Filomat 38:29 (2024), 10123–10132 https://doi.org/10.2298/FIL2429123J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On quotients of ideals of bounded holomorphic maps

A. Jim´enez-Vargas^a , D. Ruiz-Casternadoa,[∗]

^aDepartamento de Matem´aticas, Universidad de Almer´ıa, Ctra. de Sacramento s/*n, 04120 La Ca˜nada de San Urbano, Almer´ıa, Spain*

Abstract. Based on the notion of left-hand quotient of operator ideals, we introduce and study the concept of bounded-holomorphic left-hand quotient $I^{-1}\circ \mathcal{J}^{H^{\infty}}$, where I is an operator ideal and $\mathcal{J}^{H^{\infty}}$ is a boundedholomorphic ideal. We show that such quotients are a method for generating new bounded-holomorphic ideals. In fact, if $\mathcal{J}^{H^{\infty}}$ has the linearization property in an operator ideal A, then $I^{-1}\circ\mathcal{J}^{H^{\infty}}$ is a composition ideal of the form $(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}$. We also introduce the notion of Grothendieck holomorphic map and prove that they form a bounded-holomorphic ideal which can be seen as a bounded-holomorphic left-hand quotient. In the same way, the ideal of holomorphic maps with Rosenthal range can be generated as a bounded-holomorphic left-hand quotient.

1. Introduction and preliminaries

Let *I*, *J* be operator ideals and let *E*, *F* be Banach spaces. Following [\[12,](#page-9-0) p. 132], a bounded linear operator \overline{T} : $E \to F$ is said to belong to the *left-hand quotient* $\overline{T}^{-1} \circ \overline{T}$, and we write $\overline{T} \in \overline{T}^{-1} \circ \overline{T}$ (*E*, *F*), if $S \circ T \in \mathcal{J}(E, G)$ for all $S \in \mathcal{I}(F, G)$, where *G* is an arbitrary Banach space. The *right-hand quotient* $\mathcal{I} \circ \mathcal{J}^{-1}$ is defined in a similar way. Of course, the symbols \mathcal{I}^{-1} and \mathcal{J}^{-1} have no meaning. It is well known that $I^{-1} \circ J$ and $I \circ J^{-1}$ are operator ideals (see [\[11,](#page-9-1) 3.2.2]). We will say that $I^{-1} \circ J$ is the left-hand quotient ideal generated or induced by the ideals I and J , and similarly for the right-hand quotient ideal $I \circ \mathcal{J}^{-1}$.

Furthermore, if $[I, ||\cdot||_I]$ and $[J, ||\cdot||_I]$ are Banach operator ideals, and we set

$$
||T||_{\mathcal{I}^{-1}\circ\mathcal{J}} = \sup\{||S \circ T||_{\mathcal{J}} : S \in \mathcal{I}(F,G), ||S||_{\mathcal{I}} \le 1\},\
$$

for every $T \in \mathcal{I}^{-1} \circ \mathcal{J}(E,F)$, where G ranges over all Banach spaces, then $[I^{-1} \circ \mathcal{J}, \|\cdot\|_{\mathcal{I}^{-1} \circ \mathcal{J}}]$ is a Banach operator ideal by [\[11,](#page-9-1) 7.2.2].

Left-hand and right-hand quotients of operator ideals have been studied by some authors over time. For example, Johnson, Lillemets and Oja showed in [\[8\]](#page-9-2) that completely continuous operators can be represented as a right-hand quotient generated by the ideals of weakly ∞-compact operators and weakly compact operators, and used it to show that only in Schur spaces the weak Grothendieck compactness principle is satisfied; Carl and Defant proved in [\[3\]](#page-8-0) that the ideal of (*s*, *p*)-mixing operators is expressible as

Received: 31 March 2024; Accepted: 10 September 2024

²⁰²⁰ *Mathematics Subject Classification*. Primary 46E15; Secondary 46E40, 46G20, 47L20.

Keywords. Vector-valued holomorphic mapping, linearization property, bounded-holomorphic left-hand quotient, boundedholomorphic ideal.

Communicated by Dragan S. Djordjevic´

Research partially supported by grant PID2021-122126NB-C31 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU, and by Junta de Andalucía grant FQM194.

^{*} Corresponding author: D. Ruiz-Casternado

Email addresses: ajimenez@ual.es (A. Jiménez-Vargas), drc446@ual.es (D. Ruiz-Casternado)

a left-hand quotient induced by the ideals of *s*-summing operators and *p*-summing operators; Causey and Navoyan generalised in [\[4\]](#page-8-1) a result from Pietsch's book ([\[11,](#page-9-1) 3.2.3]) showing that the class of ξ -completely continuous operators can be seen as a right-hand quotient induced by the classes of compact operators and ξ-weakly compact operators; Kim proved in [\[9\]](#page-9-3) that the class of operators which sends weakly *p*-summable sequences to unconditionally *p*-summable sequences is a right-hand quotient generated by the ideals of unconditionally *p*-compact operators and weakly *p*-compact operators.

Through this paper, *E* and *F* will be complex Banach spaces and *U* will be an open subset of *E*. As usual, B_E stands for the closed unit ball of E , $\mathcal{L}(E, F)$ for the space of all bounded linear operators from E into *F* endowed with the operator norm, and *E*^{*} for the topological dual of *E*. Given a set $\hat{A} \subseteq E$, lin(*A*) and abco(*A*) represent the linear span and the norm-closed absolutely convex hull of *A* in *E*, respectively.

Let $H(U, F)$ be the space of all holomorphic mappings from *U* into *F*. Moreover, $H^{\infty}(U, F)$ will be the subspace formed by all $f \in H(U, F)$ for which $f(U)$ is a bounded subset of *F*. We will use the abbreviations $H(U)$ and $H^{\infty}(U)$ instead of $H(U,\mathbb{C})$ and $H^{\infty}(U,\mathbb{C})$, respectively. Let us recall that $H^{\infty}(U,F)$ is a Banach space under the supremum norm

$$
||f||_{\infty} = \sup \{||f(x)|| : x \in U\} \qquad (f \in \mathcal{H}^{\infty}(U, F)).
$$

Our goal in this note is to present a holomorphic version of the notion of left-hand quotient of operator ideals, involving the concept of bounded-holomorphic ideal introduced in [\[2,](#page-8-2) Definition 2.1]. To our knowledge, nothing has been published so far about quotients of ideals in the setting of bounded holomorphic maps.

