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Abstract. Motivated by some interesting problems in mathematical economics, quantum mechanics and
finance, non-linear expectations have been used to describe the phenomena which have the stochastic
characteristic of non-additivity. In this paper, we study two limit theorems for random variables under
convex expectations, which are dominated by sub-linear expectations. Firstly, a central limit theorem
(Theorem 3.1) is proved for independent and non-identical distributed random variables with only finite
second order moments. Secondly, a law of large numbers (Theorem 4.1) is proved for independent and
non-identical distributed random variables with only finite first order moments. These results include and
extend some existing results. Furthermore, we give an example for the application of Theorem 4.1.

1. Introduction

The law of large numbers (LLN for short) and central limit theorem (CLT for short) as fundamental
limit theorems in probability theory play a fruitful role in the development of probability theory and its
applications. However, these kinds of limit theorems have always considered additive probabilities and
additive expectations. In fact, the additivity of probabilities and expectations has been abandoned in
some areas because many uncertain phenomena cannot be well modelled by using additive probabilities
and additive expectations. In objective setting, non-additive probabilities have been used especially in
Quantum Mechanics. Indeed, as a consequence of the famous wave-particle duality, the probabilities
that describe quantum phenomena are generally non-additive, even though a frequentist interpretation is
usually attached to them (see, e.g., [11]). In subjective setting, non-additive probabilities have been used
because additivity prevents an effective analysis of the degree of confidence that decision makers have in
their probability assessments.

Since the paper [1] on coherent risk measures, people are more and more interested in sub-linear
expectations (or more generally, convex expectations, see [7, 12–14]). By [25], we know that a sub-linear
expectation Ê can be represented as the upper expectation of a subset of linear expectations {Eθ : θ ∈ Θ}, i.e.,
Ê[·] = sup

θ∈Θ
Eθ[·]. In most cases, this subset is often treated as an uncertain model of probabilities {Pθ : θ ∈ Θ}
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and the notion of sub-linear expectation provides a robust way to measure a risk loss X. In fact, the
non-linear expectation theory provides many rich, flexible and elegant tools. Up to now, many researchers
have been working on this subject and related properties of the theory of non-linear expectation due to
the connection of this subject with stochastic analysis, stochastic control, mathematical finance, partial
differential equations, mathematical economics, and systems science (see, e.g., [8–10, 19, 20, 22, 27–31, 33]).

Motivated by modeling uncertainty in finance, Peng [23–26] initiated the notion of independent and
identically distributed (IID for short) random variables and the definitions of G-normal distribution and
maximal distribution under sub-linear expectations. He further obtained a new CLT and a new LLN under
sub-linear expectations. Chen [3] firstly obtained a strong LLN in this framework. Later, the limit theorems
such as LLN, CLT and the laws of the iterated logarithm (LIL for short) under sub-linear expectations have
been studied by many researchers (see, e.g., [4, 16, 17, 21, 34–36]). In [18], the author firstly studied LLN and
CLT under convex expectations. He needs the following assumptions: (i) Random variables are IID under
a convex expectation. (ii) The convex expectation is dominated by a sub-linear expectation. (iii) Random
variables are IID, and their all order moments are finite under the sub-linear expectation. In this paper, we
also study LLN and CLT under convex expectations. Our results extend those that [18] yielded. We only
need the following assumptions: (i) Random variables are independent under a convex expectation. (ii)
The convex expectation is dominated by a sub-linear expectation. (iii) Random variables are independent,
and only their first order moments are finite for LLN, only their second order moments are finite for CLT
under the sub-linear expectation.

This paper is organized as follows: in Sec. 2, we recall some useful notions and propositions under
sub-linear expectations and convex expectations. In Sec. 3, we give one of our main results: central limit
theorem (Theorem 3.1). In Sec. 4, we give another main results: law of large numbers (Theorem 4.1) and
the application of Theorem 4.1 (Example 4.7).

2. Preliminaries

In this section, we present some preliminaries in the theory of sub-linear expectations and convex
expectations. For more details, we can see [18, 25, 26, 34].

Let (Ω,F ) be a given measurable space and letH be a linear space of real functions defined on (Ω,F ).
We suppose thatH satisfies c ∈ H for each constant c and |X| ∈ H if X ∈ H . The spaceH can be considered
as the space of random variables.

Definition 2.1. [25, 34] A sub-linear expectation Ê on H is a functional Ê: H 7→ R := [−∞,+∞] satisfying the
following properties: for all X,Y ∈ H , we have

(a) Monotonicity: If X ≥ Y, then Ê[X] ≥ Ê[Y];
(b) Constant preserving: Ê[c] = c, ∀c ∈ R;
(c) Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y], whenever Ê[X] + Ê[Y] is not of the form +∞−∞ or −∞ +∞;
(d) Positive homogeneity: Ê[λX] = λÊ[X], ∀λ ≥ 0.

The triple (Ω,H , Ê) is called a sub-linear expectation space.

