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Abstract. Given 1 < p, r < ∞ and 0 ≤ σ < 1 such that 1/r + (1 − σ)/p∗ = 1, we study the Banach
normalized Bloch ideal (DB̂p,σ(D,X), dBp,σ) formed by all strongly (p, σ)-absolutely continuous Bloch maps
from the complex unit open discD into a complex Banach space X. Characterizations of such Bloch maps
are established in terms of: (i) Pietsch domination, (ii) linearisation on G(D) (the Bloch-free Banach space
overD), (iii) Bloch transposition, and (iv) Pietsch factorization. The invariance of such maps under Möbius
transformations of D and their relation with compact Bloch maps are also addressed. Furthermore, we
show that such space can be identified with the dual of the tensor product space lin(Γ(D))⊗̂X∗ equipped
with a suitable Bloch reasonable crossnorm ϱB̂p,σ.

1. Introduction

Given 1 ≤ p < ∞ and its conjugate index p∗, the ideal of strongly p-summing operators was introduced
by Cohen [6] to analyse the duality properties of the ideal of operators whose adjoints are absolutely
p∗-summing. Given 1 ≤ p < ∞ and 0 ≤ σ < 1, Matter [13] introduced the concept of (p, σ)-absolutely
continuous operators. This notion serves as a crucial analytical tool for examining properties such as super
reflexivity within Banach spaces (see [14]). Its development stems from an interpolation method pioneered
by Jarchow and Matter [9]. The class of (p, σ)-absolutely continuous operators can be seen as an intermediate
class situated between continuous operators and the well-known class of absolutely p-summing operators,
offering a distinctive blend of characteristics from both.

The study of (p, σ)-absolute continuity of maps has been addressed by some authors: for example, by
Achour, Rueda and Yahi [2] for Lipschitz maps, by López Molina and Sánchez Pérez [11, 12] and Sánchez
Pérez [16] for operators, and, more recently, by the authors of this paper in [4] for Bloch maps. The research
on strongly (p, σ)-continuous multilinear operators and strongly (p, σ)-Lipschitz operators has been dealed
by Achour, Dahia, Rueda and Sánchez Pérez [1] and by Bougoutaia, Belacel and Macedo [3], respectively.

Let 1 ≤ p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1. The main objective in this paper
is to present and establish the most remarkable properties of a Bloch version of the concept of strongly
(p, σ)-continuous linear operator. To be more precise, we introduce (in terms of the concept of a p∗-summing
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operator) the notion of a strongly (p, σ)-absolutely continuous Bloch map from D into a complex Banach
space X.

The paper is divided into two sections. The first contains some definitions, results and notations used
throughout the paper. The second is a complete study on strongly (p, σ)-absolutely continuous Bloch maps
fromD into X. Our main result is a characterization of such Bloch maps in terms of a Pietsch domination.
Our approach depends essentially on a linearisation process of Bloch maps developed in [10]. Using such
a Pietsch domination, we show that strong (p, σ)-absolute continuity of a Bloch map on D is transferred
to its linearisation on G(D) (the Bloch-free Banach space over D), and vice versa. This linearisation is
applied to prove in an easy form that the class of strongly (p, σ)-absolutely continuous Bloch maps, denoted
by [DB̂p,σ, dBp,σ], is an injective Banach normalized Bloch ideal. The invariance of such maps under Möbius
group of D and its inclusion (under a mild condition on X) in the space of compact Bloch maps are also
studied. We also show that strong (p, σ)-absolute continuity of a Bloch map from D to X is inherited by
its Bloch transpose from X∗ to the normalized Bloch space B̂(D), and vice versa. Another characterization
of such Bloch maps is established by means of a Pietsch factorization. We conclude the paper introducing
a Bloch reasonable crossnorm ϱB̂p,σ on the tensor product space lin(Γ(D))⊗̂X∗ and showing that the space

(DB̂p,σ(D,X), dBp,σ) is isometrically isomorphic to the dual space (lin(Γ(D))⊗̂
ϱB̂p,σ

X∗)∗.