Let us recall that a normed (Banach) bounded-holomorphic ideal, denoted as [$\mathcal{J}^{ \mathcal{H}^{\infty}}$, $\| \cdot \|_{\mathcal{J}^{ \mathcal{H}^{\infty}}}$], is a subclass ${\cal J}^{ {\cal H}^{\infty}}$ equipped with a norm $\|{\cdot}\|_{\cal J^{ {\cal H}^{\infty}}}$ of the class ${\cal H}^{\infty}$ of all bounded holomorphic mappings equipped with the norm ∥·∥[∞] such that, for every open subset *U* of a complex Banach space *E* and every complex Banach space *F*, the components $\mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ verify the following properties:

 $(\mathcal{F}^{\mathcal{H}^{\infty}}(U,F),\|\cdot\|_{\mathcal{F}^{\mathcal{H}^{\infty}}})$ is a normed (Banach) space and $||f||_{\infty} \leq ||f||_{\mathcal{F}^{\mathcal{H}^{\infty}}}$ for $f \in \mathcal{F}^{\mathcal{H}^{\infty}}(U,F)$.

- (P2) For any $g \in \mathcal{H}^{\infty}(U)$ and $y \in F$, the map $g \cdot y: U \to F$, given by $(g \cdot y)(x) = g(x)y$ if $x \in U$, is in $\mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ and $||g \cdot y||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||g||_{\infty} ||y||.$
- (P3) The ideal property: Given two complex Banach spaces *H*, *G*, an open subset *V* of *H*, *f* ∈ $\mathcal{J}^{H^{\infty}}(U, F)$, (P3) The ideal property: Given two complex Banach spaces *H*, *G*, an open subset *V* of *H*, *f* $S \in \mathcal{L}(F,G)$ and $h \in \mathcal{H}(V,U)$, the map $S \circ f \circ h$ is in $\mathcal{J}^{\mathcal{H}^{\infty}}(V,G)$ and $\left\|S \circ f \circ h\right\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||S|| \left\|f\right\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}$

A normed bounded-holomorphic ideal $[\![\mathcal{J}^{\mathcal{H}^{\infty}},\Vert\cdot\Vert_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ is

(S) Surjective if $f \in \mathcal{J}^{H^{\infty}}(U, F)$ with $||f||_{\mathcal{J}^{H^{\infty}}} = ||f \circ \pi||_{\mathcal{J}^{H^{\infty}}}$, whenever $f \in \mathcal{H}^{\infty}(U, F)$, $\pi \in \mathcal{H}(V, U)$ is a surjective map, where *V* is an open subset of a complex Banach space *G* and $f \circ \pi \in \mathcal{J}^{\mathcal{H}^{\infty}}(V, F)$.

Influenced by the notion of left-hand quotient of operator ideals (see, e.g., [\[11,](#page-9-1) 3.2.1]), we introduce the concept of left-hand quotient of an operator ideal and a bounded-holomorphic ideal.

Definition 1.1. Let *I* be an operator ideal and let $\mathcal{J}^{H^∞}$ be a bounded-holomorphic ideal. A mapping $f ∈ H^∞(U, F)$ is said to belong to the bounded-holomorphic left-hand quotient $I^{-1}\circ\mathcal{J}^{ \mathcal{H}^\infty}$, and will be written as $f\in\widetilde{I}^{-1}\circ\mathcal{J}^{ \mathcal{H}^\infty}(\mathsf{U},F)$, *if* $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,G)$ for all $T \in I(F,G)$, where G is a complex Banach space.

If I *is endowed with a complete norm* $\lVert \cdot \rVert_I$ *and* $\mathcal{J}^{ \mathcal{H}^{\infty}}$ *with a norm* $\lVert \cdot \rVert_{T^{ \mathcal{H}^{\infty}}}$ *, we set*

$$
||f||_{\mathcal{I}^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}}} = \sup \{||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} : T \in \mathcal{I}(F,G), ||T||_{\mathcal{I}} \leq 1\}.
$$

Our main tool in this paper is a method of linearization of bounded holomorphic mappings gathered in the following result due to Mujica [\[10\]](#page-9-4).

Theorem 1.2. *[\[10,](#page-9-4) Theorem 2.1 and Remark 2.2] Let U be an open subset of a complex Banach space E. Consider the Banach space*

$$
\mathcal{G}^{\infty}(U):=\overline{\text{lin}}(\{\delta_x:x\in U\})\subseteq\mathcal{H}^{\infty}(U)^*,
$$

where δ_x : $\mathcal{H}^{\infty}(U) \to \mathbb{C}$ *is the functional defined by* $\delta_x(f) = f(x)$ *for all* $f \in \mathcal{H}^{\infty}(U)$ *.*

(i) The map $q_U : U \to G^\infty(U)$ *, given by*

$$
g_U(x)=\delta_x \qquad (x\in U),
$$

is in $\mathcal{H}^{\infty}(U, \mathcal{G}^{\infty}(U))$ *and* $\|\delta_x\| = 1$ *for any* $x \in U$.

- (iii) $B_{G^{\infty}(1)} = \overline{\text{abco}}(g_U(U)).$
- *(iii) For each complex Banach space F and each map* $f \in H^\infty(U, F)$ *, there exists a unique operator* $T_f \in \mathcal{L}(G^\infty(U), F)$ such that $T_f \circ g_U = f$. Moreover, $||T_f|| = ||f||_{\infty}$.

Our study will depend essentially on a linearization property of the maps of the bounded-holomorphic ideal $\mathcal{J}^{\mathcal{H}^{\infty}}$.

Definition 1.3. Let [A, ||·||_A] be a normed operator ideal and let [J^{H∞}, ||·||_{JH}∞] be a normed bounded-holomorphic *ideal.* We say that $\mathcal{J}^{H^{\infty}}$ has the linearization property (LP, for short) in \mathcal{A} if given $f \in \mathcal{H}^{\infty}(U,F)$, we have that $f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$ *if and only if* $T_f \in \mathcal{A}(\mathcal{G}^{\infty}(U),F)$ *, in whose case* $||f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||T_f||_{\mathcal{J}^{\infty}}$

This paper has been divided into two sections. Section [2](#page-2-0) gathers the first properties of the left-hand quotients $I^{-1} \circ \mathcal{J}^{H^{\infty}}$, where I is an operator ideal and $\mathcal{J}^{H^{\infty}}$ is a bounded-holomorphic ideal. If both ideals are endowed with complete norms, we show that $I^{-1} \circ \mathcal{J}^{H^{\infty}}$ with the norm $\|\cdot\|_{I^{-1} \circ \mathcal{J}^{H^{\infty}}}$ is a Banach boundedholomorphic ideal which becomes surjective whenever $\mathcal{J}^{\mathcal{H}^{\infty}}$ is surjective. Thus, bounded-holomorphic left-hand quotients prove to be an interesting method of generating bounded-holomorphic ideals. There are already two well known ways to produce bounded-holomorphic ideals: by composition and by transposition (see [\[2,](#page-8-2) Theorems 2.4 and 4.3]).

