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Available at: http://www.pmf.ni.ac.rs/filomat

On compactifications of an orbit space

Mehmet Onata

aDepartment of Mathematics, Faculty of Arts and Science, Sinop University, 57000 Sinop, Turkey

Abstract. One of the important research topics in the theory of topological transformation groups is to
examine the relationships between the topological properties of a G-space X and the orbit space X/G. In [7],
Antonyan and Smirnov studied the relationship between the Stone-Čech compactification of a completely
regular space and the Stone-Čech compactification of the orbit space. A similar study was done for the
Hewitt realcompactification in [8, 14].

In this paper, we obtain that the c-realcompactification of the orbit space X/G is homeomorfic to the
orbit space of the c -realcompactification of X, when G is a finite discrete group and X is a completely regular
G-space. We will also show a similar result for almost realcompactification.

1. Introduction

All topological spaces are assumed to be completely regular Hausdorff spaces and all mapping are
continuous. The letter G will always denote a Hausdorff (and hence, completely regular) topological
group. We use the usual terminology and notation of the rings of continuous functions. For unexplained
definitions and notations we refer to [9, 16]. For the convenience of the reader we recall some more special
definitions and facts below.

A topological transformation group (G,X, θ) is a topological group G together with a Hausdorff topo-
logical space X and a continuous mapping θ : G × X −→ X such that

a. θ (e, x) = x for x ∈ X and

b. θ
(
1, θ (h, x)

)
= θ
(
1h, x
)

for all x ∈ X and 1, h ∈ G, where e is the identity of G.

By a G-space, we shall mean a space X, together with a given action θ of G on X. In general we will not
specify the action θ explicitly and simply write 1x for θ

(
1, x
)
. For each 1 ∈ G, the mapping θ1 : X −→ X

defined by x→ 1x is a homeomorphism. For a subgroup H ⊂ G and a subset Y ⊂ X, then H (Y) will denote
the set

{
1y : 1 ∈ H, y ∈ Y

}
. In particular, G (x) denotes the orbit G (x) =

{
1x : 1 ∈ G

}
of x. If H (Y) = Y, then Y

is called invariant under H. In other words, Y is under H if θh (Y) ⊂ Y for each h ∈ H. Let X/G denote the set
whose elements are the subsets G (x) of X. Let’s denote the natural mapping x→ G (x) of X onto X/G by πX.
We give X/G with the identification space topology, namely the strongest topology making πX continuous.
It is well-known that X/G is Hausdorff if G is a compact group acting on a Hausdorff space X. Moreover
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πX is an open, closed and perfect mapping [9, 24]. Since θ is continuous and Id× πX is open, it follows that
G acts continuously and trivially on X/G. Moreover, if G is a compact group which acts on a completely
regular X, then the orbit space X/G is also completely regular [24]. More generally, Chaber showed [10]
that the image of a completely regular space under an open and closed mapping is also completely regular.

A surjective mapping f : X −→ Y is called perfect if it is a closed and the fibers f−1 (y) is compact for
each y ∈ Y.

A mapping of G-spaces f : X −→ Y is called equivariant if f
(
1x
)
= 1 f (x) for every

(
1, x
)
∈ G × X.

For a completely regular space X, υX will denote the Hewitt realcompactification of X and βX will
denote the Stone-Čech compactification of X.

Let X be a topological space and A be a subspace of X. Let θ be an action of G on A. An action Φ of G on
X is said to be extension of θ if the restriction of Φ on G×A is θ, i.e. Φ

(
1, a
)
= θ
(
1, a
)

for all 1 ∈ G and a ∈ A.
Suppose that A ⊂ X andA is a family of subsets of X. Let’s denote the set θ1 (A) =

{
1 · a : a ∈ A

}
by 1 ·A

and the family θ1 (A) =
{
1 · A : A ∈ A

}
by 1 · A.

For any function f : X −→ R, the set Z
(

f
)
= f−1 (0) =

{
x ∈ X : f (x) = 0

}
is called a zero-set of X. Denote

the family of all zero-sets in X by Z (X).
A nonempty subsetA of Z (X) satisfying the following conditions is called z-filter;

i. ∅ < A

ii. If A ∈ A and A ⊂ B ∈ Z (X), then B ∈ A.

iii. If A,B ∈ A, then A ∩ B ∈ A.

