.28655 0.12864 -0.03505 -0.20410 -0.37808
6 7 1.36519 1.28333 1.19855 1.11091 1.02053 0.92752 0.83200 0.73411
7 7 2.48699 2.45000 2.41217 2.37352 2.33405 2.29379 2.25276 2.21098
1 8 -1.67132 -2.59286 -3.62047 -4.71920 -5.86666 -7.04872 -8.25623 -9.48307
2 8 -0.91803 -1.45000 -2.03781 -2.66982 -3.33621 -4.02938 -4.74361 -5.47464
3 8 -0.42556 -0.78333 -1.17277 -1.58957 -2.02946 -2.48866 -2.96397 -3.45277
4 8 0.00023 -0.25000 -0.51833 -0.80315 -1.10269 -1.41521 -1.73911 -2.07294
5 8 0.42428 0.25000 0.06572 -0.12799 -0.33046 -0.54096 -0.75878 -0.98324
6 8 0.89981 0.78333 0.66176 0.53528 0.40410 0.26849 0.12871 -0.01498
7 8 1.52032 1.45000 1.37748 1.30279 1.22601 1.14720 1.06643 0.98380
8 8 2.62508 2.59286 2.55999 2.52648 2.49235 2.45759 2.42224 2.38629
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Table 2: Product moments of order statistics, µr,s:n ≡ E(Xr:nXs:n), for K3D.