We show that if $\mathcal{J}^{H^{\infty}}$ has the linearization property in an operator ideal \mathcal{A} , then a map $f \in \mathcal{H}^{\infty}(U, F)$ belongs to the bounded-holomorphic left-hand quotient $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ if and only if its Mujica's linearization $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ belongs to the operator left-hand quotient $\mathcal{I}^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. In this case, we also prove that $\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ is a composition ideal of the form $(\mathcal{I}^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}$.

Section [3](#page-6-0) is devoted to two examples of bounded-holomorphic left-hand quotient ideals generated by an operator ideal and a bounded-holomorphic ideal: the spaces of bounded holomorphic maps with Grothendieck range and Rosenthal range.

2. Bounded-holomorphic left-hand quotient ideals

Our first aim is to justify the existence of the following supremum which appears in Definition [1.1.](#page-1-0) Our proof is based on [\[11,](#page-9-1) 7.2.2].

Proposition 2.1. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal and let $[f^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{F}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic *ideal.* If $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$, then

$$
\sup\{\|T \circ f\|_{\mathcal{T}^{\mathcal{H}^\infty}} : T \in \mathcal{I}(F,G), \|T\|_{\mathcal{I}} \le 1\} < \infty.
$$

Proof. Assume that this supremum is not finite. Then, for each *n* ∈ N, we could find a complex Banach space G_n and an operator $\hat{T_n} \in I(F, G_n)$ with $||T_n||_I \leq 1/2^n$ such that $||T_n \circ f||_{\mathcal{J}^{H^\infty}} \geq n$.

Consider the sequence of Banach spaces (G_i) with $i \in \mathbb{N}$, and the *Cartesian* ℓ_1 *-product* $\ell_1(\mathbb{N}, G_i)$ defined as the set of all sequences (x_i) , where $x_i \in G_i$ for each $i \in \mathbb{N}$, such that the sequence $(||x_i||) \in \ell_1(\mathbb{N}, \mathbb{R})$. By [\[11,](#page-9-1) C.4.1], $\ell_1(N, G_i)$ is a Banach space with the norm

$$
||(x_i)||_1 = \sum_{i=1}^{\infty} ||x_i||.
$$

For each $n \in \mathbb{N}$, let $J_n: G_n \to \ell_1(\mathbb{N}, G_i)$ and $Q_n: \ell_1(\mathbb{N}, G_i) \to G_n$ be the bounded linear operators given by

 $J_n(x) = (\delta_{in} x)_i$ ($x \in G_n$), $Q_n((x_i)) = x_n$ ((*x*_{*i*}) = *x*_n (*x*_{*i*}) = *x*_n (*x*_{*i*}) = *x*_n (*x*_{*i*}), *z*_n (*x*_{*i*}), *z*

,

where δ_{in} is the Kronecker delta. Notice that $||J_n|| = 1$ and $||Q_n|| \leq 1$. Since $(J_n \circ T_n)$ is a sequence of vectors of the Banach space $(I(F, \ell_1(N, G_i)), ||\cdot||_I)$, and

$$
\left\| \sum_{n=k+1}^{k+h} J_n \circ T_n \right\|_I \le \sum_{n=k+1}^{k+h} ||J_n \circ T_n||_I = \sum_{i=1}^h ||J_{k+i} \circ T_{k+i}||_I
$$

$$
\le \sum_{i=1}^h ||T_{k+i}||_I \le \sum_{i=1}^\infty ||T_{k+i}||_I \le \sum_{i=1}^\infty \frac{1}{2^{k+i}} = \frac{1}{2^k}
$$

for all $h, k \in \mathbb{N}$, then the series $\sum_{n\geq 1} J_n \circ T_n$ converges in the norm $||\cdot||_I$ to $T := \sum_{n=1}^{\infty} J_n \circ T_n \in I(F, \ell_1(\mathbb{N}, G_i)).$ Thus we obtain

$$
n \leq ||T_n \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||Q_n \circ T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}},
$$

which is a contradiction. \square

In general, we can establish an inclusion property between bounded-holomorphic left-hand quotients through the inclusion of their associated bounded-holomorphic ideals. For two Banach operator ideals $[I, \|\cdot\|_I]$ and $[J, \|\cdot\|_I]$, we write $[I, \|\cdot\|_I] \leq [J, \|\cdot\|_I]$ if $I \subseteq J$ and $\|f\|_J \leq \|f\|_I$ for all $f \in I$.

Proposition 2.2. Let $[\![\mathcal{J}_1^{\mathcal{H}^\infty},\!]\!]$ $\cdot \parallel_{\mathcal{J}_1^{\mathcal{H}^\infty}}]$ and $[\![\mathcal{J}_2^{\mathcal{H}^\infty},\!]\!]$ be normed bounded-holomorphic ideals such that

$$
[\mathcal{J}_1^{\mathcal{H}^\infty},\left\|\cdot\right\|_{\mathcal{J}_1^{\mathcal{H}^\infty}}]\leq [\mathcal{J}_2^{\mathcal{H}^\infty},\left\|\cdot\right\|_{\mathcal{J}_2^{\mathcal{H}^\infty}}].
$$

Then

$$
[{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}_1, \|\cdot\|_{{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}_1}] \leq [{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}_2, \|\cdot\|_{{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}_2}],
$$

for any Banach operator ideal [I, ∥·∥I]*.* □

It is well known that $[H^{\infty}, \|\cdot\|_{\infty}]$ is a Banach bounded-holomorphic ideal. Thus, as an immediate consequence of the previous result, we can ensure that $I^{-1} \circ H^{\infty}$ is the biggest bounded-holomorphic left-hand quotient for any Banach operator ideal I in the following sense.

Corollary 2.3. Let $[\mathcal{J}^{H^{\infty}}$, $\|\cdot\|_{\mathcal{J}^{H^{\infty}}}$] be a normed bounded-holomorphic ideal. Then

$$
[{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}, \lVert\cdot\rVert_{{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}}] \leq [{\mathcal I}^{-1}\circ{\mathcal H}^{\infty}, \lVert\cdot\rVert_{{\mathcal I}^{-1}\circ{\mathcal H}^{\infty}}]
$$

for any Banach operator ideal [I, ∥·∥I]*.* □

Closely related to Corollary [2.3,](#page-3-0) we have the following useful result.