A maximal z-filter in Z (X) is called z-ultrafilter.
The Stone-Čech compactification may be constructed out z-ultrafilters. We note that every point p of βX

is the limit of a unique z-ultrafilter Ap on X, where Ap represents the (fixed) z-ultrafilter with limit p, i.e.
A

p =
{
A ∈ Z (X) : p ∈ A

}
.

It is well-known [28, p. 57] or [16, 6.5, 8.7] that a mapping f : X −→ Y induces the Stone extension
β f : βX −→ βY and the real extension υ f : υX −→ υY, where υ f is the restriction of β f on υX. The Stone
extension β f is defined as follows: For each p ∈ βX, there exists a unique ultrafilterAp on X that converging
to the point p. Consider f #

A
p =
{
E ∈ Z (Y) : f−1 (E) ∈ Ap

}
. Since Ap is a prime z-filter on X, so is f #

A
p.

Therefore f #
A

p has a limit in βY. Then β f
(
p
)

is defined by this limit:
{
β f
(
p
)}
=
⋂

f #
A

p. It can easily be
seen that the Stone extension of an equivariant mapping is also equivariant mapping.

Let G be any Hausdorff topological group and X be a G-space. A compact Hausdorff G-space Y is
called a G-compactification of X if there exists an equivariant dense embedding map f : X −→ Y. A G-
compactification K of a G-space X will be called a maximal G-compactification (or Čech G-compactification)
of X if every equivariant map of X into a compact G-space Y admits an (automatically unique) extension
to an equivariant map of K into Y. We will denote the maximal G-compactification of a completely regular
G-space by βGX. When G is a topological group, the question of whether a complete regular Hausdorff
space has a G-compactification was posed by de Vries in [31]. de Vries showed that every completely
regular Hausdorff G-space admits a G-compactification if G is a locally compact group (see [32, Theorem
2.10] or [33]) (see also [24] for compact Lie groups and [5] for compact groups). However, this is not true in
general, as first shown by Megrelishvili [23]. Also, an example of a countably compact G-space which fails
to have a G-compactification was constructed by Sokolovskaya in [26].

Now let X be a G-space. For every 1 ∈ G, θ1 : X −→ X, x 7→ 1x is a homeomorphism, and so it uniquely
extends to a homeomorphism βθ1 : βX −→ βX. It is easy to see that the map which takes 1 ∈ G to βθ1
is a homomorphism of G into the group of all autohomeomorphisms of βX. Therefore, the natural map
G × βX −→ βX,

(
1, a
)
7→ βθ1 (a) satisfies the two algebraic conditions a. and b. of an action. Thus, we obtain

an algebraic action G × βX −→ βX which extends the given action G × X −→ X. But, unfortunately this
algebraic action is generally not continuous. An counterexample, given by M. Jerison, is the multiplication
action of the circle group on complex plane [24, p. 23]. There are some important cases when the extended
algebraic action G × βX −→ βX is continuous, i.e., βGX = βX. Another interpretation of the extending of an
action using ultrafilters can be given as follows.
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Now, suppose that a finite discrete group G acts on a completely regular space X. For any 1 ∈ G
and p ∈ βX, 1 · Ap is a z-ultrafilter on X, which convergences to a point of βX, say 1p. The mapping
θβ : G × βX −→ βX defined by θβ

(
1, p
)
= 1p for 1 ∈ G, x ∈ βX, is an extension to βX of the action θ of G on

X, that is the action θβ keeps X invariant. For the continuity of θβ, see [27]. This shows that βGX = βX if X
is a completely regular space and G is a finite discrete group. The study of the equality βGX = βX was first
tackled by Antonyan [4]. If G is a discrete group acting on a completely regular space X, then βGX = βX
[35, 7.3.10 (ii)]. Later on, de Vries asked in [34] to find necessary and sufficient conditions on a G-space X
for the equality βGX = βX. In the same paper de Vries [34] proved that if G is a topological group whose
underlying topological space is a k-space and X is a pseudocompact G-space, then βGX = βX. Moreover,
Antonyan [1] showed that if G is a pseudocompact group and X is a pseudocompact G-space, then again
βGX = βX. The same result can be found in [25, Theorem 2.4]. Recall that a completely regular space X is
called pseudocompact if every real valued continuous function on X is bounded.

