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On the special (α, β)-change of a Finsler space with m-th root metric
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Abstract. The present paper focuses on the theory of transformation of the m-th root metric. We find that
the transformed m-th root metric and the m-th root metric are projectively related. Further, we establish a
necessary and sufficient condition for a transformed m-th root metric to be locally dually flat and projectively
flat.

1. Introduction

The m-th root metrics are studied in [11, 13, 14, 18]. Antonelli discussed their applications in Ecology
in [2]. Randers change of a m-th root metric is studied in [17]. The m-th root metrics are an extension of
Riemannian metrics (when m = 2). The fourth root metric, F = 4

√
y1y2y3y4, is known as Berwald-Moór

metric, which finds an application in the theory of space-time [3]. Recently, Nekouee et al. [7] have
investigated the applications of the Finsler-Randers metric in cosmology. Finsler geometry has also been
applied to study various wormhole models [5, 8]. The Finslerian Schwarzschild-de sitter space-time is
also recently investigated in [6]. Charged gravastars are discussed in [9]. m-th root metrics also found
applications in general relativity and unified gauge field theory. Applications of conformal change are
discussed in [16].

Shen and Li considered fourth root metrics in the form F = 4
√

ai jkl(x)yiy jykyl, which are locally projectively
flat and studied their geometric features [4]. Locally dually flat metrics are discussed in [15]. The Randers
change of m-th root metric is also studied in [12], which discusses the relation between Finsler space with
m-th root metric and the different tensors of the transformed Finsler space.

This paper discusses the conditions under which the given Finsler space and transformed Finsler space
are projectively related. We study the conditions under which the transformed Finsler space is locally
dually flat. And the conditions under which it is projectively flat.
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2. Preliminaries

Let Mn denote an n-dimensional C∞-manifold, and TxM the tangent space of Mn at x. The tangent
bundle TM is the union of tangent spaces, TM :=

⋃
x∈M TxM. The element of TM is denoted by (x, y), where

x = (xi) is a point of Mn and y ∈ TxM is a supporting element. We denote TM0 = TM\{0}.

Definition 2.1. [2] A Finsler metric on Mn is a function F : TM→ [0,∞) with the following properties:

1. F is C∞ on TM0,
2. F is positively 1-homogeneous on the fibers of tangent bundle TM, and
3. the Hessian of F2 with element 1i j =

1
2
∂2F2

∂yi∂y j is positive definite on TM0.

The pair (Mn,F) = Fn is called the fundamental function, and 1i j is called the fundamental tensor of the
Finsler space Fn. The angular metric tensor hi j, normalized supporting element li, and metric tensor 1i j of
Fn are defined as follows:

li =
∂F
∂yi , hi j = F

∂2F
∂yi∂y j , 1i j =

1
2
∂2F2

∂yi∂y j . (1)

Let F be a Finsler metric defined by F = m√A, where A is denoted by
A := ai1i2......im (x)yi1 yi2 ......yim , with ai1i2......im symmetric in all its indices [11]. Then F is called an m-th root
Finsler metric. A is homogeneous in y to the degree m. Let

Ai = aii2...im (x)yi2 ...yim =
1
m
∂A
∂yi , (2)

Ai j = ai ji3...im (x)yi3 ...yim =
1

m(m − 1)
∂2A
∂yi∂y j , (3)

Ai jk = ai jki4...im (x)yi4 ...yim =
1

m(m − 1)(m − 2)
∂3A

∂yi∂y j∂yk
. (4)

The normalized supporting element of Fn is denoted by

li := Fyi =
∂F
∂yi =

∂
m√A
∂yi =

1
m

∂A
∂yi

A
m−1

m

=
Ai

Fm−1 . (5)

Consider the transformation

F̄ = F + β +
F2

β
, (6)

where F = m√A is an m-th root metric and β(x, y) = bi(x)yi is a one-form on the manifold Mn. F̄ is clearly
a Finsler metric on Mn. We refer to the Finsler metric F̄ as a special (α, β)-transformed m-th root metric
throughout the paper, and (Mn, F̄) = F̄n as a special (α, β)-transformed Finsler space. Throughout the paper,
we limit ourselves to m > 2, and the quantities corresponding to F̄n will be denoted by putting a bar on top
of that quantity.