Proposition 2.4. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal and $[J^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic *ideal. Then*

$$
[\![\mathcal{I}^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{I}^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}}}] \leq [\mathcal{H}^{\infty}, \|\cdot\|_{\infty}].
$$

Furthermore,

$$
[{\mathcal I}^{-1} \circ {\mathcal J}^{{\mathcal H}^{\infty}}, \left\| \cdot \right\|_{{\mathcal I}^{-1} \circ {\mathcal J}^{{\mathcal H}^{\infty}}}] = [{\mathcal H}^{\infty}, \left\| \cdot \right\|_{\infty}]
$$

 ν henever $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in $I.$

Proof. Let $f \in \mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$. Then $f \in \mathcal{H}^{\infty}(U, F)$ and $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ for all $T \in \mathcal{I}(F, G)$, where *G* is a complex Banach space. For each $x \in U$, we can take a functional $\phi \in B_F$ such that $||f(x)|| = |\phi(f(x))|$. Since $[I, || \cdot ||_I]$ is a Banach operator ideal, it follows that the functional $\phi \otimes 1: F \to \mathbb{C}$, defined by $(\phi \otimes 1)(y) = \phi(y)$ if *y* ∈ *F*, is in *I*(*F*, **C**) with $\|\phi \otimes 1\|_I = \|\phi\| \le 1$ (see, for example, [\[5,](#page-8-3) p. 131]). Hence we can write

$$
\left\|f(x)\right\| = \left|((\phi \otimes 1) \circ f)(x)\right| \le \left\|(\phi \otimes 1) \circ f\right\|_{\infty} \le \left\|(\phi \otimes 1) \circ f\right\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} \le \left\|f\right\|_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}},
$$

and taking supremum over all $x \in U$, we conclude that $||f||_{\infty} \le ||f||_{L^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$.

Assume now that $\mathcal{J}^{H^{\infty}}$ has the LP in *I*. Let $f \in \mathcal{H}^{\infty}(U, F)$ and let $T \in I(F, G)$, where *G* is a complex Banach space. Clearly, $T \circ f \in \mathcal{H}^{\infty}(U, G)$. By Theorem [1.2,](#page-1-1) we can find operators $T_{T \circ f} \in \mathcal{L}(\mathcal{G}^{\infty}(U), G)$ and $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ with $||T_f|| = ||f||_{\infty}$ verifying

$$
T_{T \circ f} \circ g_U = T \circ f = T \circ T_f \circ g_U.
$$

Hence $T_{T \circ f} = T \circ T_f$ by the norm-density of $g_U(U)$ in $G^{\infty}(U)$. Now the ideal property of I yields that $T_{T \circ f} \in I(G^\infty(U), G)$ with $||T_{T \circ f}||_I \leq ||T||_I ||f||_\infty$. Since $\mathcal{J}^{\mathcal{H}^\infty}$ has the LP in *I*, it follows that $T \circ f \in \mathcal{J}^{\mathcal{H}^\infty}(U, G)$ with $||T \circ f||_{\mathcal{J}^{H^{\infty}}_{\text{unif}}}=||T_{T \circ f}||_T$. By the arbitrariness of $T \in \mathcal{I}(F, G)$, we conclude that $f \in \mathcal{I}^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$ with $||f||_{L^{-1} \circ \mathcal{J}^{\mathcal{H}^\infty}} \leq ||f||_{\infty}.$

Next, we show that bounded-holomorphic left-hand quotients are a method for generating boundedholomorphic ideals.

Theorem 2.5. Let $[I, ||\cdot||_I]$ be a Banach operator ideal and let $[f^{\mathcal{H}^{\infty}}, ||\cdot||_{\mathcal{F}^{\mathcal{H}^{\infty}}}$] be a normed (Banach) bounded*holomorphic ideal. Then* [I [−]¹ ◦ JH[∞] , ∥·∥I−1◦JH∞] *is a normed (Banach) bounded-holomorphic ideal. In addition,* $[I^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}},\|\cdot\|_{I^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}}}]$ is surjective whether $[\mathcal{J}^{\mathcal{H}^{\infty}},\|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ is surjective.

Proof. (P1): It is easy to see that $I^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$ is a linear space. We will now show that $\|\cdot\|_{I^{-1} \circ \mathcal{J}^{H^{\infty}}}$ is a norm on $I^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$. Let $f \in I^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$ and assume that $||f||_{I^{-1} \circ \mathcal{J}^{H^{\infty}}} = 0$. Since $||f||_{\infty} \leq ||f||_{I^{-1} \circ \mathcal{J}^{H^{\infty}}}$ by Proposition [2.4,](#page-3-1) we deduce that $f = 0$.

Given $\alpha \in \mathbb{C}$ and $f, g \in \mathcal{I}^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$, it is immediate that $||T \circ (\alpha f)||_{\mathcal{J}^{H^{\infty}}} = ||\alpha|| ||T \circ f||_{\mathcal{J}^{H^{\infty}}}$ and $||T \circ (f+g)||_{\mathcal{J}^{H^{\infty}}} = ||T \circ f + T \circ g||_{\mathcal{J}^{H^{\infty}}} \leq ||f||_{\mathcal{I}^{-1} \circ \mathcal{J}^{H^{\infty}}} + ||g||_{\mathcal{I}^{-1} \circ \mathcal{J}^{H^{\infty}}}$ for all $T \in \mathcal{I}(F,G)$ with $||T||_{\mathcal{I}} \leq 1$, and therefore $\|\alpha f\|_{I^{-1}\circ T^{\mathcal{H}^{\infty}}} = |\alpha| \, \|f\|_{I^{-1}\circ T^{\mathcal{H}^{\infty}}}$ and $\|f+g\|_{I^{-1}\circ T^{\mathcal{H}^{\infty}}} \le \|f\|_{I^{-1}\circ T^{\mathcal{H}^{\infty}}} + \|g\|_{I^{-1}\circ T^{\mathcal{H}^{\infty}}}$.

Let us suppose now that the norm $\|\cdot\|_{\mathcal{J}^{H^{\infty}}}$ on $\mathcal{J}^{H^{\infty}}$ is complete. Let (f_n) be a Cauchy sequence in $(I^{-1} \circ \mathcal{J}^{H^{\infty}}(U,F),\| \cdot \|_{I^{-1} \circ \mathcal{J}^{H^{\infty}}}).$ Let $T \in I(F,G)$, where *G* is a complex Banach space. On a hand, since $\|\cdot\|_{\infty}$ ≤ $\|\cdot\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}}$ on $I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$ by Proposition [2.4,](#page-3-1) there exists a map $f \in \mathcal{H}^{\infty}(U,F)$ such that $||f_n - f||_{\infty}$ → 0 as $n \to \infty$, and this implies that $||T \circ f_n - T \circ f||_{\infty}$ → 0 as $n \to \infty$. On the other hand, the inequality

$$
\left\|T\circ f_p - T\circ f_q\right\|_{\mathcal{J}^{\mathcal{H}^\infty}} = \left\|T\circ (f_p - f_q)\right\|_{\mathcal{J}^{\mathcal{H}^\infty}} \leq \|T\|_I \left\|f_p - f_q\right\|_{I^{-1}\circ \mathcal{J}^{\mathcal{H}^\infty}} \qquad (p,q\in\mathbb{N})
$$

shows that $(T \circ f_n)$ is a Cauchy sequence in $(\mathcal{J}^{H^\infty}(U,G),\lVert \cdot \rVert_{\mathcal{J}^{H^\infty}})$. Hence we can take a map $g \in \mathcal{J}^{H^\infty}(U,G)$ so that $||T \circ f_n - g||_{\mathcal{J}^{H^{\infty}}} \to 0$ as $n \to \infty$. Taking into account that $|| \cdot ||_{\infty} \le || \cdot ||_{\mathcal{J}^{H^{\infty}}}$ on $\mathcal{J}^{H^{\infty}}(U, G)$, we obtain that $T \circ f = g$, and thus $f \in \mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ and $\left\|T \circ f_n - T \circ f\right\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} \to 0$ as $n \to \infty$.

