Filomat 38:29 (2024), 10253–10259 https://doi.org/10.2298/FIL2429253O



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# On compactifications of an orbit space

# Mehmet Onat<sup>a</sup>

<sup>a</sup>Department of Mathematics, Faculty of Arts and Science, Sinop University, 57000 Sinop, Turkey

**Abstract.** One of the important research topics in the theory of topological transformation groups is to examine the relationships between the topological properties of a *G*-space *X* and the orbit space X/G. In [7], Antonyan and Smirnov studied the relationship between the Stone-Čech compactification of a completely regular space and the Stone-Čech compactification of the orbit space. A similar study was done for the Hewitt realcompactification in [8, 14].

In this paper, we obtain that the *c*-realcompactification of the orbit space X/G is homeomorfic to the orbit space of the *c*-realcompactification of *X*, when *G* is a finite discrete group and *X* is a completely regular *G*-space. We will also show a similar result for almost realcompactification.

### 1. Introduction

All topological spaces are assumed to be completely regular Hausdorff spaces and all mapping are continuous. The letter *G* will always denote a Hausdorff (and hence, completely regular) topological group. We use the usual terminology and notation of the rings of continuous functions. For unexplained definitions and notations we refer to [9, 16]. For the convenience of the reader we recall some more special definitions and facts below.

A topological transformation group (*G*, *X*,  $\theta$ ) is a topological group *G* together with a Hausdorff topological space *X* and a continuous mapping  $\theta$  : *G* × *X*  $\rightarrow$  *X* such that

**a.**  $\theta(e, x) = x$  for  $x \in X$  and

**b.**  $\theta(q, \theta(h, x)) = \theta(qh, x)$  for all  $x \in X$  and  $q, h \in G$ , where *e* is the identity of *G*.

By a *G*-space, we shall mean a space *X*, together with a given action  $\theta$  of *G* on *X*. In general we will not specify the action  $\theta$  explicitly and simply write gx for  $\theta(g, x)$ . For each  $g \in G$ , the mapping  $\theta_g : X \longrightarrow X$  defined by  $x \to gx$  is a homeomorphism. For a subgroup  $H \subset G$  and a subset  $Y \subset X$ , then H(Y) will denote the set  $\{gy : g \in H, y \in Y\}$ . In particular, G(x) denotes the orbit  $G(x) = \{gx : g \in G\}$  of x. If H(Y) = Y, then Y is called invariant under H. In other words, Y is under H if  $\theta_h(Y) \subset Y$  for each  $h \in H$ . Let X/G denote the set whose elements are the subsets G(x) of X. Let's denote the natural mapping  $x \to G(x)$  of X onto X/G by  $\pi_X$ . We give X/G with the identification space topology, namely the strongest topology making  $\pi_X$  continuous. It is well-known that X/G is Hausdorff if G is a compact group acting on a Hausdorff space X. Moreover

Communicated by Ljubiša D. R. Kočinac

<sup>2020</sup> Mathematics Subject Classification. Primary 54D35; Secondary 54C10, 54H15

Keywords. c-realcompactification, almost realcompactification, orbit space, group action.

Received: 06 March 2024; Revised: 13 August 2024; Accepted: 30 August 2024

Email address: monat@sinop.edu.tr (Mehmet Onat)

 $\pi_X$  is an open, closed and perfect mapping [9, 24]. Since  $\theta$  is continuous and  $Id \times \pi_X$  is open, it follows that *G* acts continuously and trivially on *X*/*G*. Moreover, if *G* is a compact group which acts on a completely regular *X*, then the orbit space *X*/*G* is also completely regular [24]. More generally, Chaber showed [10] that the image of a completely regular space under an open and closed mapping is also completely regular.

A surjective mapping  $f : X \longrightarrow Y$  is called perfect if it is a closed and the fibers  $f^{-1}(y)$  is compact for each  $y \in Y$ .

A mapping of *G*-spaces  $f : X \longrightarrow Y$  is called equivariant if f(gx) = gf(x) for every  $(g, x) \in G \times X$ .

For a completely regular space *X*, vX will denote the Hewitt realcompactification of *X* and  $\beta X$  will denote the Stone-Čech compactification of *X*.