2. Preliminaries

We will recall some concepts and results on the theory of linear operators and holomorphic mappings.
Throughout this paper, X and Y will denote complex Banach spaces andL(X,Y) will stand for the space

of all continuous linear operators of X to Y, under the operator norm. As usual, BX and X∗ will denote the
closed unit ball of X and the topological dual of X, respectively. The symbol P(BX∗∗ ) represents the set of all
regular Borel probability measures µ on BX∗∗ with the topology w∗.

An operator T ∈ L(X,Y) is called p-summing with p ∈ [1,∞) if there exists a constant C ≥ 0 such that n∑
i=1

∥T(xi)∥p


1
p

≤ C sup
x∗∈BX∗

 n∑
i=1

|x∗(xi)|p


1
p

for any n ∈ N and x1, . . . , xn ∈ X. The infimum of such constants C is denoted by πp(T), and the Banach
space of all p-summing operators of X to Y, under the norm πp, by Πp(X,Y).

For any 1 < p < ∞, p∗ denotes the Hölder conjugate of p given by 1/p + 1/p∗ = 1. Let 1 < p, r < ∞
and 0 ≤ σ < 1 such that 1/r + (1 − σ)/p∗ = 1. Following [1], an operator T ∈ L(X,Y) is called strongly
(p, σ)-continuous if there exist a constant C > 0, a Banach space Z, and an operator S ∈ Πp∗ (Y∗,Z) such that∣∣∣y∗(T(x))

∣∣∣ ≤ C ∥x∥
∥∥∥y∗

∥∥∥σ ∥∥∥S(y∗)
∥∥∥1−σ

for all x ∈ X and y∗ ∈ Y∗. The infimum of all the values Cπp∗ (S)1−σ whenever C and S satisfy the inequality
above is denoted by dp,σ(T) and it defines a complete norm on the linear space Dp,σ(X,Y) formed by all
strongly (p, σ)-continuous linear operators from X into Y.

IfH(D,X) denotes the space of all holomorphic maps from the complex unit open discD into X, a map
f ∈ H(D,X) is said to be Bloch if

ρB( f ) := sup
{
(1 − |z|2)

∥∥∥ f ′(z)
∥∥∥ : z ∈ D

}
< ∞.

The linear space of all Bloch maps ofD to X, under the Bloch seminorm ρB, is denoted by B(D,X), and the
normalized Bloch space B̂(D,X) is the closed subspace of B(D,X) formed by all those maps f for which
f (0) = 0, under the Bloch norm ρB. For simplicity, we will write B̂ (D) in place of B̂(D,C). Also, B̂(D,D)
will denote the set of all holomorphic functions h fromD into itself for which h(0) = 0. We refer the reader
to the book [17] by Zhu for a complete study on Bloch maps.

We may introduce a Bloch version of strongly (p, σ)-continuous linear operators.
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Definition 2.1. Let 1 ≤ p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1, and let X be a complex Banach
space. A map f ∈ H(D,X) is said to be strongly (p, σ)-absolutely continuous Bloch if there exist a constant C > 0, a
complex Banach space Y and an operator S ∈ Πp∗ (X∗,Y) such that∣∣∣x∗( f ′(z))

∣∣∣ ≤ C
1

1 − |z|2
∥x∗∥σ ∥S(x∗)∥1−σ

for all z ∈ D and x∗ ∈ X∗. The linear space of all strongly (p, σ)–absolutely continuous Bloch maps from D to X is
denoted byDBp,σ(D,X), and its subspace consisting of all those mappings f so that f (0) = 0 byDB̂p,σ(D,X).

We denote by dBp,σ( f ) the infimum of all values Cπp∗ (S)1−σ whenever C and S vary over all the constants and all
p∗-summing linear operators on X∗ that fulfill the inequality above.