In this paper, we consider the following sub-linear expectation space (Ω,H , Ê): if X1, · · · ,Xn ∈ H , then
φ(X1, · · · ,Xn) ∈ H for each φ ∈ Cl.Lip(Rn), where Cl.Lip(Rn) denotes the linear space of functions φ satisfying

|φ(x) − φ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ Rn,

for some C > 0, m ∈ N depending on φ. Let Cb.Lip(Rn) denote the linear space of bounded functions φ
satisfying

|φ(x) − φ(y)| ≤ C|x − y|, ∀x, y ∈ Rn,

for some C > 0 depending on φ.
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Definition 2.2. [25] Identical distribution: Let X1 and X2 be two n-dimensional random vectors defined in
sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2), respectively. They are called identically distributed,

denoted by X1
d
= X2, if

Ê1[φ(X1)] = Ê2[φ(X2)], ∀φ ∈ Cl.Lip(Rn),

whenever the sub-linear expectations are finite.
Independence: In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1, · · · ,Yn), Yi ∈ H is

called independent to another random vector X := (X1, · · · ,Xm), Xi ∈ H under Ê, if for each test function φ ∈
Cl.Lip(Rm

×Rn), we have
Ê[φ(X,Y)] = Ê[Ê[φ(x,Y)]x=X],

whenever φ(x) := Ê[|φ(x,Y)|] < ∞ for all x and Ê[φ(X)] < ∞.

IID random variables: A sequence of random sequence {Xi}
∞

i=1 ⊂ H is called IID random variables, if Xi
d
= X1

and Xi+1 is independent to Y := (X1, · · · ,Xi) for each i = 1, 2, · · · .

Definition 2.3. (G-normal distribution) [25] A random variable X in a sub-linear expectation space (Ω,H , Ê)
with σ2 = Ê[X2], σ2 = −Ê[−X2] is called G-normal distributed, denoted by X ∼ N(0; [σ2, σ2]), if for each Y ∈ H

which is independent to X such that Y d
= X, it holds that aX + bY d

=
√

a2 + b2X, ∀a, b ≥ 0.

Remark 2.4. [25] Let X ∼ N(0; [σ2, σ2]) under Ê. For each φ ∈ Cl.Lip(R), we define a function

v(t, x) := Ê[φ(x +
√

tX)], (t, x) ∈ [0,∞) ×R.

Then v is the unique viscosity solution of the following parabolic partial differential equation (PDE for
short):

∂tv − G(∂2
xxv) = 0, v(0, x) = φ(x),

where G(α) := 1
2 Ê[αX2] = 1

2 (σ2α+ − σ2α−).

Definition 2.5. (Maximal distribution) [25] A random variable η in a sub-linear expectation space (Ω,H , Ê) is
called maximal distributed if

Ê[φ(η)] = sup
µ≤y≤µ

φ(y), ∀φ ∈ Cl.Lip(R),

where µ := Ê[η] and µ := −Ê[−η].

Remark 2.6. [25] Let η be maximal distributed with µ := Ê[η], µ := −Ê[−η], the distribution of η is
characterized by the following PDE:

∂tu − 1(∂xu) = 0, u(0, x) = φ(x),

where u(t, x) := Ê[φ(x + tη)], (t, x) ∈ [0,∞) ×R, 1(x) := µx+ − µx−.

Definition 2.7. [26] Let Q be a subset of [0,∞)×R, we denote by C (Q) all continuous functions V defined on Q, in
the relative topology on Q, with a finite norm

∥V∥C(Q)= sup
(t,x)∈Q

|V (t, x)| .

Given α, β ∈ (0, 1), let Cα,β (Q) be the set of function in C (Q) such that following norm is finite:

∥V∥Cα,β(Q) = ∥V∥C(Q)+ sup
(t,x),(s,y)∈Q,(t,x),(s,y)

∣∣∣V (s, x) − V
(
t, y

)∣∣∣
|s − t|α +

∣∣∣x − y
∣∣∣β .
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We also introduce the norms

∥V∥C1+α,1+β(Q) = ∥V∥Cα,β(Q) + ∥∂tV∥Cα,β(Q) + ∥∂xV∥Cα,β(Q),

∥V∥C1+α,2+β(Q) = ∥V∥C1+α,1+β(Q) +
∥∥∥∂2

xxV
∥∥∥

Cα,β(Q).

The corresponding subspaces of C (Q) in which the correspondent derivatives exist and the above norms
are finite are denoted respectively by C1+α,1+β (Q), C1+α,2+β (Q).

Definition 2.8. [26] A convex expectation Ẽ on H is a functional Ẽ : H 7→ R satisfying (a) and (b) of Definition
2.1 and the following property: for all X, Y ∈ H , we have

(e) Convexity: Ẽ[λX + (1 − λ)Y] ≤ λẼ[X] + (1 − λ)Ẽ[Y], ∀λ ∈ [0, 1], whenever λẼ[X] + (1 − λ)Ẽ[Y] is not of
the form +∞−∞ or −∞ +∞.
The triple (Ω,H , Ẽ) is called a convex expectation space.

Remark 2.9. The definitions of identical distribution and independence of random variables under convex
expectations are similar to those of Definition 2.2 under sub-linear expectations and so we omit them.

Definition 2.10. [26] Let Ẽ be a convex expectation and Ê be a sub-linear expectation on (Ω,H). Ẽ is said to be
dominated by Ê if

Ẽ[X] − Ẽ[Y] ≤ Ê[X − Y], ∀ X, Y ∈ H . (1)

Proposition 2.11. [18] Let Ẽ be a convex expectation on (Ω,H), which is dominated by a sub-linear expectation Ê
in the sense of (2.1). If Ê[X] = −Ê[−X], then we have Ẽ[X] = Ê[X] and Ẽ[X + Y] = Ẽ[X] + Ẽ[Y] for all Y ∈ H .