Let *X* be a topological space and *A* be a subspace of *X*. Let  $\theta$  be an action of *G* on *A*. An action  $\Phi$  of *G* on *X* is said to be extension of  $\theta$  if the restriction of  $\Phi$  on  $G \times A$  is  $\theta$ , i.e.  $\Phi(g, a) = \theta(g, a)$  for all  $g \in G$  and  $a \in A$ .

Suppose that  $A \subset X$  and  $\mathcal{A}$  is a family of subsets of X. Let's denote the set  $\theta_g(A) = \{g \cdot a : a \in A\}$  by  $g \cdot A$  and the family  $\theta_g(\mathcal{A}) = \{g \cdot A : A \in \mathcal{A}\}$  by  $g \cdot \mathcal{A}$ .

For any function  $f : X \longrightarrow \mathbb{R}$ , the set  $Z(f) = f^{-1}(0) = \{x \in X : f(x) = 0\}$  is called a zero-set of X. Denote the family of all zero-sets in X by Z(X).

A nonempty subset  $\mathcal{A}$  of Z(X) satisfying the following conditions is called z-filter;

#### i. Ø∉ A

**ii.** If  $A \in \mathcal{A}$  and  $A \subset B \in Z(X)$ , then  $B \in \mathcal{A}$ .

**iii.** If  $A, B \in \mathcal{A}$ , then  $A \cap B \in \mathcal{A}$ .

A maximal *z*-filter in Z(X) is called *z*-ultrafilter.

The Stone-Čech compactification may be constructed out *z*-ultrafilters. We note that every point *p* of  $\beta X$  is the limit of a unique *z*-ultrafilter  $\mathcal{A}^p$  on *X*, where  $\mathcal{A}^p$  represents the (fixed) *z*-ultrafilter with limit *p*, i.e.  $\mathcal{A}^p = \{A \in Z(X) : p \in A\}$ .

It is well-known [28, p. 57] or [16, 6.5, 8.7] that a mapping  $f : X \longrightarrow Y$  induces the Stone extension  $\beta f : \beta X \longrightarrow \beta Y$  and the real extension  $vf : vX \longrightarrow vY$ , where vf is the restriction of  $\beta f$  on vX. The Stone extension  $\beta f$  is defined as follows: For each  $p \in \beta X$ , there exists a unique ultrafilter  $\mathcal{A}^p$  on X that converging to the point p. Consider  $f^{\#}\mathcal{A}^p = \{E \in Z(Y) : f^{-1}(E) \in \mathcal{A}^p\}$ . Since  $\mathcal{A}^p$  is a prime z-filter on X, so is  $f^{\#}\mathcal{A}^p$ . Therefore  $f^{\#}\mathcal{A}^p$  has a limit in  $\beta Y$ . Then  $\beta f(p)$  is defined by this limit:  $\{\beta f(p)\} = \bigcap f^{\#}\mathcal{A}^p$ . It can easily be seen that the Stone extension of an equivariant mapping is also equivariant mapping.

Let *G* be any Hausdorff topological group and *X* be a *G*-space. A compact Hausdorff *G*-space *Y* is called a *G*-compactification of *X* if there exists an equivariant dense embedding map  $f : X \rightarrow Y$ . A *G*-compactification *K* of a *G*-space *X* will be called a maximal *G*-compactification (or Čech *G*-compactification) of *X* if every equivariant map of *X* into a compact *G*-space *Y* admits an (automatically unique) extension to an equivariant map of *K* into *Y*. We will denote the maximal *G*-compactification of a completely regular *G*-space by  $\beta_G X$ . When *G* is a topological group, the question of whether a complete regular Hausdorff space has a *G*-compactification was posed by de Vries in [31]. de Vries showed that every completely regular Hausdorff *G*-space admits a *G*-compactification if *G* is a locally compact group (see [32, Theorem 2.10] or [33]) (see also [24] for compact Lie groups and [5] for compact groups). However, this is not true in general, as first shown by Megrelishvili [23]. Also, an example of a countably compact *G*-space which fails to have a *G*-compactification was constructed by Sokolovskaya in [26].