To prove that (f_n) converges to f in $(I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U,F),\|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}})$, let $\varepsilon > 0$. Then there exists $m \in \mathbb{N}$ such that $|| f_p - f_q ||_{L^{-1} \circ \mathcal{J}^{H^\infty}} < \varepsilon/2$ for all $p, q \geq m$. Hence we have that

$$
\left\|T\circ f_p-T\circ f_{p+n}\right\|_{\mathcal{J}^{\mathcal{H}^\infty}}<\frac{\varepsilon}{2}
$$

for all $p \ge m$, $n \in \mathbb{N}$ and $T \in \mathcal{I}(F, G)$ with $||T||_I \le 1$. Taking limits with $n \to \infty$, it follows that

$$
\left\|T\circ f_p-T\circ f\right\|_{\mathcal{J}^{\mathcal{H}^\infty}}\leq \frac{\varepsilon}{2}
$$

for all $p \ge m$ and $T \in I(F, G)$ with $||T||_I \le 1$. Taking supremum over all such *T*, we get that $||f_p - f||_{I^{-1} \circ I^{H^\infty}} < \varepsilon$ for all $p \ge m$, as desired.

(P2): Let $g \in \mathcal{H}^{\infty}(U)$ and $y \in F$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ is a normed bounded-holomorphic ideal, we have that $g \cdot y \in \mathcal{J}^{H^{\infty}}(U, F)$ with $||g \cdot y||_{\mathcal{J}^{H^{\infty}}} = ||g||_{\infty}||y||$. Let $T \in \mathcal{I}(F, G)$, where *G* is a complex Banach space, and note that $T \circ (g \cdot y) = g \cdot T(y)$. Hence $T \circ (g \cdot y) \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ with $||T \circ (g \cdot y)||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||g||_{\infty} ||T(y)||$, and thus $g \cdot y \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ with

$$
\|g \cdot y\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} = \|g\|_{\infty} \sup \{ \|T(y)\| : T \in \mathcal{I}(F, G), \|T\|_{I} \le 1 \}
$$

$$
\ge \|g\|_{\infty} \sup \{ |\phi(y)| : \phi \in B_{F^*} \} = \|g\|_{\infty} \|y\|.
$$

To get the converse inequality, note that

$$
||T \circ (g \cdot y)||_{\mathcal{T}^{H^{\infty}}} \le ||T|| \, ||g \cdot y||_{\mathcal{T}^{H^{\infty}}} \le ||T||_{\mathcal{I}} ||g \cdot y||_{\mathcal{T}^{H^{\infty}}} \le ||g||_{\infty} ||y||
$$

for all $T \in \mathcal{I}(F, G)$ with $||T||_I \leq 1$, and so $||g \cdot y||_{I^{-1} \circ \mathcal{J}^{H^{\infty}}} \leq ||g||_{\infty} ||y||$.

(P3): Let *H* and *G* be complex Banach spaces, let *V* be an open subset of $H, f \in I^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F), h \in \mathcal{H}(V, U)$ and $S ∈ L(F, G)$. Let $T ∈ I(\tilde{G}, G_0)$, where \tilde{G}_0 is a complex Banach space. Then $T ∘ S ∈ I(F, G_0)$ with $||T ∘ S||_I ≤$ $||T||_I$ $||S||$ by the ideal property of *I*, and $T \circ S \circ f \in \mathcal{J}^{\hat{\mathcal{H}}^{\infty}}(U, G_0)$ with $||T \circ S \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \le ||T \circ S||_I ||f||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ by the $\lim_{n \to \infty} \int_{\mathbb{R}} \int_{$ the ideal property of $\mathcal{J}^{\mathcal{H}^{\infty}}$. Consequently, $S \circ f \circ h \in \mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(V,G)$ and since $||T \circ S \circ f \circ h||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||S|| \, ||\dot{f}||_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ $f \circ \inf_{\mathcal{A}} \mathcal{A} = \mathcal{I}(G, G_0) \text{ with } ||T||_I \leq 1, \text{ we deduce that } ||S \circ f \circ h||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||S|| \, \bigg\| \bigg\| f \bigg\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} \,.$

(S): Let $f \in H^{\infty}(U, F)$ and assume that $f \circ \pi \in \mathcal{I}^{-1} \circ \mathcal{J}^{H^{\infty}}(V, F)$, where V is an open subset of a complex Banach space *G* and $\pi \in H(V, U)$ is a surjective map. Then $T \circ f \circ \pi \in \mathcal{J}^{H^{\infty}}(V, H)$ for all $T \in I(F, H)$, being *H* a complex Banach space. Since the normed bounded-holomorphic ideal $[\hat{\cal J}^{\cal H^{\infty}}]$ ||·||_{$\hat{\cal J}^{\mu^{\infty}}]$ is surjective and} $T \circ f \in \mathcal{H}^{\infty}(U, H)$, it follows that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, H)$ with $||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||T \circ f \circ \pi||_{\mathcal{J}^{\mathcal{H}^{\infty}}}$. By the arbitrariness of *T* ∈ *I*(*F*, *H*), we can ensure that f ∈ $I^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$. Moreover, notice that

$$
||f||_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} = \sup \{ ||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} : T \in \mathcal{I}(F, H), ||T||_{\mathcal{I}} \le 1 \}
$$

=
$$
\sup \{ ||T \circ f \circ \pi||_{\mathcal{J}^{\mathcal{H}^{\infty}}} : T \in \mathcal{I}(F, H), ||T||_{\mathcal{I}} \le 1 \}
$$

=
$$
||f \circ \pi||_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}.
$$

Hence $[I^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}}, \left\|\cdot\right\|_{I^{-1}\circ \mathcal{J}^{\mathcal{H}^{\infty}}}]$ is surjective.

The following result allows us to establish a relationship between left-hand quotients of operator ideals and left-hand quotients of an operator ideal and a bounded-holomorphic ideal with the LP.

Theorem 2.6. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal, $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a normed operator ideal and $[f^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{T}^{\mathcal{H}^{\infty}}}]$ be a *normed bounded-holomorphic ideal with the LP in A. For every* $f \in \mathcal{H}^{\infty}(U, F)$ *, the following are equivalent:*

$$
(i) f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F).
$$

(ii) T_f ∈ \mathcal{I}^{-1} ∘ $\mathcal{A}(G^{\infty}(U), F)$.

