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Ergodic type theorems via statistical convergence
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Abstract. In the present paper we obtain some mean ergodic and uniform ergodic type theorems via
statistical convergence in a Banach space. We prove, in this case that, the mean ergodic decomposition
remains true. We also characterize statistical uniform ergodicity for an operator T ∈ B(X) under the

condition st − lim
n

∥Tn
∥

n
= 0.

1. Introduction

The main idea of the ergodic theory is to investigate the convergence of the sequence given by Mn(T) :=
1
n

n−1∑
k=0

Tk, where T is a bounded linear operator on a Banach space X and the iterates of the operator T are

defined by induction T0 = I and Tn = T◦Tn−1 . An operator T is called mean ergodic, respectively uniformly
ergodic, if its Cesàro averages {Mn(T)} is strongly, respectively uniformly convergent in B(X). We denote by
P the strong limit in B(X) of {Mn(T)}, it is a projection onto the kernel of the operator I − T, corresponding
to the ergodic decomposition X = N(I − T) ⊕ (I − T)X. Recall that an operator T ∈ B(X) is called power
bounded if sup

n
∥Tn
∥ < ∞.

Initially, the mean ergodic theorem of von Neumann was proved for unitary operators in a complex
Banach space X [17]. Afterwards, this theorem was given by Riesz [18] for power bounded operators on
Lp, 1 < p < ∞, by Kakutani [8] and Yosida [19] (independently) for power bounded operators in a reflexive
Banach space.

In the present paper, using statistical convergence we prove some mean and uniform ergodic type
theorems. We show, among other things that the mean ergodic decomposition remains true.

Now we give some basic notation concerning the concept of statistical convergence. The notion of
statistical convergence was introduced by Fast [5] and developed by many authors (see, e.g, [2], [3], [7], [9],
[10], [13]). Let K be a subset of the natural numbersN, then Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes

the cardinality of the set Kn. The natural (asymptotic) density of K is given by δ(K) := lim
n

1
n
|Kn| whenever

the limit exists. K is said to be statistically dense if δ(K) = 1 [2]. A sequence (xk) of (real or complex) numbers
is said to be statistically convergent to some number L, if for every ε > 0, the set K = {k ∈ N : |xk − L| ≥ ε}
has natural density zero; in this case, we write st − lim xk = L.
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The real number sequence x is said to be statistically bounded if there is a number B such that δ({k :
|xk − L| > B}) = 0 [7].

It is well-known that st − lim xk = L if and only if there exists a subset K = {n1 < n2 < ...} with δ(K) = 1
such that lim

k
xnk = L (i.e., lim

k∈K
xk = L), (see, e.g, [3], [6], [10], [13]). Note that a convergent sequence is also

statistically convergent to its limit value and the theory of statistical convergence differs from ordinary
theory of convergence in at least one important way: a statistically convergent sequence need not be
bounded [6].

Throughout the paper we will call an operator T ∈ B(X) a statistically mean ergodic operator, respectively
a statistically uniformly ergodic operator, if the statistical limit of {Mn(T)x}, respectively the statistical limit
of {Mn(T)} exists.

2. Mean ergodic theorems via statistical convergence

In this section, using the concept of statistical convergence we give some extensions of the mean ergodic
type theorems. Our main result is motivated by that of Theorem 3.6.9 in [1].

Let X be a Banach space and let U ⊂ X, l ∈ X. Then we say that l is in the st-hull of U if there is a
sequence (xn) of elements in U so that st − lim xn = l. The set U is st-closed if it contains all of the elements

in its st-hull. By U
st

we denote the st-hull of U. Observe that U ⊂ U ⊂ U
st

, and U is st-closed if and only if

U
st
= U.
In the proof of the main theorem we will make use of the following lemma which is essentially proved

in [4].

Lemma 2.1. Let X be a Banach space and let U ⊂ X. Then U = U
st

.

We now present the main theorem of this section.

Theorem 2.2. Let X be a Banach space and T ∈ B(X). Assume that there are a constant c ≥ 1 and a set E ⊂N with
δ(E) = 1 and for all n ∈ E, ∥Tn

∥ ≤ c. For n ∈N define the linear operator Mn : X→ X by

Mn =Mn(T) :=
1
n

n−1∑
k=0

Tk.