Now let *X* be a *G*-space. For every  $g \in G$ ,  $\theta_g : X \longrightarrow X$ ,  $x \mapsto gx$  is a homeomorphism, and so it uniquely extends to a homeomorphism  $\beta \theta_g : \beta X \longrightarrow \beta X$ . It is easy to see that the map which takes  $g \in G$  to  $\beta \theta_g$  is a homomorphism of *G* into the group of all autohomeomorphisms of  $\beta X$ . Therefore, the natural map  $G \times \beta X \longrightarrow \beta X$ ,  $(g, a) \mapsto \beta \theta_g$  (*a*) satisfies the two algebraic conditions *a*. and *b*. of an action. Thus, we obtain an algebraic action  $G \times \beta X \longrightarrow \beta X$  which extends the given action  $G \times X \longrightarrow X$ . But, unfortunately this algebraic action is generally not continuous. An counterexample, given by M. Jerison, is the multiplication action of the circle group on complex plane [24, p. 23]. There are some important cases when the extended algebraic action  $G \times \beta X \longrightarrow \beta X$  is continuous, i.e.,  $\beta_G X = \beta X$ . Another interpretation of the extending of an action using ultrafilters can be given as follows.

Now, suppose that a finite discrete group *G* acts on a completely regular space *X*. For any  $g \in G$  and  $p \in \beta X$ ,  $g \cdot \mathcal{A}^p$  is a *z*-ultrafilter on *X*, which convergences to a point of  $\beta X$ , say *gp*. The mapping  $\theta_{\beta} : G \times \beta X \longrightarrow \beta X$  defined by  $\theta_{\beta}(g, p) = gp$  for  $g \in G$ ,  $x \in \beta X$ , is an extension to  $\beta X$  of the action  $\theta$  of *G* on *X*, that is the action  $\theta_{\beta}$  keeps *X* invariant. For the continuity of  $\theta_{\beta}$ , see [27]. This shows that  $\beta_G X = \beta X$  if *X* is a completely regular space and *G* is a finite discrete group. The study of the equality  $\beta_G X = \beta X$  was first tackled by Antonyan [4]. If *G* is a discrete group acting on a completely regular space *X*, then  $\beta_G X = \beta X$  [35, 7.3.10 (ii)]. Later on, de Vries asked in [34] to find necessary and sufficient conditions on a *G*-space *X* for the equality  $\beta_G X = \beta X$ . In the same paper de Vries [34] proved that if *G* is a topological group whose underlying topological space is a *k*-space and *X* is a pseudocompact *G*-space, then  $\beta_G X = \beta X$ . Moreover, Antonyan [1] showed that if *G* is a pseudocompact group and *X* is a pseudocompact *G*-space, then again  $\beta_G X = \beta X$ . The same result can be found in [25, Theorem 2.4]. Recall that a completely regular space *X* is called pseudocompact if every real valued continuous function on *X* is bounded.

The structure of the orbit space in the theory of transformation groups has significant interest. Srivastava [27] proved that  $\beta(X/G) = \beta X/G$  when *G* is a finite discrete group. But, six years ago, Antonyan and Smirnov proved [7] that for a completely regular *G*-space *X*, one has the formula  $\beta_G X/G = \beta(X/G)$  for arbitrary compact group *G*. When *G* is a finite group then, clearly,  $\beta_G X = \beta X$  and the above formula becomes into  $\beta X/G = \beta(X/G)$ . More generally, N. Antonyan and S. Antonyan [2] proved that if *G* is a compact group, *H* is a closed normal subgroup of *G*, and *X* is a *G*-space, then ( $\beta_G X$ )/*H* =  $\beta_{G/H}(X/H)$ . Note that for a compactification *B*(*X*/*G*) of the orbit space *X*/*G*, the problem of existence of a compact *G*-extension  $B_G X$  of *X* such that  $B_G X/G = B(X/G)$  was studied by Antonyan in [6]. For more information on this topic we refer the reader to [3] which is an excellent survey.

Let us now recall the definition of some important subclasses of the Stone-Čech compactification. A subset *A* of a space *X* is called regular closed if  $A = Cl_X Int_X A$ . The family of all regular closed subsets of a space *X* will be denoted by  $\mathcal{R}(X)$ .