r s n α = −0.5 α = −1 α = −1.5 α = −2 α = −2.5 α = −3 α = −3.5 α = −4
1 1 1 2.38403 3.28987 4.82141 7.06019 10.06065 13.86107 18.48958 23.96770
1 1 2 1.53927 3.28987 6.17868 10.35006 15.89759 22.88545 31.35990 41.35567
1 2 2 0.09415 -0.00000 0.11260 0.48045 1.14036 2.12054 3.44303 5.12544
2 2 2 3.22878 3.28987 3.46413 3.77032 4.22372 4.83668 5.61927 6.57974
1 1 3 1.82068 4.28987 8.33702 14.15720 21.87386 31.56997 43.30444 57.12098
1 2 3 0.29710 0.85507 1.89907 3.51168 5.75437 8.67359 12.30513 16.67718
1 3 3 -1.07885 -1.71013 -2.26626 -2.69929 -2.97345 -3.06177 -2.94338 -2.60172
2 2 3 0.97645 1.28987 1.86199 2.73576 3.94505 5.51641 7.47082 9.82505
2 3 3 1.06420 0.85506 0.70497 0.62896 0.64017 0.74979 0.96733 1.30086
3 3 3 4.35495 4.28987 4.26520 4.28760 4.36305 4.49682 4.69349 4.95708
1 1 4 2.19625 5.28987 10.34955 17.61262 27.22619 39.28761 53.86514 71.00904
1 2 4 0.64428 1.71013 3.52010 6.19117 9.80842 14.43471 20.11753 26.89359
1 3 4 -0.45701 -0.42026 -0.09300 0.58988 1.67790 3.20938 5.21463 7.71811
1 4 4 -1.94826 -3.00000 -4.05724 -5.06472 -5.98282 -6.78284 -7.44335 -7.94779
2 2 4 0.69400 1.28987 2.29943 3.79097 5.81686 8.41705 11.62233 15.45680
2 3 4 0.35684 0.42026 0.64908 1.07449 1.72274 2.61555 3.77082 5.20344
2 4 4 0.03813 -0.42026 -0.85755 -1.25758 -1.60606 -1.89078 -2.10146 -2.22940
3 3 4 1.25889 1.28987 1.42456 1.68056 2.07324 2.61577 3.31931 4.19329
3 4 4 1.93092 1.71012 1.51417 1.34946 1.22199 1.13720 1.09998 1.11470
4 4 4 5.38697 5.28987 5.21208 5.15662 5.12632 5.12383 5.15156 5.21168
1 1 5 2.55880 6.20653 12.16940 20.72073 32.02703 46.19698 63.30613 83.40973
1 2 5 0.98634 2.49575 4.99124 8.62202 13.49419 19.68450 27.24989 36.23368
1 3 5 -0.02364 0.47287 1.45432 3.00847 5.20195 8.08612 11.70137 16.07999
1 4 5 -1.05710 -1.39314 -1.54495 -1.45123 -1.06647 -0.35604 0.70726 2.14539
1 5 5 -2.66043 -4.07124 -5.54864 -7.02746 -8.46248 -9.82218 -11.08384 -12.23044
2 2 5 0.74604 1.62320 3.07017 5.18015 8.02282 11.65011 16.10120 21.40631
2 3 5 0.28602 0.59053 1.17248 2.08134 3.35762 5.03394 7.13659 9.68689
2 4 5 -0.12356 -0.26079 -0.28373 -0.16507 0.11854 0.58673 1.25589 2.13981
2 5 5 -0.70290 -1.39314 -2.09531 -2.79002 -3.46022 -4.09163 -4.67247 -5.19303
3 3 5 0.61595 0.78987 1.14331 1.70720 2.50793 3.56748 4.90401 6.53255
3 4 5 0.66787 0.59053 0.59209 0.68743 0.88997 1.21156 1.66252 2.25180
3 5 5 0.86002 0.47287 0.09331 -0.27138 -0.61419 -0.92870 -1.20913 -1.45038
4 4 5 1.68752 1.62320 1.61206 1.66279 1.78345 1.98131 2.26284 2.63378
4 5 5 2.70891 2.49573 2.29515 2.11042 1.94473 1.80104 1.68217 1.59069
5 5 5 6.31183 6.20653 6.11209 6.03007 5.96204 5.90946 5.87374 5.85616
1 1 6 2.89237 7.03987 13.82080 23.53976 36.37944 52.45777 71.85613 94.63380
1 2 6 1.30224 3.21193 6.33539 10.85151 16.88489 24.52398 33.83334 44.86146
1 3 6 0.33631 1.21927 2.77140 5.10399 8.30065 12.42509 17.52676 23.64462
1 4 6 -0.54474 -0.42941 0.03347 0.91976 2.28673 4.17876 6.63120 9.67278
1 5 6 -1.57078 -2.21373 -2.74554 -3.10311 -3.24121 -3.12655 -2.73358 -2.04192
1 6 6 -3.27113 -5.00000 -6.84596 -8.73300 -10.60975 -12.44150 -14.20393 -15.87932
2 2 6 0.89094 2.03987 3.91241 6.62560 10.26501 14.89307 20.55612 27.28934
2 3 6 0.37277 0.90752 1.83451 3.22210 5.12493 7.58601 10.63925 14.31163
2 4 6 -0.06132 0.03822 0.34477 0.89935 1.73629 2.88392 4.36556 6.20052
2 5 6 -0.54078 -0.85881 -1.10002 -1.23759 -1.24863 -1.11409 -0.81812 -0.34748
2 6 6 -1.30731 -2.21373 -3.16245 -4.12964 -5.09463 -6.04052 -6.95375 -7.82341
3 3 6 0.45624 0.78987 1.38570 2.28924 3.53845 5.16418 7.19138 9.64026
3 4 6 0.32957 0.39119 0.59328 0.96120 1.51732 2.28084 3.26811 4.49296
3 5 6 0.23141 0.03822 -0.09593 -0.15698 -0.13204 -0.00965 0.22024 0.56640
3 6 6 0.12265 -0.42941 -0.99224 -1.55682 -2.11441 -2.65706 -3.17771 -3.67024
4 4 6 0.77566 0.78987 0.90092 1.12516 1.47741 1.97077 2.61664 3.42484
4 5 6 1.03889 0.90752 0.82065 0.78638 0.81241 0.90578 1.07289 1.31949
4 6 6 1.56113 1.21927 0.88008 0.54744 0.22524 -0.08281 -0.37320 -0.64272
5 5 6 2.14345 2.03987 1.96763 1.93161 1.93647 1.98657 2.08594 2.23825
5 6 6 3.41336 3.21190 3.01754 2.83218 2.65768 2.49582 2.34834 2.21685
6 6 6 7.14551 7.03987 6.94098 6.84976 6.76715 6.69404 6.63130 6.57974
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4. Product Moments of Order Statistics

