Filomat 38:29 (2024), 10123–10132 https://doi.org/10.2298/FIL2429123J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On quotients of ideals of bounded holomorphic maps

A. Jiménez-Vargas^a, D. Ruiz-Casternado^{a,*}

^a Departamento de Matemáticas, Universidad de Almería, Ctra. de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain

Abstract. Based on the notion of left-hand quotient of operator ideals, we introduce and study the concept of bounded-holomorphic left-hand quotient $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$, where I is an operator ideal and $\mathcal{J}^{\mathcal{H}^{\infty}}$ is a bounded-holomorphic ideal. We show that such quotients are a method for generating new bounded-holomorphic ideals. In fact, if $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the linearization property in an operator ideal \mathcal{A} , then $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ is a composition ideal of the form $(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}$. We also introduce the notion of Grothendieck holomorphic map and prove that they form a bounded-holomorphic ideal which can be seen as a bounded-holomorphic left-hand quotient. In the same way, the ideal of holomorphic maps with Rosenthal range can be generated as a bounded-holomorphic left-hand quotient.

1. Introduction and preliminaries

Let I, \mathcal{J} be operator ideals and let E, F be Banach spaces. Following [12, p. 132], a bounded linear operator $T : E \to F$ is said to belong to the *left-hand quotient* $I^{-1} \circ \mathcal{J}$, and we write $T \in I^{-1} \circ \mathcal{J}(E, F)$, if $S \circ T \in \mathcal{J}(E, G)$ for all $S \in I(F, G)$, where G is an arbitrary Banach space. The *right-hand quotient* $I \circ \mathcal{J}^{-1}$ is defined in a similar way. Of course, the symbols I^{-1} and \mathcal{J}^{-1} have no meaning. It is well known that $I^{-1} \circ \mathcal{J}$ and $I \circ \mathcal{J}^{-1}$ are operator ideals (see [11, 3.2.2]). We will say that $I^{-1} \circ \mathcal{J}$ is the left-hand quotient ideal generated or induced by the ideals I and \mathcal{J} , and similarly for the right-hand quotient ideal $I \circ \mathcal{J}^{-1}$.

Furthermore, if $[\mathcal{I}, \|\cdot\|_{\mathcal{I}}]$ and $[\mathcal{J}, \|\cdot\|_{\mathcal{J}}]$ are Banach operator ideals, and we set

$$||T||_{I^{-1}\circ \mathcal{J}} = \sup\{||S \circ T||_{\mathcal{J}} : S \in I(F,G), ||S||_{I} \le 1\},\$$

for every $T \in I^{-1} \circ \mathcal{J}(E, F)$, where *G* ranges over all Banach spaces, then $[I^{-1} \circ \mathcal{J}, \|\cdot\|_{I^{-1} \circ \mathcal{J}}]$ is a Banach operator ideal by [11, 7.2.2].

Left-hand and right-hand quotients of operator ideals have been studied by some authors over time. For example, Johnson, Lillemets and Oja showed in [8] that completely continuous operators can be represented as a right-hand quotient generated by the ideals of weakly ∞ -compact operators and weakly compact operators, and used it to show that only in Schur spaces the weak Grothendieck compactness principle is satisfied; Carl and Defant proved in [3] that the ideal of (*s*, *p*)-mixing operators is expressible as

Received: 31 March 2024; Accepted: 10 September 2024

²⁰²⁰ Mathematics Subject Classification. Primary 46E15; Secondary 46E40, 46G20, 47L20.

Keywords. Vector-valued holomorphic mapping, linearization property, bounded-holomorphic left-hand quotient, bounded-holomorphic ideal.

Communicated by Dragan S. Djordjević

Research partially supported by grant PID2021-122126NB-C31 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU, and by Junta de Andalucía grant FQM194.

^{*} Corresponding author: D. Ruiz-Casternado

Email addresses: ajimenez@ual.es (A. Jiménez-Vargas), drc446@ual.es (D. Ruiz-Casternado)

a left-hand quotient induced by the ideals of s-summing operators and p-summing operators; Causey and Navoyan generalised in [4] a result from Pietsch's book ([11, 3.2.3]) showing that the class of ξ -completely continuous operators can be seen as a right-hand quotient induced by the classes of compact operators and ξ -weakly compact operators; Kim proved in [9] that the class of operators which sends weakly *p*-summable sequences to unconditionally *p*-summable sequences is a right-hand quotient generated by the ideals of unconditionally *p*-compact operators and weakly *p*-compact operators.

Through this paper, E and F will be complex Banach spaces and U will be an open subset of E. As usual, B_E stands for the closed unit ball of E, $\mathcal{L}(E, F)$ for the space of all bounded linear operators from Einto *F* endowed with the operator norm, and E^* for the topological dual of *E*. Given a set $A \subseteq E$, lin(*A*) and abco(A) represent the linear span and the norm-closed absolutely convex hull of A in E, respectively.

Let $\mathcal{H}(U,F)$ be the space of all holomorphic mappings from *U* into *F*. Moreover, $\mathcal{H}^{\infty}(U,F)$ will be the subspace formed by all $f \in \mathcal{H}(U, F)$ for which f(U) is a bounded subset of *F*. We will use the abbreviations $\mathcal{H}(U)$ and $\mathcal{H}^{\infty}(U)$ instead of $\mathcal{H}(U,\mathbb{C})$ and $\mathcal{H}^{\infty}(U,\mathbb{C})$, respectively. Let us recall that $\mathcal{H}^{\infty}(U,F)$ is a Banach space under the supremum norm

$$||f||_{\infty} = \sup\{||f(x)|| : x \in U\} \qquad (f \in \mathcal{H}^{\infty}(U, F)).$$

Our goal in this note is to present a holomorphic version of the notion of left-hand quotient of operator ideals, involving the concept of bounded-holomorphic ideal introduced in [2, Definition 2.1]. To our knowledge, nothing has been published so far about quotients of ideals in the setting of bounded holomorphic maps.