We also will need some results on the Bloch-free Banach space overD, borrowed from [10].
For each z ∈ D, a Bloch atom ofD is the function γz : B̂(D)→ C defined by γz( f ) = f ′(z) for all f ∈ B̂(D).

Note that γz ∈ B̂(D)∗ with ∥γz∥ = 1/(1 − |z|2). The elements of the linear space lin({γz : z ∈ D}) ⊆ B̂(D)∗

are referred to as Bloch molecules of D. The Bloch-free Banach space over D is the Banach space G(D) :=
lin({γz : z ∈ D}) ⊆ B̂(D)∗.

The following result gathers some needed properties of G(D).

Theorem 2.2. [10]

1. The map Γ : D→ G(D), defined by Γ(z) = γz for all z ∈ D, is holomorphic.
2. The space B̂(D) is isometrically isomorphic to G(D)∗, via Λ : B̂(D)→ G(D)∗ given by

Λ( f )(γ) =
n∑

k=1

λk f ′(zk)

 f ∈ B̂(D), γ =
n∑

k=1

λkγzk ∈ lin(Γ(D))

 .
3. For each function h ∈ B̂(D,D), there exists a unique operator ĥ ∈ L(G(D),G(D)) such that ĥ◦Γ = h′ · (Γ◦h).

Furthermore, ||̂h|| ≤ 1.
4. For every complex Banach space X and every map f ∈ B̂(D,X), there exists a unique operator S f ∈ L(G(D),X)

such that S f ◦ Γ = f ′. Moreover, ∥S f ∥ = ρB( f ).

5. The map f 7→ S f is an isometric isomorphism from B̂(D,X) onto L(G(D),X).

6. For each f ∈ B̂(D,X), the map f t : X∗ → B̂(D), defined by f t(x∗) = x∗ ◦ f if x∗ ∈ X∗, is in L(X∗, B̂(D)) with
∥ f t
∥ = ρB( f ) and f t = Λ−1

◦ (S f )∗, where (S f )∗ : X∗ → G(D)∗ denotes the adjoint operator of S f .

3. The results

We first present some inclusion relations betweenDBp,σ-spaces. For two semi-normed spaces (X, ρX) and
(Y, ρY), the inequality (X, ρX) ≤ (Y, ρY) will mean that X ⊆ Y and ρY(x) ≤ ρX(x) for all x ∈ X.

Proposition 3.1. (Inclusions). Let 1 < p, q, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1 and
1/r + (1 − σ)/q∗ = 1, and let X be a complex Banach space. If p < q, then

(DBq,σ(D,X), dBq,σ) ≤ (DBp,σ(D,X), dBp,σ) ≤ (B(D,X), ρB).

Proof. If 1 < p < q < ∞, it is immediate that q∗ < p∗, and then the relation (Πq∗ (X,Y), πq∗ ) ≤ (Πp∗ (X,Y), πp∗ ),
established in [8, Theorem 2.8], yields the first inequality of the statement. For the second, if f ∈ DBp,σ(D,X),
we can take a constant C > 0, a complex Banach space Y and an operator S ∈ Πp∗ (X∗,Y) such that∣∣∣x∗( f ′(z))

∣∣∣ ≤ C
1

1 − |z|2
∥x∗∥σ ∥S(x∗)∥1−σ ≤ C

1
1 − |z|2

∥S∥1−σ ∥x∗∥
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for all z ∈ D and x∗ ∈ X∗. Applying the Hahn–Banach Theorem, we deduce that

∥∥∥ f ′(z)
∥∥∥ ≤ C

1
1 − |z|2

∥S∥1−σ

for all z ∈ D. Hence f ∈ B(D,X) with ρB( f ) ≤ C ∥S∥1−σ, and since ∥S∥ ≤ πp∗ (S) (see [8, p. 31]), taking infimum
over all constants C and all operators S satisfying the first inequality above yields that ρB( f ) ≤ dBp,σ( f ).