A family  $\mathcal{F}$  of subsets of X is called the countable intersection property (CIP) if  $\bigcap_n F_n \neq \emptyset$  for each sequence  $(F_n)_{n \in \mathbb{N}}$  of sets drawn from  $\mathcal{F}$ . We will say that an open filter  $\mathcal{U}$  has the closed countable intersection property (CCIP) if  $\bigcap_{n \in \mathbb{N}} \operatorname{Cl} U_n \neq \emptyset$  for any  $U_n \in \mathcal{U}$ . An ultrafilter  $\mathcal{A}$  on  $\mathcal{R}(X)$  is said to converges to a point  $p \in \beta X$  if  $\{p\} = \bigcap \{\operatorname{Cl}_{\beta X} A : A \in \mathcal{A}\}$ .

Frolík [15] called a Hausdorff topological space *X* as almost realcompact if any open ultrafilter  $\mathcal{U}$  with CCIP is fixed, that is  $\bigcap \operatorname{Cl}_X U_n \neq \emptyset$ . Unlike realcompact spaces, an almost realcompact space need not satisfy comletely regular separation property. However, we will assume that it has completely regular space *X* is almost realcompact if and only if each ultrafilter on  $\mathcal{R}(X)$  with the countable intersection property has nonempty intersection [30]. Dykes [11, p. 576] introduced the concept of *c*-realcompact space. A well-known characterization of *c*-realcompact spaces is as follows. *X* is a *c*-realcompact space if and only if for each point  $p \in \beta X \setminus X$ , there exists a decreasing sequence  $(A_n)_n$  of regular closed subsets of *X* such that  $p \in \bigcap_n \operatorname{Cl}_{\beta X} A_n$  and  $\bigcap_n A_n = \emptyset$  [17]. By using the characterization of realcompact spaces [13, p. 215] (or [16, p. 119]), it is clear that every realcompact space is *c*-realcompact. Every almost realcompact space is *c*-realcompact that is not realcompact. It well known that  $X \subset uX \subset aX \subset vX \subset \beta X$  if *X* is a completely regular space [30].

**Theorem 1.1.** ([17]) Let X be a completely regular space. Suppose that

$$uX = \{p \in \beta X : each ultrafilter in \mathcal{R}(X) converging to p has CIP\}$$

Then uX is the smallest *c*-realcompact space of  $\beta X$  that contains X.

The space uX is called the *c*-realcompactification of *X*. Then *X* is *c*-realcompact if and only if X = uX. For each completely regular Hausdorff space *X*, there is an almost realcompact space *aX* satisfying the followings:

1.  $X \subset aX \subset \beta X$ 

2. If *f* is a mapping from *X* to any almost realcompact space *Y*, then *f* can be extended to a continuous mapping  $af : aX \longrightarrow Y$ . Further, af is the restriction to aX of the Stone extension  $\beta f : \beta X \longrightarrow \beta Y$ .

In [14], we proved that v(X/G) = vX/G when *G* is a finite discrete group. But we later learned that this result had already been proven by Azad et al. [8] using different techniques.

In this article, we will prove that the *c*-realcompactification u(X/G) of the orbit space X/G of a finite discrete group action on a completely regular space X is homeomorphic to the orbit space uX/G of the *c*-realcompactification uX of the space X. We also will show that a(X/G) = aX/G.

#### 2. Main results

We will denote the restrictions of Stone extension  $\beta f$  to subspace uX by uf. First, we will examine whether the mappings uf and af are open and perfect.

**Lemma 2.1.** ([21, Theorem 4.4]) If f is a closed mapping from X onto Y, then f is open if and only if the Stone extension  $\beta f$  is open.

If  $f : X \longrightarrow Y$  is perfect and open map, then vf is an open and perfect mapping of vX onto vY [18, 19]. Frolík [15] proved that if  $f : X \longrightarrow Y$  is perfect and X is an almost realcompact space, then Y is also almost realcompact. Conversely, if Y is almost realcompact and X is regular, then X is almost realcompact space. Further, the image of a *c*-realcompact under an open and perfect map is also *c*-realcompact [22, Theorem 5.5(2)].