Let us recall that a normed (Banach) bounded-holomorphic ideal, denoted as $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{I}^{\mathcal{H}^{\infty}}}]$, is a subclass $\mathcal{J}^{\mathcal{H}^{\infty}}$ equipped with a norm $\|\cdot\|_{\mathcal{I}^{\mathcal{H}^{\infty}}}$ of the class \mathcal{H}^{∞} of all bounded holomorphic mappings equipped with the norm $\|\cdot\|_{\infty}$ such that, for every open subset *U* of a complex Banach space *E* and every complex Banach space *F*, the components $\mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ verify the following properties:

(P1) $(\mathcal{J}^{\mathcal{H}^{\infty}}(U,F), \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}})$ is a normed (Banach) space and $\|f\|_{\infty} \leq \|f\|_{\mathcal{I}^{\mathcal{H}^{\infty}}}$ for $f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$.

- (P2) For any $g \in \mathcal{H}^{\infty}(U)$ and $y \in F$, the map $g \cdot y \colon U \to F$, given by $(g \cdot y)(x) = g(x)y$ if $x \in U$, is in $\mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ and $\|g \cdot y\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} = \|g\|_{\infty} \|y\|.$
- (P3) The ideal property: Given two complex Banach spaces H, G, an open subset V of $H, f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$, $S \in \mathcal{L}(F, G)$ and $h \in \mathcal{H}(V, U)$, the map $S \circ f \circ h$ is in $\mathcal{J}^{\mathcal{H}^{\infty}}(V, G)$ and $\|S \circ f \circ h\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} \le \|S\| \|f\|_{\mathcal{T}^{\mathcal{H}^{\infty}}}$.

A normed bounded-holomorphic ideal $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{I}^{\mathcal{H}^{\infty}}}]$ is

(S) Surjective if $f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$ with $\|f\|_{\mathcal{I}^{\mathcal{H}^{\infty}}} = \|f \circ \pi\|_{\mathcal{I}^{\mathcal{H}^{\infty}}}$, whenever $f \in \mathcal{H}^{\infty}(U,F)$, $\pi \in \mathcal{H}(V,U)$ is a surjective map, where *V* is an open subset of a complex Banach space *G* and $f \circ \pi \in \mathcal{J}^{\mathcal{H}^{\infty}}(V, F)$.

Influenced by the notion of left-hand quotient of operator ideals (see, e.g., [11, 3.2.1]), we introduce the concept of left-hand quotient of an operator ideal and a bounded-holomorphic ideal.

Definition 1.1. Let *I* be an operator ideal and let $\mathcal{J}^{\mathcal{H}^{\infty}}$ be a bounded-holomorphic ideal. A mapping $f \in \mathcal{H}^{\infty}(U, F)$ is said to belong to the bounded-holomorphic left-hand quotient $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$, and will be written as $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$, if $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,G)$ for all $T \in I(F,G)$, where G is a complex Banach space. If I is endowed with a complete norm $\|\cdot\|_I$ and $\mathcal{J}^{\mathcal{H}^{\infty}}$ with a norm $\|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}$, we set

$$\|f\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} = \sup\{\|T\circ f\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}: T\in I(F,G), \|T\|_{I}\leq 1\}.$$

Our main tool in this paper is a method of linearization of bounded holomorphic mappings gathered in the following result due to Mujica [10].

Theorem 1.2. [10, Theorem 2.1 and Remark 2.2] Let U be an open subset of a complex Banach space E. Consider the Banach space

$$\mathcal{G}^{\infty}(U) := \lim(\{\delta_x : x \in U\}) \subseteq \mathcal{H}^{\infty}(U)^*,$$

where $\delta_x \colon \mathcal{H}^{\infty}(U) \to \mathbb{C}$ is the functional defined by $\delta_x(f) = f(x)$ for all $f \in \mathcal{H}^{\infty}(U)$.

(i) The map $g_U : U \to \mathcal{G}^{\infty}(U)$, given by

$$g_U(x) = \delta_x \qquad (x \in U),$$

is in $\mathcal{H}^{\infty}(U, \mathcal{G}^{\infty}(U))$ and $||\delta_x|| = 1$ for any $x \in U$.

- (*ii*) $B_{\mathcal{G}^{\infty}(U)} = \overline{\text{abco}}(g_U(U)).$
- (iii) For each complex Banach space F and each map $f \in \mathcal{H}^{\infty}(U, F)$, there exists a unique operator $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ such that $T_f \circ g_U = f$. Moreover, $||T_f|| = ||f||_{\infty}$.

Our study will depend essentially on a linearization property of the maps of the bounded-holomorphic ideal $\mathcal{J}^{\mathcal{H}^{\infty}}$.

Definition 1.3. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a normed operator ideal and let $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic ideal. We say that $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the linearization property (LP, for short) in \mathcal{A} if given $f \in \mathcal{H}^{\infty}(U, F)$, we have that $f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ if and only if $T_f \in \mathcal{A}(\mathcal{G}^{\infty}(U), F)$, in whose case $\|f\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} = \|T_f\|_{\mathcal{A}}$.

This paper has been divided into two sections. Section 2 gathers the first properties of the left-hand quotients $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$, where I is an operator ideal and $\mathcal{J}^{\mathcal{H}^{\infty}}$ is a bounded-holomorphic ideal. If both ideals are endowed with complete norms, we show that $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ with the norm $\|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ is a Banach bounded-holomorphic ideal which becomes surjective whenever $\mathcal{J}^{\mathcal{H}^{\infty}}$ is surjective. Thus, bounded-holomorphic left-hand quotients prove to be an interesting method of generating bounded-holomorphic ideals. There are already two well known ways to produce bounded-holomorphic ideals: by composition and by transposition (see [2, Theorems 2.4 and 4.3]).

We show that if $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the linearization property in an operator ideal \mathcal{A} , then a map $f \in \mathcal{H}^{\infty}(U, F)$ belongs to the bounded-holomorphic left-hand quotient $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ if and only if its Mujica's linearization $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ belongs to the operator left-hand quotient $I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. In this case, we also prove that $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ is a composition ideal of the form $(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}$.

Section 3 is devoted to two examples of bounded-holomorphic left-hand quotient ideals generated by an operator ideal and a bounded-holomorphic ideal: the spaces of bounded holomorphic maps with Grothendieck range and Rosenthal range.

2. Bounded-holomorphic left-hand quotient ideals

Our first aim is to justify the existence of the following supremum which appears in Definition 1.1. Our proof is based on [11, 7.2.2].