We need product moments for covariance calculations of any two order statistics from the distribution.
It is well-known that the joint PDF of Xr:n and Xs:n, 1 ≤ r < s ≤ n, is given by

fr,s:n(x, y;α) = Cr,s,n f (x;α) f (y;α)Fr−1(x;α)[1 − F(y;α)]n−s[F(y;α) − F(x;α)]s−r−1,

where x < y, r < s and Cr,s,n = n!/((r − 1)!(s − r − 1)!(n − s)!). We will try to find a closed form expression for
the product moment E(Xk

r:nXl
s:n), k, l ∈ Z+.

Theorem 4.1. We have

E(Xk
r:nXl

s:n) = Cr,s,n

s−r−1∑
i=0

n−s∑
j=0

(
s − r − 1

i

)(
n − s

j

)
(−1)i+ j

∂k

∂ρk
1

∂l

∂ρl
2

{
(−α)ρ1+ρ2−2

ρ1 − (r + i)/α
B
(
ρ1 + ρ2 − (s + j)/α, 1 − ρ2

)
3F2

(
ρ1 + ρ2 − (s + j)/α,

ρ1 − (r + i)/α, ρ1; 1 + ρ1 − (r + i)/α, ρ1 − (s + j)/α + 1; 1
)}∣∣∣
ρ1=ρ2=0

,

where B(·, ·) is the usual beta function defined by the integral B(a, b) =
∫ 1

0 xa−1(1 − x)b−1 dx, a, b > 0 and 3F2 is the
generalized hypergeometric function defined by the series

3F2(a1, a2, a3; b1, b2; x) =
∞∑

k=0

(a1)k(a2)k(a3)k

(b1)k(b2)k

xk

k!
, (9)

where (x)k = x(x + 1) · · · (x + k − 1) denotes the ascending factorial and α < 0.

Proof.

E(Xk
r:nXl

s:n) =
∫
∞

−∞

∫ y

−∞

xkyl fr,s:n(x, y;α) dx dy

In order to solve this double integral, we use similar change of variables that has been done for single
moments. At the last step, we use the following formula 7.512.5∫ 1

0
ua−1(1 − u)b−1

2F1(c, d;ρ; u) du = B(a, b)3F2(a, c, d;ρ, a + b; 1)

in [11].

Some calculations are reported in Table 2. Although, we cannot see any overall pattern from this table,
we observe that for r < s < n and fixed n and r, the product moments decrease with increasing s. Now let
µ(k,l)

r,s:n = E(Xk
r:nXl

s:n). We can find a relation between product moments which is presented in the following
theorem.

Theorem 4.2. Let α ∈ Z− and r < s. Then we have

µ(k,l)
r,s:n =

n!(r − α)!
α(k + 1)(r − 1)!(n − α)!

[
µ(k+1,l)

r−α+1,s−α:n−α − µ
(k+1,l)
r−α,s−α:n−α

]
+

r
α(k + 1)

[
µ(k+1,l)

r,s:n − µ(k+1,l)
r+1,s:n

]
.
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Proof. By using (1), we have

µ(k,l)
r,s:n =

Cr,s,n

α

{∫
∞

−∞

∫ y

−∞

xkyl f (y)Fr−α(x)[1 − F(y)]n−s[F(y) − F(x)]s−r−1 dx dy

−

∫
∞

−∞

∫ y

−∞

xkyl f (y)Fr(x)[1 − F(y)]n−s[F(y) − F(x)]s−r−1 dx dy
}
,

where F(·;α) ≡ F(·) and f (·;α) ≡ f (·). After using integration by parts by treating xk for integration and
Fr−α(x)[F(y) − F(x)]s−r−1 for differentiation for the first integral above, and a similar substitution for the
second integral, the result of the theorem is easily obtained.