3. Fundamental metric tensor of special (α, β)-transformed m-th root metric

Theorem 3.1. The covariant metric tensor 1̄i j and contravariant metric tensor 1̄i j of special (α, β)-transformed m-th
root Finsler space F̄n are as follows:

1̄i j = ρAi j + ρ0bib j + ρ1(Aib j + A jbi) + ρ2AiA j (7)

and

1̄i j = σAi j + σ0bib j
− σ1(biy j + b jyi) + σ2yiy j. (8)
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Proof. The normalized supporting element li is obtained by differentiating (6) with respect to yi,

l̄i = li + bi. (9)

Considering (5), we obtain

l̄i =
[

1
Fm−1 +

2
βFm−2

]
Ai +

[
1 −

F2

β2

]
bi. (10)

Differentiating (8) again with respect to yi yields:

h̄i j =
(m − 1)F̄

Fm−2

[
1
F
+

2
β

]
Ai j −

F̄
F2(m−1)

[
(m − 1)

F
−

2(m − 2)
β

]
AiA j −

2F̄
β2Fm−2 (Aib j + A jbi) +

2F̄
β2F2 bib j. (11)

From (8) and (9), the fundamental metric tensor 1̄i j of Finsler space F̄n is obtained as follows:

1̄i j = h̄i j + l̄i l̄ j,

After simplification, we obtain

1̄i j = ρAi j + ρ0bib j + ρ1(Aib j + A jbi) + ρ2AiA j, (12)

where

ρ =
τ(m − 1)

Fm−1 (1 + 2τ); ρ0 =

[
τ4(2 + F4)

F4 + 1
]

;

ρ1 =
1 − 4τ3

Fm−1 ; ρ2 =
1

F2(m−1)

[
(1 − (m − 1)τ) − 2τ2(m − 4)

]
.

The contravariant metric tensor 1̄i j of Finsler space F̄n is given by

1̄i j = σAi j + σ0bib j
− σ1(biy j + b jyi) + σ2yiy j. (13)

where

σ =
Fm−2(2τ + 1)
2τ2(m − 1)

; σ0 =
4Fm[1 + p(p(1 + w) − (3 + w))]

β2[(m − 4) − 8τ4d2]
;

σ1 =

[
F(β4(m − 4) − 8F4d2) − 2β3τ(m − 4)F̄q1

τ(m − 1)F2(β4(m − 4) − 8F4d2)

]
; σ2 =

[
b2
− 1 + (m − 1)τ(1 + F̄2F2q2)

F̄2τ(m − 1)F2

]
;

γ =
−8F2

β4(m − 4)
; p =

γυ2

1 + γc2 ; υ =
Fm−2

2τ2(m − 1)
; c2 =

Fm−3βb2

2τ(m − 1)
;

w =
(m − 4)β

2Fm ; d2 = υ

[
wβ + w2Fm + (b2 + wβ)

(
1 −
γυ(1 + w)

1 + γc2

)]
;

q1 =
8(m − 1)2τ4 + 2γF2(m−2) + γFm−4(m − 4)β

4τ2(m − 1)2 + γFm−2b2τ4 ; q2 =
(m − 4)2

2F6[(m − 4) − 8τ4d2]
. (14)

Here we have used Ai jA j = Ai = yi and A jb j = β.

4. Spray coefficients of the Finsler space given by special (α, β)-change of m-th root metric

The following system of equations gives the geodesics of a Finsler space Fn:

d2xi

dt2 + Gi
(
x,

dx
dt

)
,
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where

Gi =
1
4
1il

{
[F2]xk yl yk

− [F2]xl

}
. (15)

The global vector field G = yi ∂
∂xi − 2Gi(x, y) ∂∂yi is defined by the local functions Gi = Gi(x, y) is known as the

spray of F, and Gi is known as the spray coefficient.
Two Finsler metrics F and F̄ on a manifold Mn are called projectively related if there is a scalar function
P(x, y) defined on TM0 such that Ḡi = Gi +Pyi, where Ḡi and Gi are the geodesic spray coefficients of Fn and
F̄n respectively.