Proposition 2.1. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal and let $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic ideal. If $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$, then

$$\sup\{||T \circ f||_{\mathcal{T}^{\mathcal{H}^{\infty}}} : T \in I(F,G), ||T||_{I} \leq 1\} < \infty.$$

Proof. Assume that this supremum is not finite. Then, for each $n \in \mathbb{N}$, we could find a complex Banach space G_n and an operator $T_n \in \mathcal{I}(F, G_n)$ with $||T_n||_{\mathcal{I}} \le 1/2^n$ such that $||T_n \circ f||_{\mathcal{T}^{H^{\infty}}} \ge n$.

Consider the sequence of Banach spaces (G_i) with $i \in \mathbb{N}$, and the *Cartesian* ℓ_1 -*product* $\ell_1(\mathbb{N}, G_i)$ defined as the set of all sequences (x_i), where $x_i \in G_i$ for each $i \in \mathbb{N}$, such that the sequence ($||x_i|| \in \ell_1(\mathbb{N}, \mathbb{R})$. By [11, C.4.1], $\ell_1(\mathbb{N}, G_i)$ is a Banach space with the norm

$$||(x_i)||_1 = \sum_{i=1}^{\infty} ||x_i||.$$

For each $n \in \mathbb{N}$, let $J_n : G_n \to \ell_1(\mathbb{N}, G_i)$ and $Q_n : \ell_1(\mathbb{N}, G_i) \to G_n$ be the bounded linear operators given by

 $J_n(x) = (\delta_{in}x)_i \qquad (x \in G_n),$ $Q_n((x_i)) = x_n \qquad ((x_i) \in \ell_1(\mathbb{N}, G_i)),$

where δ_{in} is the Kronecker delta. Notice that $||J_n|| = 1$ and $||Q_n|| \le 1$. Since $(J_n \circ T_n)$ is a sequence of vectors of the Banach space $(\mathcal{I}(F, \ell_1(\mathbb{N}, G_i)), ||\cdot||_I)$, and

$$\begin{aligned} \left\| \sum_{n=k+1}^{k+h} J_n \circ T_n \right\|_{\mathcal{I}} &\leq \sum_{n=k+1}^{k+h} \|J_n \circ T_n\|_{\mathcal{I}} = \sum_{i=1}^{h} \|J_{k+i} \circ T_{k+i}\|_{\mathcal{I}} \\ &\leq \sum_{i=1}^{h} \|T_{k+i}\|_{\mathcal{I}} \leq \sum_{i=1}^{\infty} \|T_{k+i}\|_{\mathcal{I}} \leq \sum_{i=1}^{\infty} \frac{1}{2^{k+i}} = \frac{1}{2^k} \end{aligned}$$

for all $h, k \in \mathbb{N}$, then the series $\sum_{n \ge 1} J_n \circ T_n$ converges in the norm $\|\cdot\|_{\mathcal{I}}$ to $T := \sum_{n=1}^{\infty} J_n \circ T_n \in \mathcal{I}(F, \ell_1(\mathbb{N}, G_i))$. Thus we obtain

$$n \leq \|T_n \circ f\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} = \|Q_n \circ T \circ f\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} \leq \|T \circ f\|_{\mathcal{T}^{\mathcal{H}^{\infty}}},$$

which is a contradiction. \Box

In general, we can establish an inclusion property between bounded-holomorphic left-hand quotients through the inclusion of their associated bounded-holomorphic ideals. For two Banach operator ideals $[I, \|\cdot\|_I]$ and $[\mathcal{J}, \|\cdot\|_J]$, we write $[I, \|\cdot\|_I] \leq [\mathcal{J}, \|\cdot\|_J]$ if $I \subseteq \mathcal{J}$ and $\|f\|_J \leq \|f\|_I$ for all $f \in I$.

Proposition 2.2. Let $[\mathcal{J}_1^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}_1^{\mathcal{H}^{\infty}}}]$ and $[\mathcal{J}_2^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}_2^{\mathcal{H}^{\infty}}}]$ be normed bounded-holomorphic ideals such that

$$[\mathcal{J}_{1}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}_{1}^{\mathcal{H}^{\infty}}}] \leq [\mathcal{J}_{2}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}_{2}^{\mathcal{H}^{\infty}}}].$$

Then

$$[I^{-1} \circ \mathcal{J}_1^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{J}_1^{\mathcal{H}^{\infty}}}] \leq [I^{-1} \circ \mathcal{J}_2^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{J}_2^{\mathcal{H}^{\infty}}}],$$

for any Banach operator ideal $[I, \|\cdot\|_I]$ *.*

It is well known that $[\mathcal{H}^{\infty}, \|\cdot\|_{\infty}]$ is a Banach bounded-holomorphic ideal. Thus, as an immediate consequence of the previous result, we can ensure that $I^{-1} \circ \mathcal{H}^{\infty}$ is the biggest bounded-holomorphic left-hand quotient for any Banach operator ideal I in the following sense.

Corollary 2.3. Let $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{I}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic ideal. Then

$$[I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{T}^{\mathcal{H}^{\infty}}}] \leq [I^{-1} \circ \mathcal{H}^{\infty}, \|\cdot\|_{I^{-1} \circ \mathcal{H}^{\infty}}]$$

for any Banach operator ideal $[I, \|\cdot\|_I]$ *.*

Closely related to Corollary 2.3, we have the following useful result.

Proposition 2.4. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal and $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic ideal. Then

$$[I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}] \leq [\mathcal{H}^{\infty}, \|\cdot\|_{\infty}].$$

Furthermore,

$$[\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}] = [\mathcal{H}^{\infty}, \|\cdot\|_{\infty}]$$

whenever $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in I.