5. Location-Scale Parameter Estimation

In order to apply the theory developed in the previous sections, we refer to the statistical inference. We
introduce location parameter µ and scale parameter σ into the model by transformation Y = µ + σX. The
pdf of Y is then given by

f (y;α, µ, σ) =
1
σ

e−(y−µ)/σ
(
1 − αe−(y−µ)/σ

)(1−α)/α
,

where −∞ < µ < ∞ and σ > 0. We use K3D(α, µ, σ) for the distribution of Y. We assume that the shape
parameter is known.

5.1. Best Linear Unbiased Estimation Method
As an application of the moments of order statistics from the K3D distribution, we search for the BLUE’s

of the location-scale parameters. For a reference, see e.g. David and Nagaraja [9] p. 185. The BLUE’s have
been obtained in the literature for different models (see e.g. Balakrishnan et al. [5] and Tumlinson et al.
[26].

Let Y1,. . . , Yn be a random sample from the K3D(α, µ, σ) and Y1:n ≤· · · ≤ Yn:n denote the corresponding
ordered observations. Then the BLUE vector of µ and σ is given by

(
µ̃
σ̃

)
= Cy,

where

C = (ATV−1A)−1ATV−1;

A = (1, ξ), 1T = (1, · · · , 1), yT = (y1:n, · · · , yn:n), ξT = (ξ1:n, · · · , ξn:n), ξr:n = E(Xr:n) and V is the variance-
covariance matrix of the order statistics from X. All the vectors are n × 1. The variance-covariance matrix
of the estimates is given by

(ATV−1A)−1σ2.

The coefficients for the BLUE of µ and σ are computed for the K3D for α = −0.5(−0.5) − 4.5 and n = 3, 5
and 10, and are presented in Tables 3 and 4, respectively. The coefficients of the variances and covariances
of the BLUE of µ and σ are tabulated for α = −0.5(−0.5) − 4.5 and n = 3, 5 and 10 in Table 5 for the K3D. In
this table, the first line gives variance coefficients for µ, the second line gives those for σ, and the last line
gives the covariance coefficients multiplied by σ2 for a given n. We observe from Table 5 that the variances
increase with decreasing α. We just give such tables to show its computability, and use them in a simulation
study.
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Table 3: Coefficients of the BLUE of µ for the K3D.

n r α = −0.5 α = −1 α = −1.5 α = −2 α = −2.5 α = −3 α = −3.5 α = −4 α = −4.5

3 1 0.40798 0.25000 0.16112 0.11081 0.08011 0.05941 0.04409 0.03185 0.02155
3 2 0.42240 0.50000 0.49993 0.45950 0.40476 0.34876 0.29698 0.25118 0.21147
3 3 0.16962 0.25000 0.33895 0.42968 0.51513 0.59182 0.65894 0.71697 0.76697

5 1 0.19572 0.09762 0.05908 0.04271 0.03476 0.03025 0.02725 0.02495 0.02300
5 2 0.29168 0.25017 0.18972 0.14057 0.10572 0.08168 0.06493 0.05295 0.04411
5 3 0.25717 0.30442 0.30832 0.28550 0.25188 0.21689 0.18479 0.15698 0.13350
5 4 0.17899 0.25017 0.31375 0.36141 0.39070 0.40339 0.40299 0.39324 0.37736
5 5 0.07644 0.09762 0.12914 0.16981 0.21693 0.26778 0.32003 0.37188 0.42203

10 1 0.06608 0.02615 0.01685 0.01464 0.01416 0.01406 0.01399 0.01386 0.01366
10 2 0.12598 0.07426 0.04449 0.02993 0.02276 0.01904 0.01696 0.01568 0.01480
10 3 0.14199 0.11192 0.07940 0.05597 0.04091 0.03146 0.02546 0.02154 0.01889
10 4 0.14305 0.13742 0.11477 0.09028 0.06988 0.05447 0.04325 0.03516 0.02930
10 5 0.13536 0.15026 0.14450 0.12797 0.10844 0.09004 0.07431 0.06148 0.05124
10 6 0.12154 0.15026 0.16282 0.16157 0.15137 0.13674 0.12083 0.10545 0.09149
10 7 0.10306 0.13742 0.16438 0.18103 0.18758 0.18598 0.17866 0.16784 0.15523
10 8 0.08078 0.11192 0.14438 0.17420 0.19872 0.21676 0.22820 0.23367 0.23413
10 9 0.05527 0.07426 0.09922 0.12830 0.15941 0.19070 0.22067 0.24823 0.27266
10 10 0.02689 0.02615 0.02917 0.03612 0.04676 0.06075 0.07767 0.09710 0.11859