Then the following assertions hold:

(i) Let x ∈ X. The sequence (Mnx)n∈N statistically converges if and only if it has a statistically dense subsequence
which is weakly statistically convergent.

(ii) The set
Z := {x ∈ X : the sequence (Mnx)n∈N statistically converges}

is a (statistically) closed T-invariant linear subspace of X and

Z = N(I − T) ⊕ R(I − T)

Furthermore, if X is reflexive, then Z = X.

(iii) Define the bounded linear operator P : Z → Z by P(x + y) := x, for x ∈ N(I − T) and y ∈ R(I − T). Then for
all z ∈ Z,

st − lim
n

Mnz = Pz

and TP = PT = P = P2, ∥P∥ ≤ c.
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Proof. For convenience, we will examine the proof in eight steps.

Step 1. Let E ⊂N. Then ∥Mn∥ ≤ c and ∥Mn(I − T)∥ ≤
1 + c

n
, for all n ∈ E such that δ(E) = 1.

Since ∥Tn
∥ ≤ c for all n ∈ E such that δ(E) = 1, we have

∥Mn∥ =

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tk

∥∥∥∥∥∥∥ ≤ 1
n

n−1∑
k=0

∥Tk
∥ ≤ c, (n ∈ E)

and

∥Mn(I − T)∥ =

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tk(I − T)

∥∥∥∥∥∥∥ ≤ 1
n

(∥I∥ + ∥Tn
∥) ≤

1 + c
n
, (n ∈ E).

Hence the proof of Step 1 is completed.
Step 2. Let x ∈ X such that Tx = x. Then Mnx = x for all n ∈N and

∥x∥ ≤ c∥x + ξ − Tξ∥, for all ξ ∈ X.

From Step 1, we have ∥Mn(I − T)∥ ≤
1 + c

n
. Applying the operator lim

n∈E
to both sides of the inequality, we

get that
st − lim

n
∥Mn(I − T)ξ∥ = 0, (for all ξ ∈ X).

Hence we obtain

∥x∥ = st − lim
n
∥x +Mn(I − T)ξ∥ = st − lim

n
∥Mn(x + ξ − Tξ)∥

≤ (st − lim
n
∥Mn∥)∥x + ξ − Tξ∥

≤ c∥x + ξ − Tξ∥.

This proves Step 2.

Step 3. If x ∈ N(I − T) and y ∈ R(I − T)
st

then ∥x∥ ≤ c∥x + y∥.

From Lemma 2.1, we know that R(I − T) = R(I − T)
st

. If we apply the same technique as in [1, page 150],
the proof of Step 3 holds.

Step 4. N(I − T) ∩ R(I − T) = {0} and the direct sum Z = N(I − T) ⊕ R(I − T) is a (statistically) closed
subspace of X.

As in the proof of the Step 3, first assumption clearly holds from [1, page 150]. In order to show that
Z is closed, take zn ∈ Z. Hence zn = xn + yn such that xn ∈ N(I − T) and yn ∈ R(I − T) and (zn) statistically
converges to some element z ∈ X. Then (zn) is a Cauchy sequence and hence (xn) is a Cauchy sequence from
Step 3. This implies that yn = zn−xn is a Cauchy sequence and hence z = x+y, where x := st−lim xn ∈ N(I−T)
and y := st − lim yn ∈ R(I − T). This concludes the proof of Step 4.

Step 5. If z ∈ Z then Tz ∈ Z.
Let z ∈ Z. Then z = x+ y such that x ∈ N(I − T) and y ∈ R(I − T). Similar to the proof of Step 4, the proof

of Step 5 is observed from [1, page 151].
Step 6. Let x ∈ N(I − T) and y ∈ R(I − T). Then x = st − lim

n
Mn(x + y).

Since x ∈ N(I − T), we get Mnx = x. So we have

st − lim
n

Mnx = x. (1)

On the other hand, since y ∈ R(I − T), there exists y j ∈ R(I − T) such that y j → y. For ξ j ∈ X, we can write
y j = ξ j − Tξ j. From Step 1, we have for n ∈ E with δ(E) = 1 that

∥Mny j∥ = ∥Mn(ξ j − Tξ j)∥ ≤
1 + c

n
∥ξ j∥.
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This implies that

st − lim
n
∥Mny j∥ = 0. (2)

Furthermore, we can write, for y ∈ R(I − T) that,

∥Mny∥ ≤ ∥Mn(y j − y)∥ + ∥Mny j∥.