Let  $\mathcal{U}(\mathcal{F})$  denote a free open (closed) ultrafilter on *X* and  $\mathcal{U}^p(\mathcal{F}^p)$  denote a free open (closed) ultrafilter converging to  $p \in \beta X \setminus X = X^*$ .

Let us denote a regular closed ultrafilter of *X* by  $\mathcal{R}$  and the family of all regular closed ultrafilters  $\mathcal{R}$  of *X* by  $\mathfrak{R}$ . Let's denote the family of all open ultrafilters  $\mathcal{U}$  of *X* by  $\mathfrak{U}$ . Define  $\operatorname{Cl} \mathcal{U} = {\operatorname{Cl} U : U \in \mathcal{U}}$ . The following is well-known ([17, p. 649] or [20]).

**Lemma 2.2.** i.  $\mathfrak{U} \ni \mathcal{U} \Rightarrow \mathcal{R} = Cl \mathcal{U} \in \mathfrak{R}$ . If  $\mathcal{U}$  has CCIP, so has  $\mathcal{R}$ .

**ii.**  $\mathfrak{R} \ni \mathcal{R} \Rightarrow \mathcal{U}(\mathcal{R}) = \{U : \text{Int } \mathcal{R} \subset U \text{ for some } \mathcal{R} \in \mathcal{R} \text{ and } U \text{ is open}\} \in \mathfrak{U}. \text{ If } \mathcal{R} \text{ has CCIP, so has } \mathcal{U}(\mathcal{R}).$ 

iii.  $\mathfrak{U} \ni \mathcal{U} \Rightarrow \mathcal{U}(\operatorname{Cl} \mathcal{U}) = \mathcal{U}.$ 

iv.  $\mathfrak{R} \ni \mathcal{R} \Longrightarrow \mathrm{Cl}(\mathcal{U}(\mathcal{R})) = \mathcal{R}.$ 

Let us define

 $U(X;0) = \{p \in X^* : any \mathcal{U}^p \text{ has CCIP}\}$ 

and

 $U(X; 0, \Delta) = \{ p \in X^* : \text{there are } \mathcal{U}_1^p \text{ with CCIP and } \mathcal{U}_2^p \text{ without CCIP} \}.$ 

From Lemma 2.2 and the definitions, we have the followings (see [21, 22])

- 1. *X* is almost realcompact if and only if  $U(X; 0) \cup U(X; 0, \Delta) = \emptyset$ .
- 2. *X* is *c*-realcompact if and only if  $U(X; 0) = \emptyset$ .
- 3.  $aX = X \cup U(X; 0) \cup U(X; 0, \Delta)$  and  $uX = X \cup U(X; 0)$ .

If  $f : X \to Y$  is perfect and open, then we have  $(\beta f)^{-1}(Y \cup U(Y; 0)) = X \cup U(X; 0)$  [22, 4.6(6)], that is,  $(\beta f)^{-1}(uY) = uX$ .

If  $f : X \longrightarrow Y$  is perfect and open, then we have  $(\beta f)(U(X; 0, \Delta)) \subset U(Y; 0, \Delta)$  [22, 4.6(4)] and  $(\beta f)^{-1}(U(Y; 0, \Delta)) \subset U(X; 0, \Delta)$  [22, 4.6(5)]. It follows that  $(\beta f)^{-1}(aY) = aX$ .

Now we are ready to prove the following similar lemma, which we will use to prove our main theorems.

**Lemma 2.3.** If  $f : X \longrightarrow Y$  is a perfect and open mapping, then  $uf : uX \rightarrow uY$  is perfect and open mapping between *the c-realcompactifications.* 

*Proof.* Since *f* is an open and closed mapping, then  $\beta f$  is an open by Lemma 2.1. Since  $(\beta f)^{-1}(uY) = uX$  and  $\beta f$  is a perfect, it is clear that the restriction  $uf : (\beta f)^{-1}(uY) = uX \longrightarrow uY$  is also a perfect mapping [13, Proposition 3.7.6].

Moreover, since  $\beta(uf) = \beta f$ ,  $\beta f$  is open and uf is closed, then uf is an open mapping by Lemma 2.1.

Similarly we have

**Lemma 2.4.** If  $f : X \longrightarrow Y$  is a perfect and open mapping, then  $af : aX \rightarrow aY$  is perfect and open mapping between the almost realcompactifications.