In this case, $||f||_{I^{-1} \circ J^{\mathcal{H}^{\infty}}} = ||T_f||_{I^{-1} \circ \mathcal{A}}$. In addition, the correspondence $f \mapsto T_f$ is an isometric isomorphism from $(I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U,F), ||\cdot||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}})$ onto $(I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U),F), ||\cdot||_{I^{-1} \circ \mathcal{A}})$.

Proof. (i) \Rightarrow (ii): Let $f \in \mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$. Then, for all $T \in \mathcal{I}(F, G)$, being *G* a complex Banach space, we have that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$. As in the proof of Proposition [2.4,](#page-3-1) by using Theorem [1.2](#page-1-1) we can ensure the existence of two operators $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ and $T_{T \circ f} \in \mathcal{L}(\mathcal{G}^{\infty}(U), G)$ so that $T_{T \circ f} = T \circ T_f$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in \mathcal{A} , we deduce that $T_{T \circ f} \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$, and by the arbitrariness of $T \in \mathcal{I}(F, G)$, we conclude that $T_f \in \mathcal{I}^{-1} \circ \mathcal{A}(\mathcal{G}^\infty(U), F)$.

(ii) \Rightarrow (i): Assume that $T_f \in \mathcal{I}^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. Then $T \circ T_f \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$ for all $T \in \mathcal{I}(F, G)$, and thus $T_{T \circ f} \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$ because $T_{T \circ f} = T \circ T_f$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in \mathcal{A} , it follows that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ and then $f \in \mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$.

In this case, we have

$$
||f||_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} = \sup \{ ||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} : T \in \mathcal{I}(F, G), ||T||_{\mathcal{I}} \le 1 \}
$$

=
$$
\sup \{ ||T_{T \circ f}||_{\mathcal{A}} : T \in \mathcal{I}(F, G), ||T||_{\mathcal{I}} \le 1 \}
$$

=
$$
\sup \{ ||T \circ T_f||_{\mathcal{A}} : T \in \mathcal{I}(F, G), ||T||_{\mathcal{I}} \le 1 \}
$$

=
$$
||T_f||_{\mathcal{I}^{-1} \circ \mathcal{A}},
$$

where the second equality is due to the LP of $\mathcal{J}^{H^{\infty}}$ in \mathcal{A} .

For the last assertion of the statement, it suffices to prove the surjectivity of the map $f \mapsto T_f$ from $I^{-1} \circ \mathcal{J}^{H^{\infty}}(U,F)$ into $I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. Towards this end, let $S \in I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. We have $T \circ S \in$ $\mathcal{A}(G^{\infty}(U), G)$ for all $T \in I(F, G)$, being G a complex Banach space. By applying Theorem [1.2,](#page-1-1) $T \circ S = T_g$ for some $g \in \mathcal{H}^{\infty}(U, G)$. Hence $g \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ by the LP of $\mathcal{J}^{\mathcal{H}^{\infty}}$ in A. Consider the map $f = S \circ g_u : U \to F$. Clearly, $f \in H^{\infty}(U, F)$ and $T \circ f = T \circ S \circ g_{U} = T_g \circ g_{U} = g \in \mathcal{J}^{H^{\infty}}(U, G)$. Hence $f \in \mathcal{I}^{-1} \circ \mathcal{J}^{H^{\infty}}(U, F)$ and $T_f = S$. \Box

Let us recall now the composition method for generating bounded-holomorphic ideals. Given an operator ideal I, a map $f \in H^{\infty}(U, F)$ is in the composition ideal $I \circ H^{\infty}$, and it is written as $f \in I \circ H^{\infty}(U, F)$, if there are a complex Banach space *G*, an operator $T \in I(G, F)$ and a map $q \in H^{\infty}(U, G)$ so that $f = T \circ q$. If [*I*, $\|\cdot\|_I$] is a normed operator ideal and *f* ∈ *I* ∘ *H*[∞], we set

$$
\left\|f\right\|_{I\circ\mathcal{H}^\infty}=\inf\left\{\left\|T\right\|_I\left\|g\right\|_\infty\right\},\
$$

being the infimum taken over all factorizations of *f* as above.

Left-hand quotients of an operator ideal and a bounded-holomorphic ideal with the LP in a certain operator ideal can be seen as a composition ideal as the following result reflects.

Proposition 2.7. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal, $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a normed operator ideal and $[J^{\mathcal{H}^{\infty}}, \|\cdot\|_{T^{\mathcal{H}^{\infty}}}]$ *be a normed bounded-holomorphic ideal with the LP in* A*. Then*

$$
[{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}, \|\cdot\|_{{\mathcal I}^{-1}\circ{\mathcal J}^{{\mathcal H}^{\infty}}}] = [({\mathcal I}^{-1}\circ{\mathcal A})\circ{\mathcal H}^{\infty}, \|\cdot\|_{({\mathcal I}^{-1}\circ{\mathcal A})\circ{\mathcal H}^{\infty}}].
$$

Proof. Let $f \in \mathcal{H}^{\infty}(U, F)$. Applying [\[1,](#page-8-4) Theorem 3.2] and Theorem [2.6,](#page-5-0) we have

$$
f \in (I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}(U, F) \Leftrightarrow T_f \in I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)
$$

$$
\Leftrightarrow f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F),
$$

with $||f||_{(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}} = ||T_f||_{I^{-1} \circ \mathcal{A}} = ||f||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ for all $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$.

3. Examples of bounded-holomorphic left-hand quotient ideals

An operator *T* ∈ L(*E*, *F*) is called *compact (respectively, weakly compact, separable, Rosenthal, Grothendieck)* if *T*(*BE*) is a relatively compact (respectively, relatively weakly compact, separable, Rosenthal, Grothendieck) subset of *F*. The ideals of compact operators, weakly compact operators, separable bounded operators, Rosenthal operators, and Grothendieck operators from *E* into *F* will be denoted as K(*E*, *F*), W(*E*, *F*), S(*E*, *F*), $R(E, F)$ and $\mathfrak{G}(E, F)$, respectively. The inclusions that follow are widely recognized:

 $\mathcal{K}(E, F) \subseteq \mathcal{W}(E, F) \subseteq \mathcal{R}(E, F)$ $W(E, F) \subseteq \mathfrak{G}(E, F)$ $\mathcal{K}(E, F) \subseteq \mathcal{S}(E, F)$.

The monograph [\[11\]](#page-9-1) by Pietsch contains a complete study on these operator ideals.

In this section, we will give two examples of bounded-holomorphic left-hand quotient ideals generated by an operator ideal and a bounded-holomorphic ideal, namely, the spaces of holomorphic maps which have Grothendieck range or Rosenthal range.