Given ϵ > 0, there exist j0(ϵ) so that for all j ≥ j0(ϵ) we have ∥y j − y∥ ≤
ϵ
c

. Hence we necessarily have, for
all j ∈ E, j ≥ j0(ϵ), that

∥Mn(y j − y)∥ =

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tk(y j − y)

∥∥∥∥∥∥∥ ≤ 1
n

n−1∑
k=0

∥Tk
∥∥(y j − y)∥ ≤ c∥(y j − y)∥ < ε

from which we immediately get

st − lim
n
∥Mn(y j − y)∥ = 0. (3)

Hence, Step 6 follows from (1), (2) and (3).
Step 7. Let x, z ∈ X. The following are equivalent:

(a) Tx = x and z − x ∈ R(I − T).
(b) st − lim

n
∥Mnz − x∥ = 0.

(c) There is a sequence of integers 1 ≤ n1 ≤ n2 ≤ n3 ≤ ... such that for all f ∈ X′

we have

st − lim
i
∥ f (Mni z)∥ = f (x).

The implication (a)⇒ (b) follows from Step 6.
We now prove (b) ⇒ (c) Since (Mnz) is statistically convergent, a statistically dense subsequence of it

also statistically converges. Hence the subsequence weak statistically converges to same limit.
(c)⇒ (a) Let f ∈ X′

. Then
T∗ f = f ◦ T : X→ R

is a bounded linear functional and

f (x − Tx) = ((I − T)∗ ◦ f )(x)
= st − lim

i
((I − T)∗ ◦ f )(Mni z)

= st − lim
i

( f ◦ (I − T))(Mni z).

Let B := {ni : i = 1, 2, ...}, then we have δ(B) = 1. Moreover, from Step 1 we know that the sequence
Mn(I − T)z statistically converges to zero. Recall that δ(E) = 1. Now let E := {n j : j = 1, 2, ...}. Then by Step
1, st − lim

j
Mn j (I − T)z = 0. Hence we have

lim
k∈B∩E

( f (I − T))(Mkz) = 0. (4)

So, we obtain for every f ∈ X′ that f (x − Tx) = 0 by (4) which yields Tx = x. Following the similar
method as in [1, page 151] one can show that z − x ∈ R(I − T).

Step 8. Now we prove Theorem 2.2.
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(i) follows from Step 7. Combining Step 4 and Step 5, (ii) is obtained. We just prove (iii). Since the
operator P : Z → Z is defined by Pz = P(x + y) := x, we obtain from Step 6 that st − lim

n
Mnz = Pz. On the

other hand, Step 1 implies that

∥P∥ = sup
∥z∥≤1
∥Pz∥ = sup

∥z∥≤1
∥st − lim

n
Mnz∥ = sup

∥z∥≤1
st − lim

n
∥Mnz∥ ≤ sup

∥z∥≤1
c∥z∥ ≤ c.

Finally we need to show that TP = PT = P = P2. We already know that Pz := st − lim
n

Mnz = x, for
x ∈ N(I − T). Therefore for all z ∈ Z, we get

Tx = TPz = x = Pz.

This directly gives us TP = P and TkP = P for all k ∈N. From this, we obtain

st − lim
n

MnPz = st − lim
1
n

n−1∑
k=0

TkPz = Pz.

Hence for all z ∈ Z we immediately have P2z = Pz which yields P2 = P. By Step 1, we know for all z ∈ Z
that st − lim

n
∥Mn(I − T)z∥ = 0. Hence we obtain

st − lim
n

Mnz = st − lim
n

MnTz

which yields P = PT. This concludes the proof.

Fridy and Orhan [7] proved, for a real sequence (xn), that

lim inf xn ≤ st − lim inf xn ≤ st − lim sup xn ≤ lim sup xn.

Hence our next result is sharper than that of Proposition 2.1 of [15].