**Corollary 2.5.** If G is a compact group acting on a completely regular space X, then the orbit map  $\pi : X \longrightarrow X/G$  induces the open and perfect map  $u\pi$  from uX onto u(X/G) and the open and perfect map  $a\pi$  from aX onto a(X/G). In particular, the orbit space of a c-realcompact space (almost realcompact) is also c-realcompact (almost realcompact).

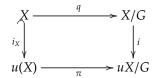
It follows by Lemma 2.3 and Lemma 2.4 that aX and uX are invariant subspaces of  $\beta X$  with respect to *G*, where *G* is a finite discrete group acting on a completely regular *X*.

We now have the necessary tools to prove our main theorem.

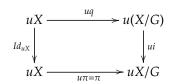
**Theorem 2.6.** If *G* is a finite discrete group and X is a completely regular G-space, then uX/G is homeomorphic to u(X/G).

*Proof.* Recall that uX is invariant subspace of  $\beta X$ .

We show that the *c*-realcompact extension ui of the inclusion map  $i : X/G \longrightarrow uX/G$  is a homeomorphism. Assume that  $i_X : X \longrightarrow \beta X$  is the inclusion map,  $q : X \longrightarrow X/G$  and  $\pi : uX \longrightarrow uX/G$  are the orbit maps. Then we obtain the next commutative diagram, that is  $i \circ q = \pi \circ i_X$ .



Then we have  $(ui) \circ (uq) = u(\pi) \circ u(i_X)$  since u is functorial (because  $\beta$  is functorial and u is restriction of  $\beta$ ). Since uX/G is a c-realcompact space, then we obtain  $u(\pi) = \pi$ . Moreover, since  $u(i_X) = Id_{uX}$  (since the Stone extension  $\beta(i_X) : \beta X \longrightarrow \beta X$  is the identity map), we have the following commutative diagram, that is,  $ui \circ uq = \pi \circ Id_{uX}$ .



Now, let us show that ui is injective. Assume  $ui(q_1) = ui(q_2)$  for  $q_1, q_2 \in u(X/G)$ . Since uq is surjective, we can choose  $p_1 \in (uq)^{-1}(q_1)$  and  $p_2 \in (uq)^{-1}(q_2)$ . Then  $\pi(p_1) = \pi(p_2)$  implies  $G(p_1) = G(p_2)$ . Hence  $p_1 = g \cdot p_2$  for some  $g \in G$ . Since G acts trivially on u(X/G) and uq is equivariant (because  $\beta q$  is equivariant), we have that  $q_1 = uq(p_1) = uq(g \cdot p_2) = g \cdot uq(p_2) = uq(p_2) = q_2$ .

The surjectivity of *ui* is clear from the commutative diagram above.

Since uq and  $\pi$  are continuous and open, it is obtained that ui is continuous and open.  $\Box$ 

Notice that we do not use the equality  $\beta(X/G) = \beta X/G$  in the proof of the Theorem 2.6. If we had used this equality then the result was obvious. In fact, since  $X/G \subset uX/G \subset \beta X/G \approx \beta(X/G)$ , we have  $X/G \subset u(X/G) \subset uX/G \subset \beta(X/G)$  and so u(X/G) = uX/G, because uX/G is *c*-realcompact and u(X/G) is the smallest *c*-realcompact space between X/G and  $\beta(X/G)$ . The reason why we do not prefer this kind of proof is this: If we can extend a given action of *G* on *X* to an action of *G* on *uX* (may not be on  $\beta X$ ) then the functionality of our proof will become apparent.

Similarly the following can be proven.

**Theorem 2.7.** Suppose that G is a finite discrete group acting on a completely regular X. Then aX/G is homeomorphic to a(X/G).

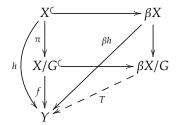
Now, we give a different proof of the equality  $\beta X/G = \beta (X/G)$ .

**Theorem 2.8.** Suppose that a finite discrete group G acting on a completely regular X. Then  $\beta X/G = \beta (X/G)$ .