Proposition 2.12. [18] Suppose that (Ω,H , Ẽ) is a convex expectation space. Let X ∈ H , then
(1) There exist two constant σ2, σ2 satisfying σ2

≥ σ2
≥ 0 such that

lim
δ↓0
δ−1Ẽ

[
δX2

]
= σ2, lim

δ↓0
δ−1

(
−Ẽ

[
−δX2

])
= σ2;

(2) There exist two constant µ, µ satisfying µ ≥ µ such that

lim
δ↓0
δ−1Ẽ [δX] = µ, lim

δ↓0
δ−1

(
−Ẽ [−δX]

)
= µ;

(3) If a is bounded, then δ−1Ẽ
[
δ
2 aX2

]
converges uniformly to G(a) := 1

2 (σ2a+ − σ2a−);

(4) If a is bounded, then δ−1Ẽ [δaX] converges uniformly to 1(a) := µa+ − µa−.

Lemma 2.13 (Hölder’s inequality) [26] Let X,Y be two random variables in sublinear expectation space (Ω,H , Ê),
then for 1 < p, q < ∞, 1

p +
1
q = 1, we have

Ê[|XY|] ≤ (Ê[|X|p])
1
p · (Ê[|Y|q])

1
q .

3. Central Limit Theorem

In this section, we present a CLT for independent random variables under convex expectations dominated
by sub-linear expectations.
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Theorem 3.1. Suppose that (Ω,H , Ê) is a sub-linear expectation space, (Ω,H , Ẽ) is a convex expectation space, and
Ẽ is dominated by Ê in the sense of (1). Let {Xi}

∞

i=1 ⊂ H be a sequence of random variables which satisfies the following
conditions:

(i) Each Xi+1 is independent to (X1, · · · ,Xi) under Ẽ and Ê, for i = 1, 2, · · · ;
(ii) Ê[Xi] = −Ê[−Xi] = 0, for i = 1, 2, · · · ;
(iii) Denote σ2

i := lim
δ↓0
δ−1Ẽ

[
δX2

i

]
, σ2

i := lim
δ↓0
δ−1

(
−Ẽ

[
−δX2

i

])
, there exist two positive constants σ and σ such

that

lim
n→∞

1
n

n∑
i=1

∣∣∣σ2
i − σ

2
∣∣∣ = 0, lim

n→∞

1
n

n∑
i=1

∣∣∣σ2
i − σ

2
∣∣∣ = 0;

(iv) Denote Gi(a) := lim
δ↓0
δ−1Ẽ

[
δ
2 aX2

i

]
= 1

2

(
σ2

i a+ − σ2
i a−

)
,

lim
δ↓0

sup
i≥1

∣∣∣∣∣δ−1Ẽ
[
δ
2

aX2
i

]
− Gi(a)

∣∣∣∣∣ = 0;

(v) lim
c→∞

sup
i≥1

Ê
[
(X2

i − c)+
]
= 0;

(vi) sup
i≥1

Ê
[
X2

i

]
< ∞. Then for any continuous function φ satisfying |φ(x)| ≤ C(1 + x2), we have

lim
n→∞

Ẽ
[
φ

(
Sn
√

n

)]
= Ê[φ(ξ)], (2)

where Sn =
n∑

i=1
Xi, ξ ∼ N(0; [σ2, σ2]) under Ê. Furthermore, if p > 2 and sup

i≥1
Ê [|Xi|

p] < ∞, then (2) holds for any

continuous function φ satisfying |φ(x)| ≤ C(1 + |x|p).

Proof. The main idea of our proof comes from the proofs of Theorem 2.4.11 in [18] and Theorem 3.5 in [35].

Let Yi = (−
√

i) ∨ (Xi ∧
√

i), Tn =
n∑

i=1
Yi. In order to prove Theorem 3.1, we need the following facts:

(A1) Suppose that the condition (v) is satisfied, then

n∑
i=1

Ê[|Xi − Yi|]
√

n
→ 0 as n→∞.

(A2) Suppose that the conditions (v) and (vi) are satisfied, then

n∑
i=1

Ê[|Yi|
α+2]

n
α
2 +1

→ 0 as n→∞, ∀0 < α < 1.

(A3) Suppose that the conditions (i), (ii), (v) and (vi) are satisfied, then

Ê[|Tn|
p] ≤ Cpn

p
2 , ∀p ≥ 2.

For (A1), note that
√

nÊ[|Xn − Yn|] ≤ Ê[(X2
n − n)+] ≤ sup

i≥1
Ê[(X2

i − n)+].

So (A1) holds.
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For (A2), note that

Ê[|Yn|
α+2] ≤ Ê[X2

n|Yn|
α] ≤ Ê[(X2

n − c + c)|Yn|
α]

≤ n
α
2 Ê[(X2

n − c)+] + cÊ[|Yn|
α]

≤ n
α
2 Ê[(X2

n − c)+] + cÊ[|Xn|
α]

≤ n
α
2 Ê[(X2

n − c)+] + c
(
Ê[X2

n]
) α

2

≤ n
α
2 · sup

i≥1
Ê[(X2

i − c)+] + c
(
sup
i≥1

Ê[X2
i ]
) α

2

for any c > 1, where the fourth line of the right side is obtained by Hölder’s inequality (Lemma 2.13). So
(A2) is true.