Theorem 4.1. The special (α, β)-transformed m-th root Finsler metric F̄ and m-th root Finsler metric F, on an open
subset ∪ ⊂ Rn, are projectively related if satisfies the following equation:

1
4

bi(ϕyl
− σ0bl) ×

[
τ(1 + 2τ)

(
∂1 jl

∂xk
−
∂1 jk

∂xl

)
+ 2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk

=
Fm−2(2τ + 1)Ail

8τ(m − 1)
y jyk

[
2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
.

Proof. Considering (10) the metric tensor 1̄i j of F̄n can be rewritten as:

1̄i j = τ(1 + 2τ)1i j +

[
1 − 4τ3

Fm−1

]
(Aib j + A jbi) +

[
β4 + 2 + F4

β4

]
bib j +

[
1 − τ(1 − 4τ)

F2(m−1)

]
AiA j. (16)

where

1i j = (m − 1)
Ai j

Fm−2 − (m − 2)
AiA j

F2(m−1)
(17)

Further considering (11) contravariant metric tensor 1̄i j can be rewritten as:

1̄i j =
[2τ + 1

2τ2

]
1i j + σ0bib j

− ϕ(biy j + b jyi) + φyiy j, (18)

and

1i j =
Fm−2

(m − 1)
Ai j +

(m − 2)
(m − 1)

yiy j

F2 ,

ϕ =

[
1

τ(m − 1)F̄
−

2β3τ(m − 4)F̄q1

F2(m − 1)[β4(m − 4) − 8F4d2F̄]

]
φ =

[
b2
− (m − 1)τ − 1
τ(m − 1)F̄2

−
(m − 2)
τ(m − 2)F2 + q3

]
q3 =

(m − 4)2(m − 1)τ2
− (m − 2)[(m − 4) − 8τ4d2]β4

2F2τ2β4(m − 1)[(m − 4) − 8τ4d2]
. (19)

where σ0, q1, and d2 are expressed in (12). The spray coefficients of special (α, β)-transformed Finsler space
F̄n are given by

Ḡi =
1
4
1il

{
[F̄2]xk yl yk

− [F̄2]xl

}
.

It can also be written as

Ḡi =
1
4
1̄il

[(
2
∂1̄ jl

∂xk
−
∂1̄ jk

∂xl

)
y jyk

]
. (20)
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From (16), (18) and (20), we get

Ḡi =
1̄il

4

[(
∂

∂xk

{
τ(1 + 2τ)1 jl +

[1 − 4τ3

Fm−1

]
(A jbl + Alb j) +

[β4 + 2 + F4

β4

]
blb j +

[1 − τ(1 − 4τ)
F2(m−1)

]
AlA j

}
−
∂

∂xl

{
τ(1 + 2τ)1 jk +

[1 − 4τ3

Fm−1

]
(A jbk + Akb j) +

[β4 + 2 + F4

β4

]
bkb j +

[1 − τ(1 − 4τ)
F2(m−1)

]
AkA j

})
y jyk

]
,

which implies that

Ḡi =
1̄il

4

[ (
2
{
2τ2 ∂1 jl

∂xk
+ 1 jl

∂

∂xk

(
2τ2

)
+
∂X jl

∂xk

}
−

{
2τ2 ∂1kl

∂xl
+ 1 jk

∂

∂xl
(2τ2) +

∂X jk

∂xl

})
y jyk

]
,

where

X jl =

[
1 − 4τ3

Fm−1

]
(A jbl + Alb j) +

[
β4 + 2 + F4

β4

]
blb j +

[
1 − τ(1 − 4τ)

F2(m−1)

]
AlA j.

