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Abstract. In this paper, we characterize a pseudo Ricci symmetric space-time admitting a proper conformal
vector field. At first, it is shown that under certain restriction on the associated scalar σ, such a space-time
is of vanishing scalar curvature. Also, we prove that such a space-time with harmonic Weyl tensor is
vacuum. Consequently, it is concluded that this space-time is of Petrov type N and represents a plane-
fronted gravitational wave with parallel rays. Finally, it is shown that a pseudo Ricci symmetric space-time
admitting a homothetic vector field represents a stiffmatter fluid.

1. Introduction

Let M4 be a 4−dimensional Lorentzian manifold admitting a globally time-like vector field with metric
1 of signature (+,+,+,−) . Such a Lorentzian manifold is physically known as space-time. A Lorentzian
manifold is called Ricci symmetric if its Ricci tensor Rhk fulfills the condition [5]

∇lRhk = 0,

where ∇ denotes the covariant derivative with respect to the metric tensor 1i j. A Lorentzian manifold is
said to be pseudo Ricci symmetric if its Ricci tensor satisfies the condition [4]

∇lRhk = 2ζlRhk + ζhRlk + ζkRlh, (1)

with ζl being a non-zero covariant vector. Such a manifold is denoted by (PRS)4 and the vector ζl is
named the associated vector of (PRS)4. If we put ζl = 0 in the previous equation, then Ricci symmetric
manifolds are obtained. Several authors have investigated pseudo Ricci symmetric manifolds and pseudo
Ricci symmetric space-times (see e.g. [1, 2, 8, 18, 20–23]).

A vector field v is called conformal Killing if the following condition holds:

Lv1hk = 2σ1hk,
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for a smooth function σ on M4. A conformal Killing vector field (CKV) is called conformal vector field or a
conformal motion, and determines a conformal symmetry of the manifold (M4, 1). If σ =constant, then v is
a homothetic vector field and for σ = 0, it becomes Killing. The set of all CKV forms a Lie algebra.

We have the following integrability condition for a CKV [10]:

Lv{
h
ij} = (∇iσ) δh

j +
(
∇ jσ
)
δh

i − 1i j∇
hσ, (2)

LvRi j = −2∇i∇ jσ − ∇hσ
h1i j, (3)

Lvr = −6∇hσ
h, (4)

LvCh
ijk = 0, (5)

where {hij}, Ri j, r, and Ch
ijk denote respectively the Christoffel symbols of 2nd kind, Ricci tensor, scalar

curvature, and Weyl tensor. A CKV V is said to be proper if v is neither homothetic nor Killing. CKV vector
field in various space-times have been studied by many researchers, for example see [7, 12, 13, 15, 19].

In a perfect fluid space-time, the energy-momentum tensor Ti j has the subsequent expression

Ti j = p1i j +
(
p + µ

)
uiu j,

where p symbolizes the isotopic pressure, µ refers to the energy density, and ui is a unit time-like vector
field such that uiu j = −1. The perfect fluid space-time is named stiffmatter fluid if p = µ [3].

The present paper is devoted to study proper CKV in a (PRS)4 space-times. Precisely, we prove the
following theorems.

Theorem 1.1. If a (PRS)4 space-time admits a proper CKV with ∇hσh = 0, then the scalar curvature vanishes.

A CKV is called special CKV if ∇ jσi = 0. However ∇ jσi = 0⇒ ∇hσh = 0. Thus, we have

Corollary 1.2. If a (PRS)4 space-time admits a special CKV, then the scalar curvature vanishes.

In (M4, 1), the Weyl tensor Cl
i jk is demonstrated by [17]

Cki jm = Rki jm +
1
2

(
1kmRi j − 1imRkj + 1i jRkm − 1kjRim

)
−

R
6

(
1km1i j − 1im1kj

)
.

in which Rl
i jk stands for the curvature tensor. Its divergence has the following structure [16]

∇hC
h
ijk =

1
2

[(
∇kRi j − ∇ jRik

)
−

1
6

(
1i j∇kR − 1ik∇ jR

)]
. (6)

If ∇lCl
i jk = 0, then the Weyl tensor is named harmonic. The Weyl tensor is a fundamental concept

in differential geometry and general relativity. It measures the curvature of space-time in a way that is
independent of the distribution of matter and energy. The Weyl tensor provides important information
about the gravitational field and plays a crucial role in understanding the nature of gravitational waves
and the overall geometry of the universe.

Thus, we prove that:

Theorem 1.3. A (PRS)4 space-time with harmonic Weyl tensor admitting a proper CKV is vacuum and such a
space-time is of Petrov type N and represents plane-fronted gravitational waves with parallel rays, provided∇hσh = 0.

Remark 1.4. The above theorem holds for special CKV.