Next result states a Pietsch domination for strongly (p, σ)-absolutely continuous Bloch maps.

Theorem 3.2. (Pietsch domination). Let 1 ≤ p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1. Given a
complex Banach space X and f ∈ B̂(D,X), the following are equivalent:

1. f ∈ DB̂p,σ(D,X).
2. There exist a constant C > 0 and a measure µ ∈ P(BX∗∗ ) such that

∣∣∣x∗( f ′(z))
∣∣∣ ≤ C

1
1 − |z|2

∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

for all z ∈ D and x∗ ∈ X∗.
3. There exists a constant C > 0 such that

n∑
i=1

|λi|
∣∣∣x∗i ( f ′(zi))

∣∣∣ ≤ C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

for all n ∈N, λ1, . . . , λn ∈ C, z1, . . . , zn ∈ D and x∗1, . . . , x
∗
n ∈ X∗.

In such a case,

dBp,σ( f ) = inf
{
C > 0 satisfying (ii)

}
= inf

{
C > 0 satisfying (iii)

}
.

Proof. (i) ⇒ (ii): If f ∈ DB̂p,σ(D,X), then there exist a constant C′ > 0, a complex Banach space Y and an
operator S ∈ Πp∗ (X∗,Y) such that

∣∣∣x∗( f ′(z))
∣∣∣ ≤ C′

1
1 − |z|2

∥x∗∥σ ∥S(x∗)∥1−σ

for all z ∈ D and x∗ ∈ X∗. Applying [8, Theorem 2.12] to S, we have a measure µ ∈ P(BX∗∗ ) so that

∥S(x∗)∥ ≤ πp∗ (S)
(∫

BX∗∗

∣∣∣φ(x∗)
∣∣∣p∗ dµ(φ)

) 1
p∗

for all x∗ ∈ X∗, and taking C = C′πp∗ (S)1−σ, we obtain

∣∣∣x∗( f ′(z))
∣∣∣ ≤ C

1
1 − |z|2

∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

for all z ∈ D and x∗ ∈ X∗. Moreover, dBp,σ( f ) = C, and so inf{C > 0 satisfying (ii)} ≤ dBp,σ( f ).
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(ii)⇒ (iii): If (ii) holds, given n ∈N, λ1, . . . , λn ∈ C, z1, . . . , zn ∈ D and x∗1, . . . , x
∗
n ∈ X∗, Hölder’s Inequality

gives

n∑
i=1

|λi|
∣∣∣x∗i ( f ′(zi))

∣∣∣ ≤ C
n∑

i=1

|λi|
1

1 − |zi|
2

∫
BX∗∗

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

≤ C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r
 n∑

i=1

∫
BX∗∗

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

≤ C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r
 n∑

i=1

(∥∥∥x∗i
∥∥∥1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

= C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r
 n∑

i=1

(∣∣∣φi(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

≤ C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

,

where we have taken φi ∈ BX∗∗ with φi(x∗i ) =
∥∥∥x∗i

∥∥∥ for each i = 1, . . . ,n by the Hahn–Banach Theorem.
Moreover, note that C (that was a constant satisfying the inequality in (ii)) now verifies the inequality in
(iii), and thus inf{C > 0 satisfying (iii)} ≤ inf{C > 0 satisfying (ii)}.

(iii) ⇒ (i): We will apply a general Pietsch domination theorem stated in [15, Theorem 4.6]. Define the
functions

R1 : BX∗∗ ×D ×R→ [0,∞[, R1(φ, z, λ) =
|λ|

1 − |z|2
,

R2 : BX∗∗ ×D × X∗ → [0,∞[, R2(φ, z, x∗) =
∣∣∣φ(x∗)

∣∣∣1−σ ∥x∗∥σ ,
S : B̂(D,X) ×D ×R × X∗ → [0,∞[, S( f , z, λ, x∗) = |λ|

∣∣∣x∗( f ′(z))
∣∣∣ .