For (A3), by the Rosenthal’s inequality (2.4) in [34] and (A1), we have

Ê[|Tn|
p] ≤ Cp

n∑
i=1

Ê[|Yi|
p] + Cp

 n∑
i=1

Ê[Y2
i ]


p
2

+ Cp

 n∑
i=1

[
(Ê[Yi])+ + (Ê[−Yi])+

]
p

≤ Cpn
p
2−1

n∑
i=1

Ê[X2
i ] + Cp

 n∑
i=1

Ê[X2
i ]


p
2

+ Cp

 n∑
i=1

2Ê[|Xi − Yi|]


p

≤ Cpn
p
2−1
· n · sup

i≥1
Ê[X2

i ] + Cp

(
n · sup

i≥1
Ê[X2

i ]
) p

2

+ Cp

 n∑
i=1

2Ê[|Xi − Yi|]


p

≤ Cpn
p
2 .

So (A3) is true.
Now, for a small but fixed h > 0, let V be the unique viscosity solution of the following equation:

∂tV + G(∂2
xxV) = 0, (t, x) ∈ [0, 1 + h] ×R, V|t=1+h = φ(x), (3)

where G(a) := 1
2 (σ2a+ − σ2a−) and φ ∈ Cb.Lip(R). According to the definition of G-normal distribution, we

have

V(t, x) = Ê
[
φ

(
x +
√

1 + h − tξ
)]
, V(h, 0) = Ê[φ(ξ)], V(1 + h, x) = φ(x). (4)

Since (3) is a uniformly parabolic PDE, by the interior regularity of V (see [32]), we have

∥V∥C1+ α2 ,2+α([0,1]×R) < ∞, for some α ∈ (0, 1). (5)

First, let δ = 1
n , we show that

lim
n→∞

Ẽ
[
V

(
1,
√

δTn

)]
= V(0, 0). (6)

Let T0 = 0, then

V(1,
√

δTn) − V(0, 0) =
n−1∑
i=0

{
V((i + 1)δ,

√

δTi+1) − V(iδ,
√

δTi)
}

=

n−1∑
i=0

{ [
V((i + 1)δ,

√

δTi+1) − V(iδ,
√

δTi+1)
]

+
[
V(iδ,

√

δTi+1) − V(iδ,
√

δTi)
] }

=

n−1∑
i=0

{
Ii
δ + Ji

δ

}
,
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with, by Taylor’s expansion,

Ji
δ = ∂tV(iδ,

√

δTi)δ +
1
2
∂2

xxV(iδ,
√

δTi)Y2
i+1δ + ∂xV(iδ,

√

δTi)Yi+1

√

δ

=
(
∂tV(iδ,

√

δTi)δ +
1
2
∂2

xxV(iδ,
√

δTi)X2
i+1δ + ∂xV(iδ,

√

δTi)Xi+1

√

δ
)

+
(1

2
∂2

xxV(iδ,
√

δTi)(Y2
i+1 − X2

i+1)δ + ∂xV(iδ,
√

δTi)(Yi+1 − Xi+1)
√

δ
)

= Ji
δ,1 + Ji

δ,2,

Ii
δ =

∫ 1

0

[
∂tV((i + β)δ,

√

δTi+1) − ∂tV(iδ,
√

δTi+1)
]

dβδ

+
[
∂tV(iδ,

√

δTi+1) − ∂tV(iδ,
√

δTi)
]
δ

+

∫ 1

0

∫ 1

0

[
∂2

xxV(iδ,
√

δTi + γβYi+1

√

δ) − ∂2
xxV(iδ,

√

δTi)
]
γdβdγY2

i+1δ.

It follows by Proposition 2.11 that

Ẽ[V(1,
√

δTn) − V(0, 0)] = Ẽ[V(1,
√

δTn)] − V(0, 0) = Ẽ

n−1∑
i=0

Ji
δ,1 +

n−1∑
i=0

Ji
δ,2 +

n−1∑
i=0

Ii
δ

 .
From the fact that Ẽ is dominated by Ê, we have

Ẽ

n−1∑
i=0

Ji
δ,1

 −
n−1∑

i=0

Ê[|Ji
δ,2|] +

n−1∑
i=0

Ê[|Ii
δ|]


≤ Ẽ[V(1,

√

δTn)] − V(0, 0) ≤ Ẽ

n−1∑
i=0

Ji
δ,1

 +
n−1∑

i=0

Ê[|Ji
δ,2|] +

n−1∑
i=0

Ê[|Ii
δ|]

 . (7)

For Ji
δ,1, from the conditions (i) and (ii) we have

Ê
[
∂xV(iδ,

√

δTi)Xi+1

√

δ
]
= Ê

[
−∂xV(iδ,

√

δTi)Xi+1

√

δ
]
= 0.

It yields that

Ê

n−1∑
i=0

(
∂xV(iδ,

√

δTi)Xi+1

√

δ
) = Ê

− n−1∑
i=0

(
∂xV(iδ,

√

δTi)Xi+1

√

δ
) = 0.