Table 4: Coefficients of the BLUE of σ for the K3D.

n r α = −0.5 α = −1 α = −1.5 α = −2 α = −2.5 α = −3 α = −3.5 α = −4 α = −4.5

3 1 -0.46072 -0.33333 -0.25037 -0.19751 -0.16263 -0.13844 -0.12081 -0.10740 -0.09683
3 2 0.11244 0.00000 -0.06551 -0.09700 -0.10905 -0.11097 -0.10797 -0.10277 -0.09678
3 3 0.34828 0.33333 0.31588 0.29451 0.27168 0.24941 0.22878 0.21016 0.19361

5 1 -0.30261 -0.18888 -0.13109 -0.09954 -0.08044 -0.06779 -0.05882 -0.05212 -0.04690
5 2 -0.09670 -0.12780 -0.11999 -0.10315 -0.08732 -0.07451 -0.0645 -0.05669 -0.05052
5 3 0.05944 0.00000 -0.03753 -0.05621 -0.06300 -0.06340 -0.06078 -0.05694 -0.05279
5 4 0.15630 0.12780 0.09670 0.06726 0.04212 0.02207 0.00678 -0.00447 -0.01254
5 5 0.18357 0.18888 0.19191 0.19164 0.18863 0.18364 0.17732 0.17022 0.16275

10 1 -0.15907 -0.08646 -0.05747 -0.04330 -0.03507 -0.02968 -0.02584 -0.02294 -0.02067
10 2 -0.11193 -0.08629 -0.06246 -0.04713 -0.03748 -0.03114 -0.02672 -0.02349 -0.02101
10 3 -0.06388 -0.06990 -0.06026 -0.04908 -0.04005 -0.03334 -0.02841 -0.02472 -0.02190
10 4 -0.02286 -0.04491 -0.04940 -0.04602 -0.04043 -0.03496 -0.03027 -0.02646 -0.02338
10 5 0.01167 -0.01545 -0.03000 -0.03539 -0.03564 -0.03354 -0.03063 -0.02763 -0.02486
10 6 0.04005 0.01545 -0.00341 -0.01564 -0.02243 -0.02547 -0.02619 -0.02561 -0.02437
10 7 0.06213 0.04491 0.02783 0.01316 0.00178 -0.00640 -0.01190 -0.01534 -0.01729
10 8 0.07756 0.06989 0.05952 0.04809 0.03690 0.02674 0.01796 0.01066 0.00477
10 9 0.08512 0.08629 0.08488 0.08130 0.07621 0.07018 0.06369 0.05707 0.05057
10 10 0.08121 0.08646 0.09079 0.09399 0.09621 0.09761 0.09832 0.09846 0.09813

Table 5: Variances and covariances of the BLUE’s of µ and σ for the K3D. (×σ2)

n α = −0.5 α = −1 α = −1.5 α = −2 α = −2.5 α = −3 α = −3.5 α = −4 α = −4.5

3 0.70814 1.07247 1.46913 1.89203 2.33919 2.81113 3.31076 3.84254 4.41153
3 0.32584 0.33333 0.34775 0.36253 0.37641 0.38915 0.40065 0.41093 0.42002
3 0.02511 0.00000 -0.02571 -0.04577 -0.05873 -0.06391 -0.06116 -0.05077 -0.03332

5 0.41783 0.62824 0.85389 1.09222 1.34158 1.60082 1.86924 2.14646 2.43248
5 0.16357 0.17037 0.17800 0.18484 0.19079 0.19596 0.20050 0.20452 0.20810
5 0.02106 0.00000 -0.02021 -0.0382 -0.05382 -0.06709 -0.07812 -0.08698 -0.09379