Notice that R1, R2 and S satisfy the conditions (1) and (2) preceding to Definition 4.4 in [15]:

(1) For each z ∈ D, λ ∈ R and x∗ ∈ X∗, the maps

(R1)z,λ : BX∗∗ → [0,∞[ (R1)z,λ(φ) = R1(φ, z, λ),
(R2)z,x∗ : BX∗∗ → [0,∞[ (R2)z,x∗ (φ) = R2(φ, z, x∗),

are continuous.
(2) The equalities

R1(φ, z, β1λ) = β1R1(φ, z, λ),
R2(φ, z, β2x∗) = β2R2(φ, z, x∗),

S( f , z, β1λ, β2x∗) = β1β2S( f , z, λ, x∗),

hold for all φ ∈ BX∗∗ , z ∈ D, λ ∈ R, x∗ ∈ X∗ and β1, β2 ∈ [0, 1].

We now prove that the map f is R1,R2-S-abstract (r, p∗/(1−σ))-summing. Indeed, let n ∈N,λ1, . . . , λn ∈ C,
z1, . . . , zn ∈ D and x∗1, . . . , x

∗
n ∈ X∗. By (iii), we have a constant C > 0 so that

n∑
i=1

|λi|
∣∣∣x∗i ( f ′(zi))

∣∣∣ ≤ C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

,
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and so we get
n∑

i=1

S( f , zi, λi, x∗i ) =
n∑

i=1

|λi|
∣∣∣x∗i ( f ′(zi))

∣∣∣
≤ C

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

= C

 n∑
i=1

R1(φi, zi, λi)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

R2(φ, zi, x∗i )
p∗

1−σ


1−σ
p∗

≤ C sup
φ∈BX∗∗

 n∑
i=1

R1(φ, zi, λi)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

R2(φ, zi, x∗i )
p∗

1−σ


1−σ
p∗

.

By [15, Theorem 4.6], we have measures µ1, µ2 ∈ P(BX∗∗ ) such that

S( f , z, λ, x∗) ≤ C
(∫

BX∗∗

R1(φ, z, λ)rdµ1(φ)
) 1

r
(∫

BX∗∗

R2(φ, z, x∗)
p∗

1−σ dµ2(φ)
) 1−σ

p∗

for all (z, λ, x∗) ∈ D ×R × X∗. It follows that∣∣∣x∗( f ′(z))
∣∣∣ ≤ C

1

1 − |z|2
∥x∗∥σ

(∫
BX∗∗

∣∣∣φ(x∗)
∣∣∣p∗ dµ2(φ)

) 1−σ
p∗

for all (z, x∗) ∈ D×X∗. Finally, take the Banach space Y = Lp∗ (µ2) and the operator S = I∞,p∗ ◦ j∞ ◦ ιX∗ : X∗ → Y,
where I∞,p∗ : L∞(µ2) → Lp∗ (µ2) and j∞ : C(BX∗∗ ) → L∞(µ2) are the formal inclusion operators and ιX∗ : X∗ →
C(BX∗∗ ) is the isometric linear embedding given by

ιX∗ (x∗)(φ) = φ(x∗) (φ ∈ BX∗∗ , x∗ ∈ X∗).

Then we can write∣∣∣x∗( f ′(z))
∣∣∣ ≤ C

1

1 − |z|2
∥x∗∥σ

(∫
BX∗∗

∣∣∣S(x∗)(φ)
∣∣∣p∗ dµ2(φ)

) 1−σ
p∗

= C
1

1 − |z|2
∥x∗∥σ ∥S(x∗)∥1−σ

for all (z, x∗) ∈ D × X∗, and since S ∈ Πp∗ (X∗,Y) with πp∗ (S) ≤ 1 by [8, 2.4 and 2.9], we conclude that

f ∈ DB̂p,σ(D,X) with dBp,σ( f ) ≤ C, and thus dBp,σ( f ) ≤ inf{C > 0 satisfying (iii)}.