The structure of the orbit space in the theory of transformation groups has significant interest. Srivastava
[27] proved that β (X/G) = βX/G when G is a finite discrete group. But, six years ago, Antonyan and Smirnov
proved [7] that for a completely regular G-space X, one has the formula βGX/G = β (X/G) for arbitrary
compact group G. When G is a finite group then, clearly, βGX = βX and the above formula becomes into
βX/G = β (X/G). More generally, N. Antonyan and S. Antonyan [2] proved that if G is a compact group,
H is a closed normal subgroup of G, and X is a G-space, then

(
βGX
)
/H = βG/H (X/H). Note that for a

compactification B (X/G) of the orbit space X/G, the problem of existence of a compact G-extension BGX of
X such that BGX/G = B (X/G) was studied by Antonyan in [6]. For more information on this topic we refer
the reader to [3] which is an excellent survey.

Let us now recall the definition of some important subclasses of the Stone-Čech compactification. A
subset A of a space X is called regular closed if A = ClX IntX A. The family of all regular closed subsets of a
space X will be denoted by R (X).

A family F of subsets of X is called the countable intersection property (CIP) if
⋂

n Fn , ∅ for each
sequence (Fn)n∈N of sets drawn from F . We will say that an open filter U has the closed countable
intersection property (CCIP) if

⋂
n∈N Cl Un , ∅ for any Un ∈ U. An ultrafilter A on R (X) is said to

converges to a point p ∈ βX if
{
p
}
=
⋂{

ClβX A : A ∈ A
}
.

Frolı́k [15] called a Hausdorff topological space X as almost realcompact if any open ultrafilterU with
CCIP is fixed, that is

⋂
ClX Un , ∅. Unlike realcompact spaces, an almost realcompact space need not

satisfy comletely regular separation property. However, we will assume that it has completely regular
property. Every completely regular realcompact space is almost realcompact. A completely regular space
X is almost realcompact if and only if each ultrafilter on R (X) with the countable intersection property
has nonempty intersection [30]. Dykes [11, p. 576] introduced the concept of c-realcompact space. A
well-known characterization of c-realcompact spaces is as follows. X is a c-realcompact space if and only
if for each point p ∈ βX \ X, there exists a decreasing sequence (An)n of regular closed subsets of X such
that p ∈

⋂
n ClβX An and

⋂
n An = ∅ [17]. By using the characterization of realcompact spaces [13, p. 215] (or

[16, p. 119]), it is clear that every realcompact space is c-realcompact. Every almost realcompact space is
c-realcompact [11, Corollary 3.3]. See [12] for an example of an almost realcompact that is not realcompact.
It well known that X ⊂ uX ⊂ aX ⊂ υX ⊂ βX if X is a completely regular space [30].

Theorem 1.1. ([17]) Let X be a completely regular space. Suppose that

uX =
{
p ∈ βX : each ultrafilter in R (X) converging to p has CIP

}
Then uX is the smallest c-realcompact space of βX that contains X.

The space uX is called the c-realcompactification of X. Then X is c-realcompact if and only if X = uX.
For each completely regular Hausdorff space X, there is an almost realcompact space aX satisfying the

followings:

1. X ⊂ aX ⊂ βX
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2. If f is a mapping from X to any almost realcompact space Y, then f can be extended to a continuous
mapping a f : aX −→ Y. Further, a f is the restriction to aX of the Stone extension β f : βX −→ βY.

In [14], we proved that υ (X/G) = υX/G when G is a finite discrete group. But we later learned that this
result had already been proven by Azad et al. [8] using different techniques.

In this article, we will prove that the c-realcompactification u (X/G) of the orbit space X/G of a finite
discrete group action on a completely regular space X is homeomorphic to the orbit space uX/G of the
c-realcompactification uX of the space X. We also will show that a (X/G) = aX/G.

2. Main results

We will denote the restrictions of Stone extension β f to subspace uX by u f . First, we will examine
whether the mappings u f and a f are open and perfect.

Lemma 2.1. ([21, Theorem 4.4]) If f is a closed mapping from X onto Y, then f is open if and only if the Stone
extension β f is open.

If f : X −→ Y is perfect and open map, then υ f is an open and perfect mapping of υX onto υY [18, 19].
Frolı́k [15] proved that if f : X −→ Y is perfect and X is an almost realcompact space, then Y is also almost
realcompact. Conversely, if Y is almost realcompact and X is regular, then X is almost realcompact space.
Further, the image of a c-realcompact under an open and perfect map is also c-realcompact [22, Theorem
5.5(2)].

LetU (F ) denote a free open (closed) ultrafilter on X andUp (F p) denote a free open (closed) ultrafilter
converging to p ∈ βX \ X = X∗.