We refer the reader to [\[6\]](#page-8-5) for a study of the Grothendieck property. According to [\[6,](#page-8-5) p. 298], a set $K \subseteq E$ is called *Grothendieck* if for every operator $T \in \mathcal{L}(E, c_0)$, $T(K)$ is a relatively weakly compact subset of c_0 . It is known that $\mathfrak G$ is a closed surjective operator ideal.

Definition 3.1. *We will say that a map* $f \in \mathcal{H}^{\infty}(U, F)$ *is Grothendieck if f*(*U*) *is a Grothendieck subset of F. Let* H[∞] G (*U*, *F*) *denote the space of all Grothendieck holomorphic maps from U into F.*

Following [\[7\]](#page-8-6), $\mathcal{H}_{W}^{\infty}(U,F)$ and $\mathcal{H}_{K}^{\infty}(U,F)$ stand for the spaces of all bounded holomorphic maps from *U* into *F* with relatively weakly compact range and relatively compact range, respectively. By [\[2,](#page-8-2) Proposition 3.2] and [\[10,](#page-9-4) Proposition 3.4], $\mathcal{H}_{\mathcal{K}}^{\infty}$ and \mathcal{H}_{W}^{∞} are bounded-holomorphic ideals with the LP in K and W, respectively. We now show that $\hat{\mathcal{H}}_{6}^{\infty}$ has the LP in 6.

Theorem 3.2. *For a map* $f \in \mathcal{H}^{\infty}(U, F)$ *, the following are equivalent:*

- (*i*) *f* ∈ $\mathcal{H}_{\mathfrak{G}}^{\infty}(U, F)$ *.*
- (iii) $T_f \in \mathfrak{G}(G^\infty(U), F)$.
- *(iii)* $f \in \mathfrak{G} \circ \mathcal{H}^\infty(U, F)$ *.*

In this case, $||f||_{\infty} = ||T_f|| = ||f||_{(6.97 \times 10^{-4} \text{ J})}$. As a consequence, the map $f \mapsto T_f$ is an isometric isomorphism from $(\mathcal{H}_{\mathfrak{G}}^{\infty}(U,F),\|\cdot\|_{\infty})$ onto $(\mathfrak{G}(\mathcal{G}^{\infty}(U),F),\|\cdot\|)$, and from $(\mathfrak{G}\circ\mathcal{H}^{\infty}(U,F),\|\cdot\|_{\mathfrak{G}\circ\mathcal{H}^{\infty}})$ onto $(\mathfrak{G}(\mathcal{G}^{\infty}(U),F),\|\cdot\|)$.

Proof. (i) \Rightarrow (ii): If $f \in H_6^{\infty}(U, F)$, then $T_f(g_U(U)) = f(U)$ is Grothendieck in *F*. Notice that the norm-closed absolutely convex hull of a Grothendieck set is itself Grothendieck due to the norm-closed absolutely convex hull of a relatively weakly compact set is relatively weakly compact. In this way, abco($T_f(q_U(U))$) is Grothendieck in *F*. Since $T_f(B_{G^\infty(U)}) = T_f(\text{a}bco(g_U(U))) \subseteq \text{a}bco(T_f(g_U(U)))$, it follows that $T_f(B_{G^\infty(U)})$ is a Grothendieck subset of *F*.

 \mathcal{L} (ii) \Rightarrow (i): If *T*^{*f*} ∈ $\mathfrak{G}(\mathcal{G}^{\infty}(U), F)$, then *T*_{*f*}(*B*_{G[∞](*U*)}) is a Grothendieck subset of *F*. Since $g_U(U) \subseteq B_{\mathcal{G}^{\infty}(U)}$, it follows that $f(U) = T_f(g_U(U))$ is Grothendieck in *F*.

(ii) \Leftrightarrow (iii): It is an application of [\[1,](#page-8-4) Theorem 3.2] (see also [\[2,](#page-8-2) Theorem 2.4]).

For the consequence, the first part follows easily applying Theorem [1.2](#page-1-1) and (ii) \Rightarrow (i), and the second part from [\[2,](#page-8-2) Theorem 2.4]. \Box

Let us recall (see [\[2,](#page-8-2) Definition 2.1]) that a bounded-holomorphic ideal $\mathcal{J}^{H^{\infty}}$ is said to be *closed* if every component $\mathcal{J}^{H^{\infty}}(U, F)$ is a closed subspace of $\mathcal{H}^{\infty}(U, F)$ endowed with the topology of the supremum norm. Since G is a closed operator ideal (the norm-limit of a convergent sequence of Grothendieck operators is Grothendieck) and $\mathcal{H}_{\mathfrak{G}}^{\infty} = \mathfrak{G} \circ \mathcal{H}^{\infty}$ by Theorem [3.2,](#page-7-0) then Corollary 2.5 in [\[2\]](#page-8-2) yields the following.

Corollary 3.3. $[H_{\mathfrak{G}}^{\infty}, \|\cdot\|_{\infty}]$ *is a closed bounded-holomorphic ideal.* □

We are now ready to describe the space of all Grothendieck holomorphic mappings in terms of a bounded-holomorphic left-hand quotient ideal.

Theorem 3.4. $[\mathcal{H}_{\mathfrak{G}}^{\infty}, \|\cdot\|_{\infty}] = [\mathcal{S}^{-1} \circ \mathcal{H}_{\mathcal{W}'}^{\infty}, \|\cdot\|_{\mathcal{S}^{-1} \circ \mathcal{H}_{\mathcal{W}}^{\infty}}].$

Proof. Let *f* ∈ H[∞](*U*, *F*). Taking into account Theorem [3.2,](#page-7-0) [\[11,](#page-9-1) 3.2.6], Definition [1.1,](#page-1-0) and Theorem [2.6](#page-5-0) joint to [\[10,](#page-9-4) Proposition 3.4], respectively, we have

$$
f \in \mathcal{H}_{\mathfrak{G}}^{\infty}(U,F) \Leftrightarrow T_f \in \mathfrak{G}(\mathcal{G}^{\infty}(U),F)
$$

$$
\Leftrightarrow T \circ T_f \in \mathcal{W}(\mathcal{G}^{\infty}(U),G), \quad \forall T \in \mathcal{S}(F,G)
$$

$$
\Leftrightarrow T_f \in \mathcal{S}^{-1} \circ \mathcal{W}(\mathcal{G}^{\infty}(U),F)
$$

$$
\Leftrightarrow f \in \mathcal{S}^{-1} \circ \mathcal{H}_{\mathcal{W}}^{\infty}(U,F),
$$

and, in this case, $||f||_{\infty} = ||T_f|| = ||T_f||_{S^{-1} \circ \mathcal{W}} = ||f||_{S^{-1} \circ \mathcal{H}_{\mathcal{W}}^{\infty}}$

Let us look back on and recall that a subset *A* of *E* is said to be *conditionally weakly compact (or Rosenthal)* if every sequence in *A* has a weak Cauchy subsequence.