*Proof.* Since X is dense in  $\beta X$ , so is X/G in  $\beta X/G$ . It is sufficient to show that every continuous mapping f from X/G into any compact Hausdorff space Y has an extension to a continuous map from  $\beta X/G$  to Y [16, Theorem 6.4, Theorem 6.7]. For any mapping  $f : X/G \longrightarrow Y$ , the mapping  $h := f \circ \pi : X \longrightarrow Y$  is continuous and it is constant map on each orbit (i.e. h(gx) = h(x) for each  $g \in G$  and  $x \in X$ ). Therefore, we have that the Stone extension  $\beta(h) : \beta X \longrightarrow Y$  and  $\beta(h)$  is constant on each orbit. To show this, let's take any  $g \in G$  and  $p \in \beta X$ . Then let  $\mathcal{A}$  be a unique *z*-ultrafilter on X that converging to the point gp. Hence  $g^{-1} \cdot \mathcal{A}$  is a *z*-ultrafilter on X that converges to the point *p*. Thus we obtain

$$(\beta h)(p) = \bigcap h^{\#}(g^{-1} \cdot \mathcal{A}) = \bigcap \{E \subset Z(Y) : h^{-1}(E) \in g^{-1} \cdot \mathcal{A}\}$$
$$= \bigcap \{E \subset Z(Y) : h^{-1}(E) = g \cdot h^{-1}(E) \in \mathcal{A}\}$$
$$= \bigcap h^{\#}(\mathcal{A}) = (\beta h)(gp)$$

Thus we can define  $T : \beta X/G \longrightarrow Y$ ,  $G(x) \mapsto (\beta h)(x)$ , that makes the next diagram commutative:



Hence *T* is an extension of *f* and  $\beta(X/G) = \beta X/G$  is obtained.  $\Box$ 

Let *X* be dense in *T*. Then vX = vT if and only if every continuous mapping *f* from *X* into any realcompact space *Y* can be extended to a continuous mapping from *T* into *Y* [16, Theorem 8.6]. By taking any realcompact space instead of compact space *Y* and using the fact that *X*/*G* is dense in vX/G and vX is invariant subspace of  $\beta X$ , similar to the proof above, we can prove the next theorem.

**Theorem 2.9.** ([8, 14]) Let X be a completely regular G-space, where G is a finite discrete group. Then vX/G = v(X/G).

Note that if *X* is dense in *T*, then aX = aT if and only if every continuous mapping *f* from *X* into any almost realcompact space *Y* can be extended to a continuous mapping from *T* into *Y* [30]. Therefore Theorem 2.7 can also be proven as above.

From the above explanations the following result is immediately obtained.

**Theorem 2.10.** If G is a compact group acting on a pseudocompact X, then  $\beta X/G = \beta (X/G)$ .

Notice that if *X* is pseudocompact *G*-space, Theorem 2.6 and 2.9 does not make sense, because in this case,  $uX = \beta X$  [17, Theorem 1.13] and  $vX = \beta X$  [16, 8.A] and  $aX = \beta X$ .

It is a natural question to investigate under what conditions a action of *G* on *X* can be extended to the action *G* on uX(vX or aX). In other words, under what conditions does  $u(G \times X) = G \times uX(v(G \times X) = G \times vX)$  or  $a(G \times X) = G \times aX$ ?

#### Acknowledgment

The author would like to thank the referees for carefully reading of the manuscript and drawing our attention to references [2, 6, 7].