Proof. Let $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$. Then $f \in \mathcal{H}^{\infty}(U, F)$ and $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ for all $T \in I(F, G)$, where G is a complex Banach space. For each $x \in U$, we can take a functional $\phi \in B_{F^*}$ such that $||f(x)|| = |\phi(f(x))|$. Since $[I, \|\cdot\|_I]$ is a Banach operator ideal, it follows that the functional $\phi \otimes 1 \colon F \to \mathbb{C}$, defined by $(\phi \otimes 1)(y) = \phi(y)$ if $y \in F$, is in $I(F, \mathbb{C})$ with $||\phi \otimes 1||_I = ||\phi|| \le 1$ (see, for example, [5, p. 131]). Hence we can write

$$\left\|f(x)\right\| = \left|((\phi \otimes 1) \circ f)(x)\right| \le \left\|(\phi \otimes 1) \circ f\right\|_{\infty} \le \left\|(\phi \otimes 1) \circ f\right\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} \le \left\|f\right\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}},$$

10126

and taking supremum over all $x \in U$, we conclude that $||f||_{\infty} \le ||f||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$.

Assume now that $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in I. Let $f \in \mathcal{H}^{\infty}(U, F)$ and let $T \in I(F, G)$, where G is a complex Banach space. Clearly, $T \circ f \in \mathcal{H}^{\infty}(U, G)$. By Theorem 1.2, we can find operators $T_{T \circ f} \in \mathcal{L}(\mathcal{G}^{\infty}(U), G)$ and $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ with $||T_f|| = ||f||_{\infty}$ verifying

$$T_{T \circ f} \circ g_U = T \circ f = T \circ T_f \circ g_U.$$

Hence $T_{T \circ f} = T \circ T_f$ by the norm-density of $g_U(U)$ in $\mathcal{G}^{\infty}(U)$. Now the ideal property of I yields that $T_{T \circ f} \in I(\mathcal{G}^{\infty}(U), G)$ with $||T_{T \circ f}||_I \leq ||T||_I ||f||_{\infty}$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in I, it follows that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ with $||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||T_{T \circ f}||_I$. By the arbitrariness of $T \in I(F, G)$, we conclude that $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ with $||f||_{I^{-1} \circ \mathcal{I}^{\mathcal{H}^{\infty}}} \leq ||f||_{\infty}$. \Box

Next, we show that bounded-holomorphic left-hand quotients are a method for generating bounded-holomorphic ideals.

Theorem 2.5. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal and let $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed (Banach) boundedholomorphic ideal. Then $[I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}]$ is a normed (Banach) bounded-holomorphic ideal. In addition, $[I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}]$ is surjective whether $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ is surjective.

Proof. (P1): It is easy to see that $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ is a linear space. We will now show that $\|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ is a norm on $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$. Let $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ and assume that $\|f\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} = 0$. Since $\|f\|_{\infty} \leq \|f\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ by Proposition 2.4, we deduce that f = 0.

Given $\alpha \in \mathbb{C}$ and $f, g \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$, it is immediate that $||T \circ (\alpha f)||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = |\alpha|||T \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}}$ and $||T \circ (f+g)||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||T \circ f + T \circ g||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||f||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} + ||g||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}}$ for all $T \in I(F, G)$ with $||T||_{I} \leq 1$, and therefore $||\alpha f||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} = |\alpha|||f||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} = |\alpha|||f||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||f||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} + ||g||_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}}.$ Let us suppose now that the norm $||\cdot||_{\mathcal{J}^{\mathcal{H}^{\infty}}}$ on $\mathcal{J}^{\mathcal{H}^{\infty}}$ is complete. Let (f_n) be a Cauchy sequence in

Let us suppose now that the norm $\|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}$ on $\mathcal{J}^{\mathcal{H}^{\infty}}$ is complete. Let (f_n) be a Cauchy sequence in $(I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U,F), \|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}})$. Let $T \in I(F,G)$, where G is a complex Banach space. On a hand, since $\|\cdot\|_{\infty} \leq \|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ on $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$ by Proposition 2.4, there exists a map $f \in \mathcal{H}^{\infty}(U,F)$ such that $\|f_n - f\|_{\infty} \to 0$ as $n \to \infty$, and this implies that $\|T \circ f_n - T \circ f\|_{\infty} \to 0$ as $n \to \infty$. On the other hand, the inequality

$$\left\|T \circ f_p - T \circ f_q\right\|_{\mathcal{I}^{\mathcal{H}^{\infty}}} = \left\|T \circ (f_p - f_q)\right\|_{\mathcal{I}^{\mathcal{H}^{\infty}}} \le \|T\|_I \left\|f_p - f_q\right\|_{I^{-1} \circ \mathcal{I}^{\mathcal{H}^{\infty}}} \qquad (p, q \in \mathbb{N})$$

shows that $(T \circ f_n)$ is a Cauchy sequence in $(\mathcal{J}^{\mathcal{H}^{\infty}}(U,G), \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}})$. Hence we can take a map $g \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,G)$ so that $\|T \circ f_n - g\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} \to 0$ as $n \to \infty$. Taking into account that $\|\cdot\|_{\infty} \leq \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}$ on $\mathcal{J}^{\mathcal{H}^{\infty}}(U,G)$, we obtain that $T \circ f = g$, and thus $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$ and $\|T \circ f_n - T \circ f\|_{\mathcal{I}^{\mathcal{H}^{\infty}}} \to 0$ as $n \to \infty$.

To prove that (f_n) converges to f in $(\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(\mathcal{U}, F), \|\cdot\|_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}})$, let $\varepsilon > 0$. Then there exists $m \in \mathbb{N}$ such that $\|f_p - f_q\|_{\mathcal{I}^{-1} \circ \mathcal{I}^{\mathcal{H}^{\infty}}} < \varepsilon/2$ for all $p, q \ge m$. Hence we have that

$$\left\|T\circ f_p-T\circ f_{p+n}\right\|_{\mathcal{J}^{\mathcal{H}^\infty}}<\frac{\varepsilon}{2}$$

for all $p \ge m$, $n \in \mathbb{N}$ and $T \in \mathcal{I}(F, G)$ with $||T||_{\mathcal{I}} \le 1$. Taking limits with $n \to \infty$, it follows that

$$\left\| T \circ f_p - T \circ f \right\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq \frac{\varepsilon}{2}$$

for all $p \ge m$ and $T \in \mathcal{I}(F, G)$ with $||T||_{\mathcal{I}} \le 1$. Taking supremum over all such T, we get that $||f_p - f||_{\mathcal{I}^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} < \varepsilon$ for all $p \ge m$, as desired.