Let us denote a regular closed ultrafilter of X by R and the family of all regular closed ultrafilters R of
X by R. Let’s denote the family of all open ultrafilters U of X by U. Define ClU = {Cl U : U ∈ U}. The
following is well-known ([17, p. 649] or [20]).

Lemma 2.2. i. U ∋ U ⇒ R = ClU ∈ R. IfU has CCIP, so has R.

ii. R ∋ R ⇒U (R) =
{
U : Int R ⊂ U for some R ∈ R and U is open

}
∈ U. If R has CCIP, so hasU (R).

iii. U ∋ U ⇒ U (ClU) =U.

iv. R ∋ R ⇒ Cl (U (R)) = R.

Let us define

U (X; 0) =
{
p ∈ X∗ : anyUp has CCIP

}
and

U (X; 0,∆) =
{
p ∈ X∗ : there areUp

1 with CCIP andUp
2 without CCIP

}
.

From Lemma 2.2 and the definitions, we have the followings (see [21, 22])

1. X is almost realcompact if and only if U (X; 0) ∪U (X; 0,∆) = ∅.
2. X is c-realcompact if and only if U (X; 0) = ∅.
3. aX = X ∪U (X; 0) ∪U (X; 0,∆) and uX = X ∪U (X; 0).

If f : X −→ Y is perfect and open, then we have
(
β f
)−1 (Y ∪U (Y; 0)) = X ∪ U (X; 0) [22, 4.6(6)], that is,(

β f
)−1 (uY) = uX.
If f : X −→ Y is perfect and open, then we have

(
β f
)

(U (X; 0,∆)) ⊂ U (Y; 0,∆) [22, 4.6(4)] and(
β f
)−1 (U (Y; 0,∆)) ⊂ U (X; 0,∆) [22, 4.6(5)]. It follows that

(
β f
)−1 (aY) = aX.

Now we are ready to prove the following similar lemma, which we will use to prove our main theorems.
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Lemma 2.3. If f : X −→ Y is a perfect and open mapping, then u f : uX→ uY is perfect and open mapping between
the c-realcompactifications.

Proof. Since f is an open and closed mapping, then β f is an open by Lemma 2.1. Since
(
β f
)−1 (uY) = uX

and β f is a perfect, it is clear that the restriction u f :
(
β f
)−1 (uY) = uX −→ uY is also a perfect mapping [13,

Proposition 3.7.6].
Moreover, since β

(
u f
)
= β f , β f is open and u f is closed, then u f is an open mapping by Lemma 2.1.

Similarly we have

Lemma 2.4. If f : X −→ Y is a perfect and open mapping, then a f : aX→ aY is perfect and open mapping between
the almost realcompactifications.

Corollary 2.5. If G is a compact group acting on a completely regular space X, then the orbit map π : X −→ X/G
induces the open and perfect map uπ from uX onto u (X/G) and the open and perfect map aπ from aX onto a (X/G).
In particular, the orbit space of a c-realcompact space (almost realcompact) is also c-realcompact (almost realcompact).

It follows by Lemma 2.3 and Lemma 2.4 that aX and uX are invariant subspaces of βX with respect to
G, where G is a finite discrete group acting on a completely regular X.

We now have the necessary tools to prove our main theorem.

Theorem 2.6. If G is a finite discrete group and X is a completely regular G-space, then uX/G is homeomorphic to
u (X/G).

Proof. Recall that uX is invariant subspace of βX.
We show that the c-realcompact extension ui of the inclusion map i : X/G −→ uX/G is a homeomorphism.

Assume that iX : X −→ βX is the inclusion map, q : X −→ X/G and π : uX −→ uX/G are the orbit maps.
Then we obtain the next commutative diagram, that is i ◦ q = π ◦ iX.

X
q //

_�

iX
��

X/G

i
��

u(X) π
// uX/G

Then we have (ui) ◦
(
uq
)
= u (π) ◦ u (iX) since u is functorial (because β is functorial and u is restriction of

β). Since uX/G is a c-realcompact space, then we obtain u (π) = π. Moreover, since u (iX) = IduX (since the
Stone extension β (iX) : βX −→ βX is the identity map), we have the following commutative diagram, that
is, ui ◦ uq = π ◦ IduX.

uX
uq //

IduX

��

u(X/G)

ui
��

uX uπ=π
// uX/G

Now, let us show that ui is injective. Assume ui
(
q1
)
= ui
(
q2
)

for q1, q2 ∈ u (X/G). Since uq is surjective, we
can choose p1 ∈

(
uq
)−1 (q1

)
and p2 ∈

(
uq
)−1 (q2

)
. Then π

(
p1
)
= π
(
p2
)

implies G
(
p1
)
= G
(
p2
)
. Hence p1 = 1 · p2

for some 1 ∈ G. Since G acts trivially on u (X/G) and uq is equivariant (because βq is equivariant), we have
that q1 = uq

(
p1
)
= uq

(
1 · p2

)
= 1 · uq

(
p2
)
= uq

(
p2
)
= q2.