Theorem 2.3. Let X be a Banach space and T ∈ B(X). Assume further that

st − lim
n

∥Tnx∥
n
= 0 (for all x ∈ X) and there exists a set E ⊂ N with δ(E) = 1 such that ST := sup

n∈E
∥Mn∥ < ∞. Let

Y = R(I − T). Then for all x ∈ X, the following inequality holds:

dist(x,Y) ≤ st − lim inf
n

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tkx

∥∥∥∥∥∥∥ ≤ st − lim sup
n

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tkx

∥∥∥∥∥∥∥ ≤ ST dist(x,Y),

where dist(x,Y) stands for the distance of x to the set Y.

Proof. Let x ∈ X. Since st − lim
n

∥Tnx∥
n
= 0, we get a set F ⊆ N with δ(F) = 1 so that lim

n∈F

∥Tnx∥
n
= 0. On the

other hand by Step 1, we already know that

lim
n∈E

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tky

∥∥∥∥∥∥∥ = 0 (5)

with δ(E) = 1 and for all y ∈ Y. Observe now that the set G := E ∩ F has denstiy 1. Hence we can write for
all n ∈ G that∥∥∥∥∥∥∥1

n

n−1∑
k=0

Tkx −
1
n

n−1∑
k=0

Tky

∥∥∥∥∥∥∥ ≤ ST∥x − y∥. (6)
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Combining this with (5) we obtain

st − lim sup
n

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tkx

∥∥∥∥∥∥∥ ≤ ST dist(x,Y)

by (6). On the other hand let us take φ ∈ X′ such that T∗φ = φ and ∥φ∥ ≤ 1 where T∗ is the adjoint operator
of T. This clearly gives φ(Tkx) = φ(x). Then for all x ∈ X, we obtain

|φ(x)| ≤ st − lim inf
n

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tkx

∥∥∥∥∥∥∥ ,
which implies that

dist(x,Y) ≤ st − lim inf
n

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tkx

∥∥∥∥∥∥∥
because of the fact that dist(x,Y) = sup{|φ(x)| : T∗φ = φ, ∥φ∥ ≤ 1} (see, e.g, [14]). Hence the proof is
completed.

As a result of this theorem we can easily obtain the following:

Corollary 2.4. The set Y = R(I − T) is characterized as follows:

Y := {x ∈ X : st − lim
n

∥∥∥∥∥∥∥1
n

n−1∑
k=0

Tkx

∥∥∥∥∥∥∥ = 0}.

Remark 2.5. The proofs of Step 6 and Step 7 of Theorem 2.2 can also be achieved with the help of Corollary 2.4.

The next theorem is motivated by Lemma 4.2 in [16].

Theorem 2.6. Let X be a Banach space and T ∈ B(X) be a power bounded operator. Assume that x ∈ X. Then the

sequence {Tnx} is statistically convergent if and only if st − lim
n
∥Tn+1x − Tnx∥ = 0 and the sequence

{
1
n

n−1∑
k=0

Tkx
}

is

statistically convergent.

Proof. First assume that {Tnx} is statistically convergent. Then {Tnx} is strongly C1-convergent since {Tnx}

is bounded [3]. Hence {Tnx} is C1-convergent. For the sufficiency, suppose that
{

1
n

n−1∑
k=0

Tkx
}

is statistically

convergent sequence. Now let

V := {y ∈ X : st − lim
n
∥Tn+1y − Tny∥ = 0}.

The subspace V is T-invariant and closed. Since st − lim
n
∥Tn+1y − Tny∥ = 0 for all y ∈ V and T is a power

bounded operator, we obtain

st − lim
n
∥Tny∥ = 0, for all y ∈ (I − T)V. (7)

Now consider the set W := {x ∈ V : st − lim
n

Mnx exists}. By Theorem 2.2, x ∈ W may be written as

x = x0 + y0 such that x0 ∈ N(I − T) and y0 ∈ (I − T)V. Hence we have Tnx = Tnx0 + Tny0 which yields
Tnx = x0 + Tny0. This implies, by (7), that

st − lim
n
∥Tnx − x0∥ = 0.

Hence the proof is completed.
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3. Uniform ergodic theorems via statistical convergence

In this section, we give some extensions of the uniform ergodic type theorems via the concept of the
statistical convergence. First, we give a proposition which will be used in the proof of the main theorem of
this section.

Proposition 3.1. Let X be a Banach space and T ∈ B(X) and N(I − T) = {0}. Assume that st − lim
n

∥Tn
∥

n
= 0. Then

the following assertions are equivalent:

(i) I −Mn is surjective, (for all n ∈N).
(ii) I − T is surjective.