(P2): Let $g \in \mathcal{H}^{\infty}(U)$ and $y \in F$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ is a normed bounded-holomorphic ideal, we have that $g \cdot y \in \mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$ with $\|g \cdot y\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} = \|g\|_{\infty} \|y\|$. Let $T \in \mathcal{I}(F,G)$, where *G* is a complex Banach space, and

note that $T \circ (g \cdot y) = g \cdot T(y)$. Hence $T \circ (g \cdot y) \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ with $||T \circ (g \cdot y)||_{\mathcal{J}^{\mathcal{H}^{\infty}}} = ||g||_{\infty} ||T(y)||$, and thus $g \cdot y \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ with

$$\begin{aligned} \|g \cdot y\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} &= \left\|g\right\|_{\infty} \sup\{\|T(y)\| : T \in I(F, G), \|T\|_{I} \le 1\} \\ &\geq \left\|g\right\|_{\infty} \sup\{|\phi(y)| : \phi \in B_{F^{*}}\} = \|g\|_{\infty} \|y\|. \end{aligned}$$

To get the converse inequality, note that

$$\|T \circ (g \cdot y)\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} \le \|T\| \|g \cdot y\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} \le \|T\|_{I} \|g \cdot y\|_{\mathcal{T}^{\mathcal{H}^{\infty}}} \le \|g\|_{\infty} \|y\|$$

for all $T \in I(F, G)$ with $||T||_I \le 1$, and so $||g \cdot y||_{I^{-1} \circ \mathcal{T}^{\mathcal{H}^{\infty}}} \le ||g||_{\infty} ||y||$.

(P3): Let *H* and *G* be complex Banach spaces, let *V* be an open subset of *H*, $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$, $h \in \mathcal{H}(V, U)$ and $S \in \mathcal{L}(F, G)$. Let $T \in I(G, G_0)$, where G_0 is a complex Banach space. Then $T \circ S \in I(F, G_0)$ with $||T \circ S||_I \leq ||T||_I ||S||$ by the ideal property of *I*, and $T \circ S \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G_0)$ with $||T \circ S \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||T \circ S||_I ||f||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ by the definitions of $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ and $||\cdot||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$. Hence $T \circ S \circ f \circ h \in \mathcal{J}^{\mathcal{H}^{\infty}}(V, G_0)$ with $||T \circ S \circ f \circ h||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||T \circ S \circ f||_{\mathcal{J}^{\mathcal{H}^{\infty}}}$ by the ideal property of $\mathcal{J}^{\mathcal{H}^{\infty}}$. Consequently, $S \circ f \circ h \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(V, G)$ and since $||T \circ S \circ f \circ h||_{\mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||S|| ||f||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$ for all $T \in I(G, G_0)$ with $||T||_I \leq 1$, we deduce that $||S \circ f \circ h||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} \leq ||S|| ||f||_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}$.

(S): Let $f \in \mathcal{H}^{\infty}(U, F)$ and assume that $f \circ \pi \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(V, F)$, where V is an open subset of a complex Banach space G and $\pi \in \mathcal{H}(V, U)$ is a surjective map. Then $T \circ f \circ \pi \in \mathcal{J}^{\mathcal{H}^{\infty}}(V, H)$ for all $T \in I(F, H)$, being H a complex Banach space. Since the normed bounded-holomorphic ideal $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ is surjective and $T \circ f \in \mathcal{H}^{\infty}(U, H)$, it follows that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, H)$ with $\|T \circ f\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} = \|T \circ f \circ \pi\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}$. By the arbitrariness of $T \in I(F, H)$, we can ensure that $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$. Moreover, notice that

$$\begin{split} \|f\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} &= \sup\{\|T\circ f\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}: T\in I(F,H), \|T\|_{I} \leq 1\}\\ &= \sup\{\|T\circ f\circ \pi\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}: T\in I(F,H), \|T\|_{I} \leq 1\}\\ &= \|f\circ \pi\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}}. \end{split}$$

Hence $[I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{I}^{\mathcal{H}^{\infty}}}]$ is surjective. \Box

The following result allows us to establish a relationship between left-hand quotients of operator ideals and left-hand quotients of an operator ideal and a bounded-holomorphic ideal with the LP.

Theorem 2.6. Let $[\mathcal{I}, \|\cdot\|_{\mathcal{I}}]$ be a Banach operator ideal, $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a normed operator ideal and $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic ideal with the LP in \mathcal{A} . For every $f \in \mathcal{H}^{\infty}(U, F)$, the following are equivalent:

(i)
$$f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F).$$

(*ii*) $T_f \in \mathcal{I}^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$.

In this case, $\|f\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}} = \|T_f\|_{I^{-1}\circ\mathcal{A}}$. In addition, the correspondence $f \mapsto T_f$ is an isometric isomorphism from $(I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}(U,F),\|\cdot\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}})$ onto $(I^{-1}\circ\mathcal{A}(\mathcal{G}^{\infty}(U),F),\|\cdot\|_{I^{-1}\circ\mathcal{A}})$.

Proof. (i) \Rightarrow (ii): Let $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$. Then, for all $T \in I(F, G)$, being G a complex Banach space, we have that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$. As in the proof of Proposition 2.4, by using Theorem 1.2 we can ensure the existence of two operators $T_f \in \mathcal{L}(\mathcal{G}^{\infty}(U), F)$ and $T_{T \circ f} \in \mathcal{L}(\mathcal{G}^{\infty}(U), G)$ so that $T_{T \circ f} = T \circ T_f$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in \mathcal{A} , we deduce that $T_{T \circ f} \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$, and by the arbitrariness of $T \in I(F, G)$, we conclude that $T_f \in I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$.

(ii) \Rightarrow (i): Assume that $T_f \in I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. Then $T \circ T_f \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$ for all $T \in I(F, G)$, and thus $T_{T \circ f} \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$ because $T_{T \circ f} = T \circ T_f$. Since $\mathcal{J}^{\mathcal{H}^{\infty}}$ has the LP in \mathcal{A} , it follows that $T \circ f \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ and then $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$.