Now

Ḡi =
1
4

[(2τ + 1
2τ2

)
1il + yi(φyl

− ϕbl) − bi(ϕyl
− σ0bl)

]
×

[
τ(1 + 2τ)

(
2
∂1 jl

∂xk
−
∂1 jk

∂xl

)
+ 2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk, (21)

where ωk =
∂
∂xk

(
τ(1 + 2τ)

)
. Further simplification gives

Ḡi =
(2τ + 1

2τ

)
1il

(
2
∂1 jl

∂xk
−
∂1 jk

∂xl

)
(2τ + 1)y jyk +

(
(2τ + 1)2

8τ

)
1il

(
2
∂1 jl

∂xk
−
∂1 jk

∂xl

)
y jyk

+
Fm−2(2τ + 1)

8τ(m − 1)
Ail

[
2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk +

(m − 2)(2τ + 1)
4τ(m − 1)F2 yiyl

×

[
2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
+

1
4

[
yi(φyl

− ϕbl) − bi(ϕyl
− σ0bl)

]
×

[
τ(2τ + 1)

(
∂1 jl

∂xk
−
∂1 jk

∂xl

)
+ 2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk. (22)

The equation (22) may be written as

Ḡi = Gi + Pyi +Qi,

where

P =
1
4

yi(φyl
− ϕbl) ×

[
τ(1 + 2τ)

(
∂1 jl

∂xk
−
∂1 jk

∂xl

)
+ 2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk

+
(m − 2)(2τ + 1)

4τ(m − 1)F2 yl
[
2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk

and

Qi = −
1
4

bi(ϕyl
− σ0bl) ×

[
τ(1 + 2τ)

(
∂1 jl

∂xk
−
∂1 jk

∂xl

)
+ 2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk

+
Fm−2(2τ + 1)

8τ(m − 1)
Ail

[
2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk
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The metrics F̄ and F are projectively related if Qi = 0, which implies

1
4

bi(ϕyl
− σ0bl) ×

[
τ(1 + 2τ)

(
∂1 jl

∂xk
−
∂1 jk

∂xl

)
+ 2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
y jyk

=
Fm−2(2τ + 1)Ail

8τ(m − 1)
y jyk

[
2ωk1 jl − ωl1 jk + 2

∂X jl

∂xk
−
∂X jk

∂xl

]
. (23)

5. Locally dually flatness of a Finsler space with special (α, β)-changed m-th root metric

The notion of dually flat metrics was introduced by Amari and Nagaoka [1] when they studied the
information geometry on Riemannian spaces. Later Shen extended the notion of dually flatness to Finsler
metrics [10]. If there is a standard coordinate system (xi, yi) in TM at any point such that [F̄2]xk yyl yk = 2[F̄2]xl ,
then the Finsler space on manifold Mn is said to be locally dual flat. The coordinate system (xi) is an adapted
local coordinate system. It is well-known that every locally Minkowskian metric is locally flat.

Theorem 5.1. Let F̄ be a special (α, β)-changed m-th root Finsler metric on a Finsler manifold Mn. Then, F̄ is locally
dually flat metric if and only if it satisfies the following condition:

Axl =
A0Ayl

2

[
F

mAF̄
−

(1 −m)
mA

+
(4 −m)
βF2

]
+ A0l + Ayl yk

[
βk

2F̄
−

1
β

]
+ A0l

[
1

2F̄
−

bl

β

]
+

mβkykbl

2

[
1

F̄A
1−m

m

+
3A
2β2

]
−

mβl

2

[
1

A
1−m

m

−
A
β

]
− Axl +

m
2β

Abl. (24)

Proof. Consider the special (α, β)-changed m-th root Finsler metric F̄ = F + β + F2

β , where F is an m-th root
metric. Then, we have

[F̄2]xl =

[
F + β +

F2

β

]2

xl

= 2
[
F + β +

F2

β

] [ 1
m

A
1−m

m Axl + βl +
( 2

m )A
1−m

m Axl

β
−

F2βl

β2

]
, (25)