## References

- N. Antonyan, On the maximal G-compactification of products of two G-spaces, Int. J. Math. Sci., 2006. https://doi.org/10.1155/IJMMS/2006/93218
- [2] N. Antonyan, S. Antonyan, Free G-spaces and maximal equivariant compactifications Annali di Matematica 184 (2005), 407–420.
- [3] N. Antonyan, S. Antonyan, M. Sanchis, Pseudocompactness in the Realm of Topological Transformation Groups, In: Hrušák, M., Tamariz-Mascarúa, Á., Tkachenko, M. (eds) Pseudocompact Topological Spaces. Developments in Mathematics, vol 55. Springer, 2018.
- [4] S. A. Antonyan, G-pseudocompact and G-Hewitt spaces, Russian Math. Surv. 35(6) (1980), 81–82.
- [5] S. A. Antonyan, New proof of existance of a bicompact G-extension—Comment Math. Univ. Carolin. 22(4),(1981), 761–772.
- [6] S. A. Antonyan, On a problem of L. G. Zambakhidze(in Russian), Uspehi Mat. Nauk 41(5) (1986), 159–161; English translat.: Russian Math. Surv. 41(5) (1986), 125–126.
- [7] S. A. Antonyan, Yu. M. Smirnov, Universal objects and bicompact extensions for topological transformation groups (in Russian), Doklady. Akad. Nauk S.S.S.R. 257(3) (1981), 521–526; English translat.: Soviet Math. Doklady. 23(2) (1981), 279–284.
- [8] K. K. Azad, K. Srivastava, G. Agrawal, Extending group actions to extensions and absolutes-A survey, Far East J. Math. Sci. 1(2),(1993), 223–245.
- [9] G. E. Bredon, Introduction to Compact Transformation Groups, New York, NY, USA: Academic Press, 1972.
- [10] J. Chaber, Remarks on open-closed mappings, Fund. Math. 74,(1972), 197-208.
- [11] N. Dykes, Generalizatioms of realcompact spaces, Pacific J. Math. 33,(1970), 571-581.
- [12] N. Dykes, Mappings and realcompact spaces, Pacific J. Math. 31 (1969), 347-358.
- [13] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [14] S. Eyidoğan, M. Onat, The Hewitt realcompactification of an orbit space, Turkish J. Math. 44 (2020), 2330–2336.
- [15] Z. Frolík, A generalization of realcompact spaces, Czechoslovak Math. J., **13**(1963), 127–138.
- [16] L. Gillman, M. Jerison, Rings of Continuous Functions, Princeton, 1960.
- [17] K. Hardy, R. G. Woods, On c-realcompact spaces and locally bounded normal functions, Pacific J. Math. 43 (1972), 647–656.
- [18] T. Ishii, On the completions of maps, Proc. Japan Acad. 50 (1974), 39–43.
- [19] T. Isiwata, Clopen realcompactification of a mapping, 119 (1985), 153-158.
- [20] T. Isiwata, Closed ultrafilters and realcompactness, Pacific J. Math. 92 (1981), 68-78.
- [21] T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455–480.
- [22] T. Isiwata, Ultrafilters and mappings, Pacific J. Math. 104 (1983), 371-389.
- [23] M. Megrelishvili, A Tychonoff G-space not admitting a compact Hausdorff G-extension or a G-linearization, Russian Math. Surveys 43 (1988), 177–178.
- [24] R. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. 36 (1960).
- [25] E. A. Reznichenko, Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl. 59 (1994), 233–244.
- [26] A. Sokolovskaya, G-compactifications of pseudocompact G-spaces, Topology Appl. 155 (2008), 342–346.
- [27] K. Srivastava, On the Stone-Čech compactification of an orbit space, Bull. Austral. Math. Soc. 36 (1987), 435–439.
- [28] R. C. Walker, The Stone-Čech Compactification, Berlin, Germany: Springer-Verlag, 1974.
- [29] R. G. Woods, -absolutes of remainders of Stone-Čech compactifications Pacific J. Math. 37 (1971), 545-560.
- [30] R. G. Woods, A Tychonoff almost real-compactification, Proc. Amer. Math. Soc. 43, (1974), 200–208.
- [31] J. de Vries, *Can every Tychonoff G-space equivariantly be embedded in a compact Hausdorff G-space?*, Math. Centrum, Amsterdam, afd. Zuivere Wisk. 36, 1975.
- [32] J. de Vries, *Equivariant embeddings of G-spaces*, in: General Topology and its Rel. to Modern Analysis and Algebra IV (Proc. 4th Prague Top. Sym., 1976), Part B, 485–493.
- [33] J. de Vries, On the existence of G-compactifications, Bull. Acad. Polon. Sci. ser. Math. 26 (1978), 275–280.
- [34] J. de Vries, On the G-compactification of products, Pacific J. Math. 110 (1984), 447-470.
- [35] J. de Vries, Topological Transformation Groups 1, Math. Centre Tracts no. 65, Mathematisch Centrum, Amsterdam, 1975.