10 0.20591 0.30745 0.41506 0.52756 0.64408 0.76400 0.88690 1.01247 1.14050
10 0.07291 0.07679 0.08035 0.08335 0.08587 0.08800 0.08983 0.09141 0.09278
10 0.01187 0.00000 -0.01125 -0.02162 -0.03107 -0.03965 -0.04743 -0.05448 -0.06087
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5.2. Maximum Likelihood Method
Let the data set x1, x2,. . . , xn be modeled by K3D(α, µ, σ). Then the log-likelihood function is given by

l(µ, σ) = −n ln σ −
n∑

i=1

(xi − µ

σ

)
+

( 1
α
− 1

) n∑
i=1

ln
[
1 − αe−(xi−µ)/σ

]
. (10)

Upon taking the partial derivatives of (10) with respect to the parameters, and then equating them to 0,
the likelihood estimating equations are found as

lµ(µ, σ) =
n
σ
+

(
α − 1
σ

) n∑
i=1

e−(xi−µ)/σ

1 − αe−(xi−µ)/σ
= 0 (11)

and

lσ(µ, σ) = −
n
σ
+

n∑
i=1

(xi − µ)
σ2 +

(α − 1)
σ2

n∑
i=1

(xi − µ)e−(xi−µ)/σ

1 − αe−(xi−µ)/σ
= 0. (12)

By solving (11) and (12) simultaneously, we get the MLE’s of µ and σ as in the following forms:

σ̂ = x̄ +
(
α − 1

n

) n∑
i=1

xie−(xi−µ̂)/σ̂

1 − αe−(xi−µ̂)/σ̂
(13)

and

µ̂ = (−σ̂) ln

(1 − α
n

) n∑
i=1

e−xi/σ̂

1 − αe−(xi−µ̂)/σ̂

 . (14)

Since the estimators were not obtained explicitly, one should write an iterative algorithm to compute
the estimates. This algorithm will converge to the true values that maximize the log-likelihood globally
due to the following theorem.

Theorem 5.1. The MLE’s of the parameters µ and σ which are given in (13) and (14), respectively, exist uniquely in
the respective parameter spaces.

Proof. Let θ=(µ, σ). To show the existence of a local maximum according to Theorem 2.1 in [15], one
may easily show that when θ tends to the boundary of the parameter space, the likelihood tends to zero.

To show the uniqueness of the MLE of θ according to Corollary 2.5 in [15], we should first determine
the second derivatives matrix

D2l =
(
lµµ lµσ
lσµ lσσ

)
of the log-likelihood function at the solutions of the estimating equations. We have

lµµ =
(α − 1)
σ2

n∑
i=1

e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2 ,

lσσ =
n
σ2 − 2

n∑
i=1

(xi − µ)
σ3 −

2(α − 1)
σ3

n∑
i=1

(xi − µ)e−(xi−µ)/σ

1 − αe−(xi−µ)/σ

+
(α − 1)
σ4

n∑
i=1

(xi − µ)2e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2 ,
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lµσ = −
n
σ2 −

(α − 1)
σ2

n∑
i=1

e−(xi−µ)/σ

1 − αe−(xi−µ)/σ
+

(α − 1)
σ3

n∑
i=1

(xi − µ)e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2 .

At the solutions of the estimating equations, we have the following determinant

det(D2l) = lµµlσσ − l2µσ

=

 (α − 1)
σ2

n∑
i=1

e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2


−n
σ2 +

(α − 1)
σ4

n∑
i=1

(xi − µ)2e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2


−

 (α − 1)
σ3

n∑
i=1

(xi − µ)e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2


2

=
n(1 − α)
σ4

n∑
i=1

e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2 +

(α − 1)2

σ6

 n∑
i=1

e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2

×

n∑
i=1

(xi − µ)2e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2 −

 n∑
i=1

(xi − µ)e−(xi−µ)/σ[
1 − αe−(xi−µ)/σ]2


2
 .