Considering homothetic vector field, we provide the following:

Theorem 1.5. A (PRS)4 space-time admitting a homothetic vector field represents a stiff matter fluid.
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2. Proof of Theorems

Proof. [Proof of Theorem 1] Let us consider the following commutation formula (see [24])

Lv

(
∇lRi j

)
− ∇l

(
LvRi j

)
= −RhjLv{

h
il} − RihLv{

h
jl}. (7)

We assume that the associated vector field ζl of a (PRS)4 space-time is CKV. Therefore, using Eqs. (1), (2),
and (3) in Eq. (7), we provide

2ζlLvRi j + ζiLvR jl + ζ jLvRil + (n − 2)∇l∇i∇ jσ

+1i j∇l∇hσ
h = −2σlRi j − σiR jl − σ jRil + Rhj1ilσ

h + Rih1 jlσ
h, (8)

where σh = ∇hσ.
Again, utilizing Eq. (2) in Eq. (8), it can be inferred that

2ζl

[
2∇ j∇iσ + 1i j∇hσ

h
]
+ ζi

[
2∇ j∇lσ + 1l j∇hσ

h
]

+ζ j

[
2∇l∇iσ + 1il∇hσ

h
]
−

[
2∇l∇i∇ jσ + 1i j∇l∇hσ

h
]

= 2σlRi j + σiR jl + σ jRil − Rhj1ilσ
h
− Rih1 jlσ

h. (9)

Multiplying the foregoing equation by 1i j,we deduce that

24ζl∇hσ
h +
[
2∇ j∇lσ + 1l j∇hσ

h
]
ζ j

+
[
2∇l∇iσ + 1li∇hσ

h
]
ζi
− 6∇l

(
∇hσ

h
)

= 2σlR. (10)

By hypothesis ∇hσh = 0, the previous equation reduces to

2
[
∇ j∇lσ + ∇l∇ jσ

]
ζ j = 2σlR. (11)

Since ∇ j∇lσ = ∇l∇ jσ, Eq. (11) becomes

2ζ j
∇ j∇lσ = σlR. (12)

In [20], it is proved that in a (PRS)4 the following relation hold

ζiRi j = 0. (13)

Consequently,

Ri j

(
Lζζ

i
)
+ ζi
(
LζRi j

)
= 0. (14)

Inserting Eq. (3) in the aforementioned equation, we find that

2ζi
∇i∇ jσ + ζ

i1i j∇hσ
h = 0. (15)

With the help of the hypothesis ∇hσh = 0, the foregoing equation becomes

ζi
∇i∇ jσ = 0. (16)

Therefore, Eq. (12) implies that

σlR = 0.

Assume that a (PRS)4 space-time admits proper CKV, it arises

R = 0.

This completes the proof.
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Proof. [Proof of Theorem 2] From Theorem 1, we get

R = 0. (17)

Consider that the divergence of the Weyl tensor vanishes, then Eq. (6) becomes(
∇kRi j − ∇ jRik

)
−

1
6

(
1i j∇kR − 1ik∇ jR

)
= 0.

Employing Eq. (17) in the previous equation, we get

∇kRi j = ∇ jRik.

The use of Eq. (1) in the previous equation implies that

ζkRi j = ζ jRik.

Contracting with ζk and using ζkRik = 0, we find that

Ri j = 0.

This means that the space-time under consideration is vacuum.
As stated in [6], a non-flat 4−dimensional vacuum space-time with non-homothetic conformal vector

field is of Petrov type N and represents a plane-fronted gravitational waves with parallel rays [6].
Thus, our theorem is proved.

Proof. [Proof of Theorem 3] For a homothetic vector field v, we have

Lv{
h
ij} = 0, LvRi j = 0.

From Eq. (7), we reveal that

Lv

(
2ζlRi j + ζiR jl + ζ jRil

)
= 0.

Since LvRi j = 0, the previous equation becomes

2Ri j (Lvζl) + R jl (Lvζi) + Ril

(
Lvζ j

)
= 0.

Let us assume the Lvζl = λl and λl is a unit time-like vector, that is, λlλl = −1. As a result, the previous
equation has the following form

2λlRi j + λiR jl + λ jRil = 0.

Interchanging the indices l and i in the foregoing equation, we have

2λiRl j + λlR ji + λ jRil = 0.

Subtracting the last two equations, the result is

λlRi j = λiRl j. (18)

Contracting the aforementioned equation with λl, we obtain

Ri j = −λ
lλiRl j. (19)

Again, transvecting Eq. (18) with 1i j, we find that

λlR = λ jRl j. (20)

Utilizing Eq. (20) in Eq. (19), we realize that

Ri j = −λiλiR,

which implies that the considered space-time is Ricci simple [9].
In [14], the physical interpretation of the Ricci simple space-times is investigated. The authors proved

that a Ricci simple space-time represents a stiffmatter fluid.
Now, the proof is completed.
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