From (25), we get

[F̄2]xl =
2
m

[
A

2−m
m + A

1−m
m +

2
β2 A

4−m
m

]
Axl + 2

[
A

1
m + β −

A
4
m

β3

]
βl. (26)

If we put bi j =
∂bi
∂x j , then β j =

∂β
∂x j = bi jy j. Furthermore, from (26), we obtain

[F̄2]xk =
2
m

[
A

2−m
m + A

1−m
m +

2
β2 A

4−m
m

]
Axk + 2

[
A

1
m + β −

A
4
m

β3

]
βk. (27)

and

[F̄2]xk yl =
2
m

A
2−m

m Axk yl +
2
m

(2 −m
m

)
A

2−2m
m Ayl Axk +

1
m

2βkA
1−m

m Ayl + 2A
1
m blk +

2
m
βAxk

(1 −m
m

)
A

1−2m
m Ayl

+
2
m
βA

1−m
m Axk yl +

2
m

A
1−m

m Axk bl + 2blβk + 2βblk +
4

mβ2 A
4−m

m Axk yl +
A

mβ2

(4 −m
m

)
A

4−2m
m Ayl

−
8

mβ3 A
4−m

m Axkbl
−

8
mβ3 A

4−m
m Aylβl +

6
β4 A

4
m βkbl +

2
β3 A

4
m blk. (28)

For the Finsler metric F̄ to be locally dually flat, we need

[F̄2]xk yl yk
− 2[F̄2]xl = 0. (29)
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Therefore, from (26)-(29), we have

[F̄2]xk yl yk
− 2[F̄2]xl =

[ 2
m

A
2−m

m Axk yl +
2
m

(2 −m
m

)
A

2−2m
m Ayl Axk +

1
m

2βkA
1−m

m Ayl + 2A
1
m blk

+
2
m
βAxk

(1 −m
m

)
A

1−2m
m Ayl +

2
m
βA

1−m
m Axk yl +

2
m

A
1−m

m Axk bl + 2blβk + 2βblk

+
4

mβ2 A
4−m

m Axk yl +
A

mβ2

(4 −m
m

)
A

4−2m
m Ayl −

8
mβ3 A

4−m
m Axkbl

−
8

mβ3 A
4−m

m Aylβl

+
6
β4 A

4
m βkbl +

2
β3 A

4
m blk

]
yk
−

[ 2
m

A
2−m

m Axl + 2A
1
m βl +

2
m

A
2−m

m βAxl + 2ββl

+
4

mβ2 A
4−m

m Axl −
2
β3 A

4
m βl

]
= 0, (30)

which implies that

Axl
4
m

[
A

1−m
m + 2A

3−m
m

] (
F + β +

F2

β

)
=

2
m

A0Ayl A
1−2m

m

[(2 −m
m

)
F + β

(1 −m
m

)
+

2F
β2

(4 −m
m

)
A

2−2m
m

]
+

2
m

A0Ayl A
1−2m

m

[
F + β +

2F
β2 A

2−m
m

]
+

2
m

A0blA
1−m

m

[
1 −

4
β3 FA

2−m
m

]
+

2
m

A
1−m

m Ayl yk
[
βk −

4
β3 FA

2−m
m

]
− 2A

1
m βl

[
1 +

3
β3 FA

3
m

]
− 2ββl

+ 2blβkyk
[
1 +

3
β3 FA

3
m

]
−

8
mβ2 A

4−m
m Axl , (31)

where A0 = Axk yk, and A0l = Axk yl yk. Therefore, F̄ is a locally dually flat metric if and only if

Axl =
A0Ayl

2

[
F

mAF̄
−

(1 −m)
mA

+
(4 −m)
βF2

]
+ A0l + Ayl yk

[
βk

2F̄
−

1
β

]
+ A0l

[
1

2F̄
−

bl

β

]
+

mβkykbl

2

[
1

F̄A
1−m

m

+
3A
2β2

]
−

mβl

2

[
1

A
1−m

m

−
A
β

]
− Axl +

m
2β

Abl, (32)

which completes the proof.