Hence from Proposition 2.11, we have

Ẽ

n−1∑
i=0

(
∂xV(iδ,

√

δTi)Xi+1

√

δ
) = 0. (8)

Denote Gi(a) := lim
δ↓0
δ−1Ẽ[ δ2 aX2

i ] = 1
2 (σ2

i a+ − σ2
i a−), Ai := ∂tV(iδ,

√
δTi)δ + 1

2∂
2
xxV(iδ,

√
δTi)X2

i+1δ and Bi :=

∂2
xxV(iδ,

√
δTi). By Definition 2.10, Propositions 2.11 and 2.12, and combining (8) with (3), (4) as well as the
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condition (i) and (iv), it follows that

Ẽ

n−1∑
i=0

Ji
δ,1

 = Ẽ

n−1∑
i=0

Ai


= Ẽ

n−2∑
i=0

Ai + ∂tV
(
(n − 1)δ,

√

δTn−1

)
δ +

1
2
∂2

xxV
(
(n − 1)δ,

√

δTn−1

)
X2

nδ


= Ẽ

n−2∑
i=0

Ai − δG (Bn−1) + δGn (Bn−1) + o(1)δ


≤ Ẽ

n−2∑
i=0

Ai

 + Ê [−δG(Bn−1) + δGn(Bn−1)] + o(1)δ

= Ẽ

n−2∑
i=0

Ai

 + δ2 Ê
[
(Bn−1)+(σ2

n − σ
2) − (Bn−1)−(σ2

n − σ
2)
]
+ o(1)δ

≤ Ẽ

n−2∑
i=0

Ai

 + δ2 Ê [|Bn−1|] (|σ2
n − σ

2
| + |σ2

n − σ
2
|) + o(1)δ

≤ · · ·

≤
δ
2

n−1∑
i=0

Ê [|Bi|] (|σ2
i+1 − σ

2
| + |σ2

i+1 − σ
2
|) + o(1).

For Bi, by Definition 2.7 and (5), we have

Ê [|Bi|] = Ê
[∣∣∣∣∂2

xxV
(
iδ,
√

δTi

)∣∣∣∣] ≤ C.

And by the condition (iii), it follows that

Ẽ

n−1∑
i=0

Ji
δ,1

 ≤ C
1
n

n−1∑
i=0

(∣∣∣σ2
i+1 − σ

2
∣∣∣ + ∣∣∣σ2

i+1 − σ
2
∣∣∣) + o(1)→ 0 as n→∞.

In a similar manner as above, we also have

Ẽ

n−1∑
i=0

Ji
δ,1

 ≥ −C
1
n

n−1∑
i=0

(∣∣∣σ2
i+1 − σ

2
∣∣∣ + ∣∣∣σ2

i+1 − σ
2
∣∣∣) + o(1)→ 0 as n→∞.

Thus

lim
n→∞

Ẽ

n−1∑
i=0

Ji
δ,1

 = 0. (9)

For Ji
δ,2, by Definition 2.7 and (5) again, we have

Ê
[∣∣∣∣∂xV(iδ,

√

δTi)
∣∣∣∣] ≤ C.
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By the conditions (i), (v), (A1) and Stolz theorem,

n−1∑
i=0

Ê
[
|Ji
δ,2|

]
≤

n−1∑
i=0

{1
2

Ê
[∣∣∣∣∂2

xxV(iδ,
√

δTi)
∣∣∣∣] Ê

[∣∣∣X2
i+1 − Y2

i+1

∣∣∣] δ + Ê
[∣∣∣∣∂xV(iδ,

√

δTi)
∣∣∣∣] Ê [|Xi+1 − Yi+1|]

√

δ
}

≤ C
1
n

n−1∑
i=0

Ê
[(

X2
i+1 − (i + 1)

)+]
+ C

1
√

n

n−1∑
i=0

Ê [|Xi+1 − Yi+1|]→ 0 as n→∞.

Thus

lim
n→∞

n−1∑
i=0

Ê
[
|Ji
δ,2|

]
= 0. (10)

For Ii
δ, since both ∂tV and ∂2

xxV are uniformly α
2 -hölder continuous in t and α-hölder continuous in x on

[0, 1] ×R, then we have
|Ii
δ| ≤ Cδ1+ α2 (1 + |Yi+1|

α + |Yi+1|
2+α).

From (A2), we have

n−1∑
i=0

Ê
[
|Ii
δ|

]
≤ C

(1
n

)1+ α2 n−1∑
i=0

(
1 + Ê[|Yi+1|

α] + Ê[|Yi+1|
2+α]

)
→ 0 as n→∞.