(iii) st − lim
n
∥Mn∥ = 0.

Proof. (i)⇒ (ii) From the assumption there exists an x ∈ X such that (I −Mn)x = y. Thus we have

y = (I −Mn)x = (I − T)
1
n

n−1∑
p=0

p∑
k=0

Tkx,

which yields I − T is surjective.
(ii) ⇒ (iii) Because of the assumption that ker(I − T) = {0}, I − T is injective and onto by (ii). Furthermore
it is obvious that I − T is continuous. By the Open Mapping Theorem, the inverse operator (I − T)−1 is
continuous as well. Let us denote by B the closed unit ball in X. Then C := (I − T)−1B is bounded. Let
K = sup

x∈C
∥x∥. Then we get

∥Mn∥ = sup
z∈B
∥Mnz∥ = sup

x∈C
∥Mn(I − T)x∥ = sup

x∈C
∥

1
n

(T − Tn+1x)∥

≤
1
n

sup
x∈C
∥Tx∥ +

n + 1
n

sup
x∈C

∥∥∥∥∥ 1
n + 1

Tn+1x
∥∥∥∥∥ .

Applying the operator st − lim
n

to both sides of the inequality given above, we get that

st − lim
n
∥Mn∥ = 0.

(iii) ⇒ (i) Since st − lim
n
∥Mn∥ = 0 we have δ({n : ∥Mn∥ < ϵ}) = 1 for every ϵ > 0. Taking ϵ = 1 we conclude

that ∥Mn0∥ < 1 for an n0 ∈N. Thus, we have that I −Mn is invertible which yields I −Mn is surjective.

The next theorem is an extension of the Uniform Ergodic Theorem given by Lin [11].

Theorem 3.2. Let X be a Banach space and T ∈ B(X). Assume further that

st − lim
n

∥Tn
∥

n
= 0. Then the following assertions are equivalent:

(i) T is statistically uniformly ergodic operator.
(ii) (I − T)X is closed and X = ker(I − T) ⊕ R(I − T).

(iii) (I − T)2X is closed.
(iv) (I − T)X is closed.

Proof. Throughout the proof we assume that Y := R(I − T) = (I − T)X.
(i) ⇒ (ii) Since T is statistically uniformly ergodic operator, there exists a P ∈ B(X) such that st −

lim
n
∥Mn − P∥ = 0. This gives that st − lim

n
∥Mnx − Px∥ = 0. Thus we have X = ker(I − T) ⊕ (I − T)X by
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Theorem 2.2. Now we show that the subspace (I − T)X is closed. In order to do this, take x ∈ X. Hence
T(I − T)x = (I − T)Tx ∈ (I − T)X. Thus we have,

T(Y) = T((I − T)X) ⊆ T(I − T)X = (I − T)X = Y.

Hence Y is T-invariant subspace and we can write S := T|Y and Sn := Mn|Y. We also know that ker P = Y
from Corollary 2.4 and so we get st− lim

n
∥Sn∥ = 0. Moreover it is clear that ker(I − T)∩ (I − T)X = {0}which

yields that Y∩ (I − T)X = {0}. So we get ker(I−S) = {0}. Therefore, one can get by Proposition 3.1 that (I−S)
is onto. Thus,

(I − S)Y = Y = (I − T)Y ⊆ (I − T)X ⊆ Y.

This implies that Y = (I − T)X which in turn yields that (I − T)X is closed.
We note that replacing ”limit operator” by ”st-lim operator” one can prove as in [11] that (ii) ⇒ (iii) and
(iii)⇒ (iv). So we omit the details.
(iv)⇒ (i) Because of (iv), by the Open Mapping Theorem we find that there exists a H ≥ 0 such that for each
y ∈ Y there exists z ∈ X with

(I − T)z = y and ∥z∥ ≤ H∥y∥.

Let y ∈ Y. Now, we have, for n ∈N, that

∥Mny∥ = ∥Mn(I − T)z∥ ≤
1
n
∥T − Tn+1

∥∥z∥ ≤
H
n

(∥T∥ + ∥Tn+1
∥)∥y∥.

Hence taking supremum over ∥y∥ = 1 and using the fact that st− lim
n

∥Tn
∥

n
= 0 one can get st− lim

n
∥Mn∥ = 0.