6. Projectively flatness of a Finsler space with special (α, β)-changed m-th root metric

Theorem 6.1. Let F̄ be a special (α, β)-changed m-th root Finsler metric on a Finsler manifold Mn. Then, F̄ is a
projectively flat metric if and only if it satisfies the following condition:

Axl =

[(1 −m
m

)
A2 +

(1 −m
m

) β
2

A−1

]
Ayl A0 + 2

(1 −m
m

)
A2

[
A +

1
mβ

]
A0l + Ayl A0

−

[
2mA +mβ

2A
2−m

m

−
2A
β2 −

1
β

]
(A0bl − Aylβkyk) +

mA
β3 (β + 2A)βkblyk. (33)

Proof. A Finsler metric F̄ = F̄(x, y) on an open subset U ⊂ Rn is projectively flat if and only if it satisfies the
following equation:

[F̄]xk yl yk
− 2[F̄]xl = 0. (34)

Since we have F̄ = F + β + F2

β , where F = m√A, we have

[F̄]xl =

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
Axl +

[
1 −

A
2
m

β2

]
βl. (35)
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From (34) we get

[F̄]xk =

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
Axk +

[
1 −

A
2
m

β2

]
βk, (36)

which implies

[F̄]xk yl =

[
1
m

(1 −m
m

)
A

2(1−m)
m +

2
mβ

(2 −m
m

)
A

2(2−m)
m

]
Ayl Axk +

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
Axk yl

+

[
1 −

2
mβ2 A

2−m
m

]
Axk bl +

[
1 −

2
mβ2 A

2−m
m

]
Aylβk +

2
β3 A

2
m βkbl −

F2

β2 blk. (37)

For the Finsler metric F̄ to be projectively flat, we must have (33). Therefore, from (33)-(35), we get

[F̄]xk yl yk
− Fxl =

[
1
m

(1 −m
m

)
A

2(1−m)
m +

2
mβ

(2 −m
m

)
A

2(2−m)
m

]
Ayl Axk yk +

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
Axk yl yk

+

[
1 −

2
mβ2 A

2−m
m

]
Axk blyk +

[
1 −

2
mβ2 A

2−m
m

]
Aylβkyk +

2
β3 A

2
m βkblyk

−
F2

β2 blkyk

−

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
Axl yk +

[
1 +

A
2
m

β2

]
βlyk = 0, (38)

which implies that

Axl

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
=

[ 1
m

(1 −m
m

)
A

2(1−m)
m

]
Ayl A0 +

[
2

mβ

(2 −m
m

)
A

2(2−m)
m

]
A0l +

[
1
m

A
1−m

m +
2

mβ
A

2−m
m

]
Ayl A0 +

[
1 −

2
mβ2 A

2−m
m

]
A0bl +

[
1 −

2
mβ2 A

2−m
m

]
Aylβkyk +

2
β3 A

2
m βkblyk = 0, (39)

where A0 = Axk yk, and A0l = Axk yl yk. Therefore F̄ is a projectively flat metric if and only if

Axl =

[(1 −m
m

)
A2 +

(1 −m
m

) β
2

A−1

]
Ayl A0 + 2

(1 −m
m

)
A2

[
A +

1
mβ

]
A0l + Ayl A0

−

[
2mA +mβ

2A
2−m

m

−
2A
β2 −

1
β

]
(A0bl − Aylβkyk) +

mA
β3 (β + 2A)βkblyk, (40)

which completes the proof.

7. Conclusions

The m-th root metric is considered a direct generalization of the Riemannian metric in a view that the
m-th root metric becomes Riemannian if m = 2. It founds a lot of applications recently in physics and
biology. In this paper, we have obtained the conditions under which the transformed Finsler space and the
original Finsler space with m-th root metric are projectively related. Further, the necessary and sufficient
conditions under which the transformed Finsler space is projectively flat and locally dually flat are derived.
Also, we have studied a sufficient condition under which both the transformed Finsler space and the given
Finsler space reduce to Riemannian.
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