Thus

lim
n→∞

n−1∑
i=0

Ê
[
|Ii
δ|

]
= 0. (11)

Then combining (7), (9), (10) with (11), (6) holds.
Additionally, it is obvious that if φ ∈ Cb.Lip(R), i.e., |φ(x) − φ(y)| ≤ C|x − y|, then for each t, s ∈ [0, 1 + h]

and x ∈ R,

|V(t, x) − V(s, x)| ≤ CÊ[|ξ|]
√
|t − s| ≤ C

√
|t − s|. (12)

In particular,

|V(0, 0) − V(h, 0)| ≤ C
√

h. (13)

By Definition 2.10, it is easy to obtain that for any X,Y ∈ H , |Ẽ[X]− Ẽ[Y]| ≤ Ê[|X −Y|]. And then combining
(4), (12),with (13), we have∣∣∣∣Ẽ [

φ
(√
δTn

)]
− Ê[φ(ξ)]

∣∣∣∣ = ∣∣∣∣Ẽ [
V

(
1 + h,

√

δTn

)]
− V(h, 0)

∣∣∣∣
≤

∣∣∣∣Ẽ [
V

(
1 + h,

√

δTn

)]
− Ẽ

[
V

(
1,
√

δTn

)]∣∣∣∣
+

∣∣∣∣Ẽ [
V

(
1,
√

δTn

)]
− V(0, 0)

∣∣∣∣ + |V(0, 0) − V(h, 0)|

≤ Ê
[∣∣∣∣V (

1 + h,
√

δTn

)
− V

(
1,
√

δTn

)∣∣∣∣]
+

∣∣∣∣Ẽ [
V

(
1,
√

δTn

)]
− V(0, 0)

∣∣∣∣ + |V(0, 0) − V(h, 0)|

≤ 2C
√

h +
∣∣∣∣Ẽ [

V
(
1,
√

δTn

)]
− V(0, 0)

∣∣∣∣ .
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From (6), we obtain
lim sup

n→∞

∣∣∣∣Ẽ [
φ

(√
δTn

)]
− Ê[φ(ξ)]

∣∣∣∣ ≤ 2C
√

h,

so

lim
n→∞

Ẽ
[
φ

(
Tn
√

n

)]
= Ê[φ(ξ)].

By the Lipschitz continuity of φ, Definition 2.10 and (A1), we have∣∣∣∣∣∣Ẽ
[
φ

(
Sn
√

n

)]
− Ẽ

[
φ

(
Tn
√

n

)]∣∣∣∣∣∣ ≤ Ê
[∣∣∣∣∣∣φ

(
Sn
√

n

)
− φ

(
Tn
√

n

)∣∣∣∣∣∣
]
≤ C

1
√

n

n∑
i=1

Ê [|Xi − Yi|]→ 0 as n→∞.

Thus

lim
n→∞

Ẽ
[
φ

(
Sn
√

n

)]
= Ê[φ(ξ)], ∀φ ∈ Cb.Lip(R).

The rest of the proof is very similar to that of Theorem 3.5 in [35] and so it is omitted.

Remark 3.2. In the proof of Theorem 3.1, we mainly use the sub-additivity of sub-linear expectation Ê, the
convexity of convex expectation Ẽ and the assumption that convex expectation Ẽ is dominated by sub-linear
expectation Ê in the sense of (1).

4. Law of Large Numbers

In this section, we give a LLN for independent random variables under convex expectations dominated
by sub-linear expectations (Theorem 4.1). Furthermore, an example for the application of Theorem 4.1
(Example 4.7) is presented.

Theorem 4.1. Suppose that (Ω,H , Ê) is a sub-linear expectation space, (Ω,H , Ẽ) is a convex expectation space, and
Ẽ is dominated by Ê in the sense of (1). Let {Xi}

∞

i=1 ⊂ H be a sequence of random variables which satisfies the following
conditions:

(i) Each Xi+1 is independent to (X1, · · · ,Xi) under Ẽ and Ê, for i = 1, 2, · · · ;
(ii) Denote µi := lim

δ↓0
δ−1Ẽ[δXi], µ

i
:= lim
δ↓0
δ−1(−Ẽ[−δXi]), there exist two constants µ and µ such that

lim
n→∞

1
n

n∑
i=1

∣∣∣∣µ
i
− µ

∣∣∣∣ = 0, lim
n→∞

1
n

n∑
i=1

∣∣∣µi − µ
∣∣∣ = 0;

(iii) Denote 1i(a) := lim
δ↓0
δ−1Ẽ[δaXi] = µia

+
− µ

i
a−,

lim
δ↓0

sup
i≥1

∣∣∣δ−1Ẽ [δaXi] − 1i(a)
∣∣∣ = 0;

(iv) lim
d→∞

sup
i≥1

Ê[(|Xi| − d)+] = 0;

(v) sup
i≥1

Ê[|Xi|] < ∞. Then for any continuous function φ satisfying |φ(x)| ≤ C(1 + |x|), we have

lim
n→∞

Ẽ
[
φ

(Sn

n

)]
= Ê[φ(η)], (14)

where Sn =
n∑

i=1
Xi, η is maximal distributed under Ê with µ = Ê[η], µ = −Ê[−η]. Furthermore, if p > 1 and

sup
i≥1

Ê [|Xi|
p] < ∞, then (14) holds for any continuous function φ satisfying |φ(x)| ≤ C(1 + |x|p).
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Combining the proof method of Theorem 3.1 with that of Theorem 2.4.13 in [18], we can easily prove
Theorem 4.1 and so it is omitted.

Remark 4.2. The result of Theorem 4.1 is very interesting. The limit distribution under convex expectation
Ẽ dominated by sub-linear expectation Ê in the sense of (1) is Ê[φ(η)], where φ is a continuous function
satisfying |φ(x)| ≤ C(1 + |x|). Next, we provide an example to illustrate application of Theorem 4.1.

In order to investigate the following example (Example 4.7), we need the following notations, notions
and lemmas.