In this case, we have

$$\begin{split} \|f\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}} &= \sup\{\|T \circ f\|_{\mathcal{J}^{\mathcal{H}^{\infty}}} : T \in I(F,G), \|T\|_{I} \leq 1\} \\ &= \sup\{\|T_{T \circ f}\|_{\mathcal{A}} : T \in I(F,G), \|T\|_{I} \leq 1\} \\ &= \sup\{\|T \circ T_{f}\|_{\mathcal{A}} : T \in I(F,G), \|T\|_{I} \leq 1\} \\ &= \|T_{f}\|_{I^{-1} \circ \mathcal{A}}, \end{split}$$

where the second equality is due to the LP of $\mathcal{J}^{\mathcal{H}^{\infty}}$ in \mathcal{A} .

For the last assertion of the statement, it suffices to prove the surjectivity of the map $f \mapsto T_f$ from $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ into $I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. Towards this end, let $S \in I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F)$. We have $T \circ S \in \mathcal{A}(\mathcal{G}^{\infty}(U), G)$ for all $T \in I(F, G)$, being G a complex Banach space. By applying Theorem 1.2, $T \circ S = T_g$ for some $g \in \mathcal{H}^{\infty}(U, G)$. Hence $g \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$ by the LP of $\mathcal{J}^{\mathcal{H}^{\infty}}$ in \mathcal{A} . Consider the map $f = S \circ g_U : U \to F$. Clearly, $f \in \mathcal{H}^{\infty}(U, F)$ and $T \circ f = T \circ S \circ g_U = T_g \circ g_U = g \in \mathcal{J}^{\mathcal{H}^{\infty}}(U, G)$. Hence $f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ and $T_f = S$. \Box

Let us recall now the composition method for generating bounded-holomorphic ideals. Given an operator ideal I, a map $f \in \mathcal{H}^{\infty}(U, F)$ is in the composition ideal $I \circ \mathcal{H}^{\infty}$, and it is written as $f \in I \circ \mathcal{H}^{\infty}(U, F)$, if there are a complex Banach space G, an operator $T \in I(G, F)$ and a map $g \in \mathcal{H}^{\infty}(U, G)$ so that $f = T \circ g$. If $[I, \|\cdot\|_I]$ is a normed operator ideal and $f \in I \circ \mathcal{H}^{\infty}$, we set

$$\left\|f\right\|_{\mathcal{I}\circ\mathcal{H}^{\infty}} = \inf\left\{\|T\|_{\mathcal{I}} \left\|g\right\|_{\infty}\right\},\,$$

being the infimum taken over all factorizations of *f* as above.

Left-hand quotients of an operator ideal and a bounded-holomorphic ideal with the LP in a certain operator ideal can be seen as a composition ideal as the following result reflects.

Proposition 2.7. Let $[I, \|\cdot\|_I]$ be a Banach operator ideal, $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a normed operator ideal and $[\mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{\mathcal{J}^{\mathcal{H}^{\infty}}}]$ be a normed bounded-holomorphic ideal with the LP in \mathcal{A} . Then

$$[I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}, \|\cdot\|_{I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}}] = [(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}, \|\cdot\|_{(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}}]$$

Proof. Let $f \in \mathcal{H}^{\infty}(U, F)$. Applying [1, Theorem 3.2] and Theorem 2.6, we have

$$\begin{split} f \in (I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}(U, F) \Leftrightarrow T_f \in I^{-1} \circ \mathcal{A}(\mathcal{G}^{\infty}(U), F) \\ \Leftrightarrow f \in I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}(U, F), \end{split}$$

with $\|f\|_{(I^{-1}\circ\mathcal{A})\circ\mathcal{H}^{\infty}} = \|T_f\|_{I^{-1}\circ\mathcal{A}} = \|f\|_{I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}}$ for all $f \in I^{-1}\circ\mathcal{J}^{\mathcal{H}^{\infty}}(U,F)$. \Box

3. Examples of bounded-holomorphic left-hand quotient ideals

An operator $T \in \mathcal{L}(E, F)$ is called *compact (respectively, weakly compact, separable, Rosenthal, Grothendieck)* if $T(B_E)$ is a relatively compact (respectively, relatively weakly compact, separable, Rosenthal, Grothendieck) subset of F. The ideals of compact operators, weakly compact operators, separable bounded operators, Rosenthal operators, and Grothendieck operators from E into F will be denoted as $\mathcal{K}(E, F)$, $\mathcal{W}(E, F)$, $\mathcal{S}(E, F)$, $\mathcal{R}(E, F)$ and $\mathfrak{G}(E, F)$, respectively. The inclusions that follow are widely recognized:

 $\begin{aligned} \mathcal{K}(E,F) &\subseteq \mathcal{W}(E,F) \subseteq \mathcal{R}(E,F), \\ \mathcal{W}(E,F) &\subseteq \mathfrak{G}(E,F) \\ \mathcal{K}(E,F) &\subseteq \mathcal{S}(E,F). \end{aligned}$

The monograph [11] by Pietsch contains a complete study on these operator ideals.

In this section, we will give two examples of bounded-holomorphic left-hand quotient ideals generated by an operator ideal and a bounded-holomorphic ideal, namely, the spaces of holomorphic maps which have Grothendieck range or Rosenthal range.

We refer the reader to [6] for a study of the Grothendieck property. According to [6, p. 298], a set $K \subseteq E$ is called *Grothendieck* if for every operator $T \in \mathcal{L}(E, c_0)$, T(K) is a relatively weakly compact subset of c_0 . It is known that \mathfrak{G} is a closed surjective operator ideal.

Definition 3.1. We will say that a map $f \in \mathcal{H}^{\infty}(U, F)$ is Grothendieck if f(U) is a Grothendieck subset of F. Let $\mathcal{H}^{\infty}_{6}(U, F)$ denote the space of all Grothendieck holomorphic maps from U into F.

Following [7], $\mathcal{H}^{\infty}_{W}(U, F)$ and $\mathcal{H}^{\infty}_{\mathcal{K}}(U, F)$ stand for the spaces of all bounded holomorphic maps from U into F with relatively weakly compact range and relatively compact range, respectively. By [2, Proposition 3.2] and [10, Proposition 3.4], $\mathcal{H}^{\infty}_{\mathcal{K}}$ and \mathcal{H}^{∞}_{W} are bounded-holomorphic ideals with the LP in \mathcal{K} and \mathcal{W} , respectively. We now show that $\mathcal{H}^{\infty}_{\mathfrak{h}}$ has the LP in \mathfrak{G} .