On the other hand, an operator $T \in \mathcal{L}(E, F)$ is called *completely continuous* if every weakly convergent sequence (x_n) is mapped into a norm convergent sequence $(T(x_n))$. Let $\mathcal{V}(E, F)$ be the space of all completely continuous operators from *E* into *F*. By [\[11,](#page-9-1) 1.6.2 and 4.2.5], V is a closed operator ideal.

Next, we characterise the subclass of bounded holomorphic mappings which have Rosenthal range, denoted by $\mathcal{H}_{\mathcal{R}}^{\infty}$, as a bounded-holomorphic left-hand quotient ideal generated by the operator ideal V and the bounded-holomorphic ideal $\mathcal{H}_{\mathcal{K}}^{\infty}$.

Theorem 3.5.
$$
[\mathcal{H}_{\mathcal{R}}^{\infty}, ||\cdot||_{\infty}] = [\mathcal{V}^{-1} \circ \mathcal{H}_{\mathcal{K}}^{\infty}, ||\cdot||_{\mathcal{V}^{-1} \circ \mathcal{H}_{\mathcal{K}}^{\infty}}].
$$

Proof. Given $f \in \mathcal{H}^{\infty}(U, F)$, we obtain:

$$
f \in \mathcal{H}_{\mathcal{R}}^{\infty}(U, F) \Leftrightarrow T_f \in \mathcal{R}(\mathcal{G}^{\infty}(U), F)
$$

\n
$$
\Leftrightarrow T \circ T_f \in \mathcal{K}(\mathcal{G}^{\infty}(U), G), \quad \forall T \in \mathcal{V}(F, G)
$$

\n
$$
\Leftrightarrow T_f \in \mathcal{V}^{-1} \circ \mathcal{K}(\mathcal{G}^{\infty}(U), F)
$$

\n
$$
\Leftrightarrow f \in \mathcal{V}^{-1} \circ \mathcal{H}_{\mathcal{K}}^{\infty}(U, F),
$$

in whose case, $||f||_{\infty} = ||T_f|| = ||T_f||_{\mathcal{V}^{-1} \circ \mathcal{H}_{\mathcal{K}}^{\infty}}$, by using [\[7,](#page-8-6) Theorem 2.9], [\[11,](#page-9-1) 3.2.4], Definition [1.1,](#page-1-0) and Theorem [2.6](#page-5-0) with [\[10,](#page-9-4) Proposition 3.4], respectively. \square

We do not know what happens with Proposition [2.7](#page-6-1) for the case in which the ideal of bounded holomorphic mappings $\mathcal{J}^{\mathcal{H}^{\infty}}$ does not have the LP in an operator ideal A. The natural idea is to think that a holomorphic quotient $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ may not coincide with a composition ideal of the form $(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}$.

Let us recall that a map $q : U \to F$ is called *locally weakly compact* if for each point $x \in U$, we can find a neighborhood $U_x \subseteq U$ for which $g(U_x)$ is relatively weakly compact in *F*. Let $\mathcal{H}_w^{\infty}(U, F)$ be the linear subspace of $\mathcal{H}^{\infty}(U, F)$ formed by all locally weakly compact maps. If Δ denotes the open unit disc of \mathbb{C} , let $q \in \mathcal{H}^{\infty}(\Delta, c_0)$ be given as

$$
g(w)=(w^n)_{n=1}^\infty\qquad (w\in\Delta).
$$

By [\[10,](#page-9-4) Example 3.2], $g \in H_w^{\infty}(\Delta, c_0)$ but $g \notin H_w^{\infty}(\Delta, c_0)$. By [10, Proposition 3.4], it follows that $T_g \notin H_w^{\infty}(\Delta, c_0)$ $W(G^{\infty}(\Delta), c_0)$. Thus, $\mathcal{H}_{w}^{\infty} \neq W \circ \mathcal{H}^{\infty}$ by [\[1,](#page-8-4) Theorem 3.2]. Hence \mathcal{H}_{w}^{∞} does not have the LP in W , and since $I^{-1} \circ \mathcal{H}_{W}^{\infty} = (I^{-1} \circ W) \circ \mathcal{H}^{\infty}$ for any operator ideal *I* by Proposition [2.7](#page-6-1) and [\[10,](#page-9-4) Proposition 3.4], we can assure that $I^{-1} \circ H_w^{\infty} \neq (I^{-1} \circ W) \circ H^{\infty}$ for some operator ideal I . Thus $I^{-1} \circ H_w^{\infty}$ can not be a composition ideal generated by its associated operator ideal W but it is a bounded-holomorphic left-hand quotient ideal according to Theorem [2.5](#page-4-0) since $\hat{\mathcal{H}}_w^{\infty}$ is a bounded-holomorphic ideal by [\[2,](#page-8-2) Proposition 3.1].

References

- [1] R. Aron, G. Botelho, D. Pellegrino and P. Rueda, Holomorphic mappings associated to composition ideals of polynomials, Rend. Lincei-Mat. Appl. **21** (2010), no. 3, 261–274.
- [2] M G. Cabrera-Padilla, A. Jiménez-Vargas and D. Ruiz-Casternado, On composition ideals and dual ideals of bounded holomorphic mappings, Results Math. **78** (2023), no. 3, Paper No. 103, 21 pp.
- [3] B. Carl and A. Defant, Tensor products and Grothendieck type inequalities of operators in *Lp*-spaces, Trans. Amer. Math. Soc. **331** (1992), no. 1, 55–76.
- [4] R. M. Causey and K. V. Navoyan, ξ-completely continuous operators and ξ-Schur Banach spaces, J. Funct. Anal. **276** (2019), no. 7, 2052–2102.
- [5] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
- [6] M. González and T. Kania, Grothendieck spaces: the landscape and perspectives., Japan. J. Math 16 (2021), 247-313.
- [7] A. Jimenez-Vargas, D. Ruiz-Casternado and J. M. Sepulcre, On holomorphic mappings with compact type range, Bull. Malays. ´ Math. Sci. Soc. **46** (2023), no. 1, Paper No. 20, 16 pp.

- [8] W. B. Johnson, R. Lillemets and E. Oja, Representing completely continuous operators through weakly ∞-compact operators, Bull. London Math. Soc. **48** (2016), no. 3, 452–456.
- [9] J. M. Kim, The ideal of weakly *p*-compact operators and its approximation property for Banach spaces, Ann. Fenn. Math. **45** (2020), no. 2, 863–876.
- [10] J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. **324** (1991), no. 2, 867–887.
- [11] A. Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author.
- [12] J. Puhl, Quotienten von Operatorenidealen, Math. Nachr. **79** (1977), 131–144