We conclude that I −Mn is surjective by Proposition 3.1. This implies that

(I − T)X = Y = (I − S)Y = (I − T)2X.

Hence for all x ∈ X there exists a y ∈ Y such that (I − T)x = (I − T)y. Note that ker(I − S) = {0}. Hence (I − S)
is invertible. So we can write

y = (I − S)−1((I − T)x). (8)

Since (I − S)−1 is also continuous, one can obtain

∥y∥ ≤ ∥(I − S)−1
∥∥(I − T)x∥.

Since (I−T)(x− y) = 0, we observe that T(x− y) = (x− y) and for all m ∈N, Tm(x− y) = (x− y) which yields,
for all n ∈N, that Mn(x − y) = (x − y).

Now we define P : X → X by Px = x − y such that y is the unique element defined by (8). It is
easily checked that (I − S) is well defined and continuous. Thus, to complete the proof, we show that
st − lim

n
∥Mn − P∥ = 0. To achive this, take x ∈ X and define y by (8). Then we find, for n ∈N, that

∥(Mn − P)x∥ = ∥Mnx − Px∥ = ∥Mnx − (x − y)∥ = ∥Mny∥

= ∥Mn(I − S)−1((I − T)x)∥ ≤ ∥(I − S)−1
∥∥Mn(I − T)x∥

≤ ∥(I − S)−1
∥

1
n

(∥T∥ + ∥Tn+1
∥)∥x∥.

Hence taking supremum all over x with ∥x∥ = 1, we get that

∥Mn − P∥ ≤
1
n
∥(I − S)−1

∥(∥T∥ + ∥Tn+1
∥)
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and applying the operator st − lim
n

to both sides of the inequality, we get that

st − lim
n
∥Mn − P∥ = 0

which concludes the proof.

The following theorem motivated by Proposition 2.8 in [12] characterizes the statistical convergence of {Tn
}.

Theorem 3.3. Let T ∈ B(X) be a power bounded operator. Then the following assertions are equivalent:

(i) {Tn
} uniformly statistically converges.

(ii) st − lim
n
∥Tn+1

− Tn
∥ = 0 and T is a statistically uniformly ergodic operator.

(iii) st − lim
n
∥Tn+1

− Tn
∥ = 0 and (I − T)X is closed.

Proof. (i)⇒ (ii) Since {Tn
} uniformly statistically converges, as in the proof of Theorem 2.6 we immediately

get (ii). Clearly we have (ii)⇒ (iii).
We now prove (iii)⇒ (i) Since (I − T)X is closed, following the technique used in the proof of Theorem

3.2 we conclude by the Open Mapping Theorem that (I − S) is invertible on Y. Hence we observe that

(I − T)X = Y = (I − S)Y = (I − T)Y.

Thus, for all x ∈ X, there exists a y ∈ Y such that (I −T)x = (I −T)y then we may write y = (I − S)−1((I −T)x).
Since (I − S) is also continuous, we get

∥y∥ ≤ ∥(I − S)−1
∥∥(I − T)x∥.

Since (I−T)(x− y) = 0, we observe that T(x− y) = (x− y) and for all m ∈N, Tm(x− y) = (x− y). Let us define
P : X → X with Px = x − y, where y is the unique element defined by (8). It is easily checked that (I − S) is
well defined and continuous. In order to complete the proof we show that st − lim

n
∥Tn
− P∥ = 0. Now take

x ∈ X and define y by (8). Then one can get

∥(Tn
− P)x∥ = ∥Tnx − Px∥ = ∥Tnx − (x − y)∥ = ∥Tnx − Tn(x − y)∥ = ∥Tny∥

= ∥Tn(I − S)−1((I − T)x)∥ ≤ ∥(I − S)−1
∥∥Tn(I − T)x∥

≤ ∥(I − S)−1
∥∥Tn+1

− Tn
∥∥x∥.

Hence taking supremum all over x with ∥x∥ = 1, we observe that

∥Tn
− P∥ ≤ ∥(I − S)−1

∥∥Tn+1
− Tn
∥

and applying the operator st − lim
n

to both sides of the inequality and using (iii) we find that

st − lim
n
∥Tn
− P∥ = 0,

which concludes the proof.
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