Theorem 3.2. For a map $f \in \mathcal{H}^{\infty}(U, F)$, the following are equivalent:

- (i) $f \in \mathcal{H}^{\infty}_{\mathfrak{H}}(U, F)$.
- (ii) $T_f \in \mathfrak{G}(\mathcal{G}^{\infty}(U), F)$.
- (iii) $f \in \mathfrak{G} \circ \mathcal{H}^{\infty}(U, F)$.

In this case, $\|f\|_{\infty} = \|T_f\| = \|f\|_{\mathfrak{G} \circ \mathcal{H}^{\infty}}$. As a consequence, the map $f \mapsto T_f$ is an isometric isomorphism from $(\mathcal{H}^{\infty}_{\mathfrak{G}}(U,F), \|\cdot\|_{\infty})$ onto $(\mathfrak{G}(\mathcal{G}^{\infty}(U),F), \|\cdot\|)$, and from $(\mathfrak{G} \circ \mathcal{H}^{\infty}(U,F), \|\cdot\|_{\mathfrak{G} \circ \mathcal{H}^{\infty}})$ onto $(\mathfrak{G}(\mathcal{G}^{\infty}(U),F), \|\cdot\|)$.

Proof. (i) \Rightarrow (ii): If $f \in \mathcal{H}^{\infty}_{\mathfrak{G}}(U, F)$, then $T_f(g_U(U)) = f(U)$ is Grothendieck in F. Notice that the norm-closed absolutely convex hull of a Grothendieck set is itself Grothendieck due to the norm-closed absolutely convex hull of a relatively weakly compact set is relatively weakly compact. In this way, $\overline{abco}(T_f(g_U(U)))$ is Grothendieck in F. Since $T_f(B_{\mathcal{G}^{\infty}(U)}) = T_f(\overline{abco}(g_U(U)) \subseteq \overline{abco}(T_f(g_U(U)))$, it follows that $T_f(B_{\mathcal{G}^{\infty}(U)})$ is a Grothendieck subset of F.

(ii) \Rightarrow (i): If $T_f \in \mathfrak{G}(\mathcal{G}^{\infty}(U), F)$, then $T_f(\mathcal{B}_{\mathcal{G}^{\infty}(U)})$ is a Grothendieck subset of F. Since $g_U(U) \subseteq \mathcal{B}_{\mathcal{G}^{\infty}(U)}$, it follows that $f(U) = T_f(g_U(U))$ is Grothendieck in F.

(ii) \Leftrightarrow (iii): It is an application of [1, Theorem 3.2] (see also [2, Theorem 2.4]).

For the consequence, the first part follows easily applying Theorem 1.2 and (ii) \Rightarrow (i), and the second part from [2, Theorem 2.4]. \Box

Let us recall (see [2, Definition 2.1]) that a bounded-holomorphic ideal $\mathcal{J}^{\mathcal{H}^{\infty}}$ is said to be *closed* if every component $\mathcal{J}^{\mathcal{H}^{\infty}}(U, F)$ is a closed subspace of $\mathcal{H}^{\infty}(U, F)$ endowed with the topology of the supremum norm. Since \mathfrak{G} is a closed operator ideal (the norm-limit of a convergent sequence of Grothendieck operators is Grothendieck) and $\mathcal{H}^{\infty}_{\mathfrak{G}} = \mathfrak{G} \circ \mathcal{H}^{\infty}$ by Theorem 3.2, then Corollary 2.5 in [2] yields the following.

Corollary 3.3. $[\mathcal{H}^{\infty}_{\mathfrak{H}}, \|\cdot\|_{\infty}]$ is a closed bounded-holomorphic ideal.

We are now ready to describe the space of all Grothendieck holomorphic mappings in terms of a bounded-holomorphic left-hand quotient ideal.

Theorem 3.4. $[\mathcal{H}^{\infty}_{\mathfrak{H}'} \| \cdot \|_{\infty}] = [\mathcal{S}^{-1} \circ \mathcal{H}^{\infty}_{\mathcal{W}'} \| \cdot \|_{\mathcal{S}^{-1} \circ \mathcal{H}^{\infty}_{\mathcal{W}'}}].$

Proof. Let $f \in \mathcal{H}^{\infty}(U, F)$. Taking into account Theorem 3.2, [11, 3.2.6], Definition 1.1, and Theorem 2.6 joint to [10, Proposition 3.4], respectively, we have

$$\begin{split} f \in \mathcal{H}^{\infty}_{\mathfrak{G}}(U,F) &\Leftrightarrow T_{f} \in \mathfrak{G}(\mathcal{G}^{\infty}(U),F) \\ &\Leftrightarrow T \circ T_{f} \in \mathcal{W}(\mathcal{G}^{\infty}(U),G), \quad \forall T \in \mathcal{S}(F,G) \\ &\Leftrightarrow T_{f} \in \mathcal{S}^{-1} \circ \mathcal{W}(\mathcal{G}^{\infty}(U),F) \\ &\Leftrightarrow f \in \mathcal{S}^{-1} \circ \mathcal{H}^{\infty}_{\mathcal{W}}(U,F), \end{split}$$

and, in this case, $\|f\|_{\infty} = \|T_f\| = \|T_f\|_{\mathcal{S}^{-1} \circ \mathcal{W}} = \|f\|_{\mathcal{S}^{-1} \circ \mathcal{H}_{\mathcal{W}}^{\infty}}$. \Box

Let us look back on and recall that a subset *A* of *E* is said to be *conditionally weakly compact* (*or Rosenthal*) if every sequence in *A* has a weak Cauchy subsequence.

On the other hand, an operator $T \in \mathcal{L}(E, F)$ is called *completely continuous* if every weakly convergent sequence (x_n) is mapped into a norm convergent sequence $(T(x_n))$. Let $\mathcal{V}(E, F)$ be the space of all completely continuous operators from E into F. By [11, 1.6.2 and 4.2.5], \mathcal{V} is a closed operator ideal.