The surjectivity of ui is clear from the commutative diagram above.
Since uq and π are continuous and open, it is obtained that ui is continuous and open.
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Notice that we do not use the equality β (X/G) = βX/G in the proof of the Theorem 2.6. If we had
used this equality then the result was obvious. In fact, since X/G ⊂ uX/G ⊂ βX/G ≈ β (X/G), we have
X/G ⊂ u (X/G) ⊂ uX/G ⊂ β (X/G) and so u (X/G) = uX/G, because uX/G is c-realcompact and u (X/G) is
the smallest c-realcompact space between X/G and β (X/G). The reason why we do not prefer this kind of
proof is this: If we can extend a given action of G on X to an action of G on uX (may not be on βX) then the
functionality of our proof will become apparent.

Similarly the following can be proven.

Theorem 2.7. Suppose that G is a finite discrete group acting on a completely regular X. Then aX/G is homeomorphic
to a (X/G).

Now, we give a different proof of the equality βX/G = β (X/G).

Theorem 2.8. Suppose that a finite discrete group G acting on a completely regular X. Then βX/G = β (X/G).

Proof. Since X is dense in βX, so is X/G in βX/G. It is sufficient to show that every continuous mapping f
from X/G into any compact Hausdorff space Y has an extension to a continuous map from βX/G to Y [16,
Theorem 6.4, Theorem 6.7]. For any mapping f : X/G −→ Y, the mapping h := f ◦π : X −→ Y is continuous
and it is constant map on each orbit (i.e. h

(
1x
)
= h (x) for each 1 ∈ G and x ∈ X). Therefore, we have that

the Stone extension β (h) : βX −→ Y and β (h) is constant on each orbit. To show this, let’s take any 1 ∈ G
and p ∈ βX. Then let A be a unique z-ultrafilter on X that converging to the point 1p. Hence 1−1

· A is a
z-ultrafilter on X that converges to the point p. Thus we obtain(

βh
) (

p
)
=
⋂

h#
(
1−1
· A

)
=
⋂{

E ⊂ Z (Y) : h−1 (E) ∈ 1−1
· A

}
=
⋂{

E ⊂ Z (Y) : h−1 (E) = 1 · h−1 (E) ∈ A
}

=
⋂

h# (A) =
(
βh
) (
1p
)

Thus we can define T : βX/G −→ Y, G (x) 7→
(
βh
)

(x), that makes the next diagram commutative:

X �
� //

π

��
h

��

βX

��
βh

~~

X/G �
� //

f
��

βX/G

T
wwY

Hence T is an extension of f and β (X/G) = βX/G is obtained.

Let X be dense in T. Then υX = υT if and only if every continuous mapping f from X into any
realcompact space Y can be extended to a continuous mapping from T into Y [16, Theorem 8.6]. By taking
any realcompact space instead of compact space Y and using the fact that X/G is dense in υX/G and υX is
invariant subspace of βX, similar to the proof above, we can prove the next theorem.

Theorem 2.9. ([8, 14]) Let X be a completely regular G-space, where G is a finite discrete group. Then υX/G =
υ (X/G).

Note that if X is dense in T, then aX = aT if and only if every continuous mapping f from X into
any almost realcompact space Y can be extended to a continuous mapping from T into Y [30]. Therefore
Theorem 2.7 can also be proven as above.

From the above explanations the following result is immediately obtained.

Theorem 2.10. If G is a compact group acting on a pseudocompact X, then βX/G = β (X/G).
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Notice that if X is pseudocompact G-space, Theorem 2.6 and 2.9 does not make sense, because in this
case, uX = βX [17, Theorem 1.13] and υX = βX [16, 8.A] and aX = βX.

It is a natural question to investigate under what conditions a action of G on X can be extended to the
action G on uX (υX or aX). In other words, under what conditions does u (G × X) = G×uX (υ (G × X) = G×υX
or a (G × X) = G × aX)?
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