Denote
L2(Ω,F ,P) := {ξ : ξ is R valued and F -measurable random variable such that E[|ξ|2] < ∞},
S2(Ω, (Ft)t≥0,P;R) := {V : Vt is R valued and Ft-adapted process such that E[supt≥0 |Vt|

2] < ∞},
L2(Ω, (Ft)t≥0,P;R) := {V : Vt is R valued and Ft-adapted process such that E[(

∫
∞

0 |Vs|
2ds)] < ∞}.

Consider the following 1-dimensional infinite time interval backward stochastic differential equation
(BSDE for short):

Yt = ξ +

∫
∞

t
1(s,Ys,Zs)ds −

∫
∞

t
ZsdBs, t ≥ 0. (15)

Let
1 : Ω ×R+ ×R ×R 7→ R

such that for any (y, z) ∈ R×R, 1(·, y, z) isFt -progressively measurable. We make the following assumptions:
(B.1) E[(

∫
∞

0 |1(t, 0, 0)|dt)2] < ∞;
(B.2) There exist two positive non-random functions αt and βt, such that for all y1, y2, z1, z2 ∈ R,

|1(t, y1, z1) − 1(t, y2, z2)| ≤ βt|y1 − y2| + αt|z1 − z2|,

where αt and βt satisfy that
∫
∞

0 α
2
t dt < ∞ and

∫
∞

0 β(t)dt < ∞;
(B.3) 1(·, y, 0) ≡ 0, ∀y ∈ R.

Lemma 4.3. [6] Let ξ ∈ L2(Ω,F ,P) be given. Suppose that (B.1) and (B.2) hold for 1, then BSDE (15) has a unique
solution (Y,Z) ∈ S2(Ω, (Ft)t≥0,P;R) × L2 (Ω, (Ft)t≥0,P;R) .

Definition 4.4. [6] Suppose that 1 satisfies (B.2) and (B.3). For any ξ ∈ L2(Ω,F ,P), let (Y,Z) be the solution of
BSDE (15). Consider the mapping E1[·] : L2(Ω,F ,P) 7→ R denoted by E1[ξ] := Y0.We call E1[ξ] 1-expectation of
ξ.

Definition 4.5. [6] Suppose that 1 satisfies (B.2) and (B.3). Conditional 1-expectation of ξ with respect to Ft is
defined by E1[ξ|Ft] := Yt.

From [6], we know that 1-expectation has the following property: E1[ξ|Ft] is the unique random variable
η in L2(Ω,Ft,P) such that

E1[1Aξ] = E1[1Aη], ∀A ∈ Ft.

Now we consider the following three BSDEs:

Y1
t = ξ +

∫
∞

t
αs|Z1

s |ds −
∫
∞

t
Z1

s dBs, t ≥ 0,

Y2
t = ξ −

∫
∞

t
αs|Z2

s |ds −
∫
∞

t
Z2

s dBs, t ≥ 0
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and

Y3
t = ξ +

∫
∞

t
1̃(s,Y3

s ,Z
3
s )ds −

∫
∞

t
Z3

s dBs, t ≥ 0.

For notational simplification, we shall write in the sequel Eα[·|Ft] ≡ E1[·|Ft] for 1 = αt|z| and E−α[·|Ft] ≡
E1[·|Ft] for 1 = −αt|z|.

Lemma 4.6. Suppose that 1̃ satisfies (B.2) and (B.3), and is convex with respect to y and z, then E1̃[·] is a convex
expectation.

Lemma 4.6 is the direct consequence of Proposition 4.3 in [15].

Example 4.7. Let (Ω,F ,P) be a completed probability space, (Bt)t≥0 be a 1-dimensional standard Brownian
motion defined on this space and (Ft)t≥0 be the natural filtration generated by Brownian motion (Bt)t≥0, that
is,

Ft := σ(Bs; s ≤ t) ∨N ,

whereN is the set of all P-null subsets. Furthermore, we assume F := σ
(⋃

t≥0
Ft

)
.

Consider the following family of probability measures:

P :=
{

Qv :
dQv

dP
= e−

1
2

∫
∞

0 |vs |
2ds+

∫
∞

0 vsdBs , sup
t≥0
|vt| ≤ αt

}
,

where αt is a positive non-random function satisfying
∫
∞

0 α
2
t dt < ∞. Denote E[·] := sup

Qv∈P

EQv [·]. Obviously,

E[·] is a sub-linear expectation. Suppose that 1̃(t, y, z) is deterministic, convex with respect to y and z, i.e.,
for any y1, y2, z1, z2 ∈ R, α ∈ [0, 1],

1̃(t, αy1 + (1 − α)y2, αz1 + (1 − α)z2) ≤ α1̃(t, y1, z1) + (1 − α)1̃(t, y2, z2), dP × dt − a.s.,

and satisfies the conditions (B.2), (B.3). By Lemma 4.6, we know that E1̃[·] is a convex expectation.
Let Xi := ai(Bi − Bi−1), i = 1, 2, · · · , where ai = 1/i2, i = 1, 2, · · · , then for any continuous function φ

satisfying |φ(x)| ≤ C(1 + |x|), we have

lim
n→∞
E1̃

[
φ

(∑n
i=1 Xi

n

)]
= E[φ(η)], (16)

where η is maximal distributed under Ewith µ = E[η], µ = −E[−η].