Next, we characterise the subclass of bounded holomorphic mappings which have Rosenthal range, denoted by $\mathcal{H}^{\infty}_{\mathcal{R}}$, as a bounded-holomorphic left-hand quotient ideal generated by the operator ideal \mathcal{V} and the bounded-holomorphic ideal $\mathcal{H}^{\infty}_{\mathcal{K}}$.

Theorem 3.5.
$$[\mathcal{H}^{\infty}_{\mathcal{R}}, \|\cdot\|_{\infty}] = [\mathcal{V}^{-1} \circ \mathcal{H}^{\infty}_{\mathcal{K}'} \|\cdot\|_{\mathcal{V}^{-1} \circ \mathcal{H}^{\infty}_{\mathcal{K}}}].$$

Proof. Given $f \in \mathcal{H}^{\infty}(U, F)$, we obtain:

$$\begin{split} f \in \mathcal{H}^{\infty}_{\mathcal{R}}(U,F) &\Leftrightarrow T_{f} \in \mathcal{R}(\mathcal{G}^{\infty}(U),F) \\ &\Leftrightarrow T \circ T_{f} \in \mathcal{K}(\mathcal{G}^{\infty}(U),G), \quad \forall T \in \mathcal{V}(F,G) \\ &\Leftrightarrow T_{f} \in \mathcal{V}^{-1} \circ \mathcal{K}(\mathcal{G}^{\infty}(U),F) \\ &\Leftrightarrow f \in \mathcal{V}^{-1} \circ \mathcal{H}^{\infty}_{cc}(U,F), \end{split}$$

in whose case, $||f||_{\infty} = ||T_f|| = ||T_f||_{\mathcal{V}^{-1} \circ \mathcal{K}} = ||f||_{\mathcal{V}^{-1} \circ \mathcal{H}_{\mathcal{K}}^{\infty}}$ by using [7, Theorem 2.9], [11, 3.2.4], Definition 1.1, and Theorem 2.6 with [10, Proposition 3.4], respectively. \Box

We do not know what happens with Proposition 2.7 for the case in which the ideal of bounded holomorphic mappings $\mathcal{J}^{\mathcal{H}^{\infty}}$ does not have the LP in an operator ideal \mathcal{A} . The natural idea is to think that a holomorphic quotient $I^{-1} \circ \mathcal{J}^{\mathcal{H}^{\infty}}$ may not coincide with a composition ideal of the form $(I^{-1} \circ \mathcal{A}) \circ \mathcal{H}^{\infty}$.

Let us recall that a map $g : U \to F$ is called *locally weakly compact* if for each point $x \in U$, we can find a neighborhood $U_x \subseteq U$ for which $g(U_x)$ is relatively weakly compact in F. Let $\mathcal{H}^{\infty}_w(U,F)$ be the linear subspace of $\mathcal{H}^{\infty}(U,F)$ formed by all locally weakly compact maps. If Δ denotes the open unit disc of \mathbb{C} , let $g \in \mathcal{H}^{\infty}(\Delta, c_0)$ be given as

$$g(w) = (w^n)_{n=1}^{\infty} \qquad (w \in \Delta).$$

By [10, Example 3.2], $g \in \mathcal{H}_w^{\infty}(\Delta, c_0)$ but $g \notin \mathcal{H}_W^{\infty}(\Delta, c_0)$. By [10, Proposition 3.4], it follows that $T_g \notin \mathcal{W}(\mathcal{G}^{\infty}(\Delta), c_0)$. Thus, $\mathcal{H}_w^{\infty} \neq \mathcal{W} \circ \mathcal{H}^{\infty}$ by [1, Theorem 3.2]. Hence \mathcal{H}_w^{∞} does not have the LP in \mathcal{W} , and since $I^{-1} \circ \mathcal{H}_W^{\infty} = (I^{-1} \circ \mathcal{W}) \circ \mathcal{H}^{\infty}$ for any operator ideal I by Proposition 2.7 and [10, Proposition 3.4], we can assure that $I^{-1} \circ \mathcal{H}_w^{\infty} \neq (I^{-1} \circ \mathcal{W}) \circ \mathcal{H}^{\infty}$ for some operator ideal I. Thus $I^{-1} \circ \mathcal{H}_w^{\infty}$ can not be a composition ideal generated by its associated operator ideal \mathcal{W} but it is a bounded-holomorphic left-hand quotient ideal according to Theorem 2.5 since \mathcal{H}_w^{∞} is a bounded-holomorphic ideal by [2, Proposition 3.1].

References

- R. Aron, G. Botelho, D. Pellegrino and P. Rueda, Holomorphic mappings associated to composition ideals of polynomials, Rend. Lincei-Mat. Appl. 21 (2010), no. 3, 261–274.
- [2] M G. Cabrera-Padilla, A. Jiménez-Vargas and D. Ruiz-Casternado, On composition ideals and dual ideals of bounded holomorphic mappings, Results Math. 78 (2023), no. 3, Paper No. 103, 21 pp.
- [3] B. Carl and A. Defant, Tensor products and Grothendieck type inequalities of operators in L_p-spaces, Trans. Amer. Math. Soc. 331 (1992), no. 1, 55–76.
- [4] R. M. Causey and K. V. Navoyan, ξ-completely continuous operators and ξ-Schur Banach spaces, J. Funct. Anal. 276 (2019), no. 7, 2052–2102.
- [5] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
- [6] M. González and T. Kania, Grothendieck spaces: the landscape and perspectives., Japan. J. Math 16 (2021), 247–313.
- [7] A. Jiménez-Vargas, D. Ruiz-Casternado and J. M. Sepulcre, On holomorphic mappings with compact type range, Bull. Malays. Math. Sci. Soc. 46 (2023), no. 1, Paper No. 20, 16 pp.

- [8] W. B. Johnson, R. Lillemets and E. Oja, Representing completely continuous operators through weakly ∞-compact operators, Bull. London Math. Soc. **48** (2016), no. 3, 452–456.
- [9] J. M. Kim, The ideal of weakly p-compact operators and its approximation property for Banach spaces, Ann. Fenn. Math. 45 (2020), no. 2, 863–876.
 [10] J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), no. 2, 867–887.
- [11] A. Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York,
- 1980. Translated from German by the author.
- [12] J. Puhl, Quotienten von Operatorenidealen, Math. Nachr. 79 (1977), 131-144