We observe that det(D2l) is positive from Cauchy-Schwarz inequality. Further, it is clear that łµµ < 0. Thus,
the MLE’s of µ and σ uniquely exist.

6. Numerical Results

In this section we first report the results of a small simulation study. In order to compare the two
estimation methods we generate 10,000 random samples of size 10 from the K3D(−1.5, 2, 1). Then we
compute the location-scale estimates from both methods. We use Tables 3 and 4 to compute the BLUE’s.
According to Table 6, the two estimation methods have given similar MSE’s and so we may say that their
performances are similar for the small data sets. However, the bias of the location estimate with the BLUE
has given a smaller value.

Next we consider a small real data set from the web site https://tr.euronews.com/2019/09/23/a-dan-z-ye-
turkiye-nin-yoksulluk-ve-gelir-dagilimi-esitsizligi-haritasi.

It consists of relative poverty rates of Turkey for the year 2018. The data set is 8.1, 7.7, 11.5, 10.3, 5.0,
10.1, 11.6, 9.1, 9.9, 12.7. The skewness coefficient of the data set is -0.64832. Thus, a probability distribution
that can be left-skewed is needed to model this data set. We may use K3D for this purpose appropriately.

We assume that α = −2.5, as a prior knowledge, in order to use the Tables 3, 4 and 5. We take this value
since it is very close to the L-moment estimate -2.7 of α. At this point, we want to correct the L-skewness
τ3 measure in Jeong et al. (2014). The correct expression should be

τ3 =
2ψ(−3/α) − 3ψ(−2/α) + ψ(−1/α)

ψ(−2/α) − ψ(−1/α)
.

We also perform some goodness-of-fit tests to support the validity of this distribution for modelling
the data. Since we are mainly concerned with the location-scale estimation, we may scale the data so
that we perform standard Kolmogorov-Smirnov (KS) and Cramer-Von Mises (CVM) tests. The ks.test
and cvm.test functions in R program [18] are used. The results of the test statistics and their p-values
within parentheses are as follows: KS=0.3637 (0.1083), CVM=0.2352 (0.5099). Both tests do not reject the
hypothesis that the data come from the K3D.
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Table 6: Means of the estimates and the corresponding mean square errors from a small simulation study.

Method µ̂ σ̂ MSE(µ̂) MSE(σ̂)

MLE 1.97611 0.97788 0.38206 0.06536
BLUE 1.99033 1.03861 0.38171 0.07483

After fitting the K3D to the data we find the MLE’s and standard errors within parentheses which are
µ̂ = 10.4424(0.6122) and σ̂ = 0.7629(0.2109). The BLUE’s of the parameters are µ̃ = 10.4761 and σ̃ = 0.8129.
From Table 5, we see that the variance of µ̃ is 0.64408σ2, and the variance of σ̃ is 0.08587σ2. To calculate
the standard error of µ̃, we use σ̃ = 0.8129 and just take the square root of 0.64408σ̃2. Similarly, we do it
for the standard error of σ̃. As a result, the standard errors of µ̃ and σ̃ are computed as 0.6524 and 0.2382,
respectively. We observe that the MLE’s have slightly smaller standard errors than those for the BLUE’s.
We also observe from Figure 2 that the fit based on the MLE method captures the peak of the data slightly
better than the BLUE method.
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Figure 2: Fits based on the MLE and BLUE methods on the histogram of the relative poverty rates.

7. Conclusions

The kappa distribution, namely K3D, considered in this paper is mainly used in hydrology and envi-
ronmental sciences to model hydrologic and extremal events. Although its usefulness in real applications,
the theory of the distribution has been studied less in the literature. As a contribution to the theory of
the distribution, this paper studied the moments of order statistics from the distribution and derived some
moment relations. We observed that these expressions were in easily computable forms. The relations are
also generalizations of the known results for logistic distribution which are given before. Then we showed
that the BLUE’s can be easily computable and a good alternative to the MLE’s since their computation
do not need any iterative process. Since the distribution studied here has the CDF and its inverse in nice
computable forms, further applications of the distribution are challenging.
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