In the following, we give some lemmas for proving Example 4.7.

Lemma 4.8. For any ξ ∈ L2(Ω,F ,P), we have

E
α[ξ] = E[ξ], E−α[ξ] = −E[−ξ].

The proof of Lemma 4.8 is very similar to that of Lemma 2 in [5]. So we omit it.

Lemma 4.9 (Comparison Theorem) [6] Let ξ ∈ L2(Ω,F ,P) be given, and 1(t, y, z) satisfy (B.1) and (B.2). Suppose
that (Y,Z) be the solution of (15) and (Y,Z) be the solution of the following BSDE:

Yt = ξ +

∫
∞

t
1(s,Ys,Zs)ds −

∫
∞

t
ZsdBs, t ≥ 0,
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where 1(t, y, z) satisfies (B.1) and (B.2), ξ ∈ L2(Ω,F ,P). If

ξ̂ := ξ − ξ ≥ 0, 1̂t := 1(t,Yt,Zt) − 1(t,Yt,Zt) ≥ 0, a.s.,

then we have Yt ≥ Yt, a.s., ∀t ∈ [0,∞).

Lemma 4.10. Suppose that 1 is deterministic, and satisfies (B.2) and (B.3). For any ξ ∈ L2(Ω,F ,P), we have
E1[ξ|Ft] = E1[ξ] as soon as ξ is independent of Ft.

The proof of Lemma 4.10 is very similar to that of Proposition 3.1 in [2]. So we omit it.

Lemma 4.11. Let ξ ∈ L2(Ω,F ,P) be given, and 1(t, y, z) satisfy (B.2) and (B.3). Then there exists a constant C > 0
such that

|E1[ξ]| ≤ C
(
E
[
|ξ|2

]) 1
2 .

Lemma 4.11 is the direct consequence of Remark 4.1 in [37].

Proof of Example 4.7. By Lemmas 4.8 and 4.9, we know that E1̃[·] ≤ E[·]. Hence we only need to check that
{Xi}

∞

i=1 satisfies the conditions (i)-(v) of Theorem 4.1.
First, we show that {Xi}

∞

i=1 satisfies the condition (i) of Theorem 4.1, i.e., {Xi}
∞

i=1 is independent under E1̃
and E. Let Xi = (X1, · · · ,Xi), i = 1, 2, · · · . By Lemma 4.10, for each φ ∈ Cl.Lip(Ri+1), we have

E[φ(Xi,Xi+1)] = E[E[φ(Xi,Xi+1)|Fi]]

= E[E[φ(x,Xi+1)|Fi]x=Xi ]

= E[E[φ(x,Xi+1)]x=Xi ],

where E = E1̃ (or E).
Next, we show that {Xi}

∞

i=1 satisfies the conditions (ii), (iii), (iv) and (v) of Theorem 4.1. By Lemma 4.11,
we can obtain that∣∣∣δ−1

E1̃[δaXi]
∣∣∣ ≤ C|a|

(
E
[
|Xi|

2
]) 1

2
≤ C|a|(1/i2), (17)

sup
i≥1
E[(|Xi| − d)+] ≤ C

(
E
[∣∣∣(|X1| − d)+

∣∣∣2]) 1
2

→ 0, as d→∞, (18)

sup
i≥1
E[|Xi|] ≤ C sup

i≥1

(
E
[
|Xi|

2
]) 1

2
≤ C < ∞. (19)

For the condition (ii) of Theorem 4.1, by (17), we have

1
n

n∑
i=1

∣∣∣∣µ
i

∣∣∣∣ ≤ C
1
n

n∑
i=1

(1/i2)→ 0, as n→∞

and
1
n

n∑
i=1

∣∣∣µi

∣∣∣ ≤ C
1
n

n∑
i=1

(1/i2)→ 0, as n→∞.

For the condition (iii) of Theorem 4.1, by (17), it follows that for any given ε > 0, there exist a a positive
integer n0, such that ∣∣∣δ−1

E1̃ [δaXi] − 1i(a)
∣∣∣ ≤ 2C|a|(1/i2) < ε
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for all i ≥ n0. And for the above given ε > 0 and for any i ∈ {1, 2, · · · ,n0 − 1}, there exists δi > 0, such that∣∣∣δ−1
E1̃ [δaXi] − 1i(a)

∣∣∣ < ε. Then choosing δ := max{δ1, δ2 · · · , δn0−1}, we have sup
i≥1

∣∣∣δ−1
E1̃ [δaXi] − 1i(a)

∣∣∣ < ε,
i.e.,

lim
δ↓0

sup
i≥1

∣∣∣δ−1
E1̃ [δaXi] − 1i(a)

∣∣∣ = 0.

Obviously, by (18) and (19), the conditions (iv), (v) of Theorem 4.1 hold.

Therefore, we have verified that {Xi}
∞

i=1 satisfies all the conditions of Theorem 4.1. Thus, for any
continuous function φ satisfying |φ(x)| ≤ C(1 + |x|), we have

lim
n→∞
E1̃

[
φ

(∑n
i=1 Xi

n

)]
= E[φ(η)], (20)

where η is maximal distributed underEwithµ = E[η],µ = −E[−η]. So the proof of Example 4.7 is completed.
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