We now show that strong (p, σ)-absolute continuity of a Bloch map onD is transferred to its linearisation
on G(D), and vice versa.

Theorem 3.3. (Linearisation). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1, let X be a
complex Banach space and let f ∈ B̂(D,X). Then f ∈ DB̂p,σ(D,X) if and only if S f ∈ Dp,σ(G(D),X). In this case,
dBp,σ( f ) = dp,σ(S f ).

Proof. Suppose that f ∈ DB̂p,σ(D,X). Let γ ∈ lin(Γ(D)) and x∗ ∈ X∗. If
∑n

i=1 λiγzi is a representation of γ,
Theorem 3.2 provides a measure µ ∈ P(BX∗∗ ) such that∣∣∣x∗(S f (γ))

∣∣∣ ≤ n∑
i=1

|λi|
∣∣∣x∗( f ′(zi))

∣∣∣
≤ dBp,σ( f )

n∑
i=1

|λi|
1

1 − |zi|
2

∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

.
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Taking the infimum over all such representations of γ and using [10, Lemma 3.1], we obtain

∣∣∣x∗(S f (γ))
∣∣∣ ≤ dBp,σ( f )

∥∥∥γ∥∥∥ ∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

.

Since lin(Γ(D)) is norm-dense in G(D), we deduce

∣∣∣x∗(S f (γ))
∣∣∣ ≤ dBp,σ( f )

∥∥∥γ∥∥∥ ∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

whenever γ ∈ G(D). Now, Pietsch’s domination for operators in Dp,σ (see [1, Theorem 3.2]) shows that
S f ∈ Dp,σ(G(D),X) and dp,σ(S f ) ≤ dBp,σ( f ).

Conversely, suppose that S f ∈ Dp,σ(G(D),X). By [1, Theorem 3.2], there exists a measure µ ∈ P(BX∗∗ )
such that∣∣∣x∗( f ′(z))

∣∣∣ = ∣∣∣x∗(S f (γz))
∣∣∣

≤ dp,σ(S f )
∥∥∥γz

∥∥∥ ∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

= dp,σ(S f )
1

1 − |z|2

∫
BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ

dµ(φ)


1−σ
p∗

for all z ∈ D and x∗ ∈ X∗. Hence f ∈ DB̂p,σ(D,X) with dBp,σ( f ) ≤ dp,σ(S f ) by Theorem 3.2.

We now present new examples of Banach normalized Bloch ideal (see [10, Definition 5.11]).

Proposition 3.4. (Banach Bloch ideal property). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1.
Then [DB̂p,σ, dBp,σ] is an injective Banach normalized Bloch ideal.

Proof. Let X be a complex Banach space.
(N1): (DB̂p,σ(D,X), dBp,σ) is a Banach space and ρB( f ) ≤ dBp,σ( f ) for all f ∈ DB̂p,σ(D,X).

Let λ ∈ C and f , 1 ∈ DB̂p,σ(D,X). We have:

dBp,σ(λ f ) = dp,σ(Sλ f ) = dp,σ(λS f ) = |λ| dp,σ(S f ) = |λ| dBp,σ( f ),

dBp,σ( f + 1) = dp,σ(S f+1) = dp,σ(S f + S1) ≤ dp,σ(S f ) + dp,σ(S1) = dBp,σ( f ) + dBp,σ(1),

dBp,σ( f ) = 0⇒ dp,σ(S f ) = 0⇒ S f = 0⇒ f ′ = S f ◦ Γ = 0⇒ f = 0,

by using Theorem 2.2 and 3.3. Applying also both theorems, it is immediate that f 7→ S f is an isometric

isomorphism of (DB̂p,σ(D,X), dBp,σ) onto (Dp,σ(G(D),X), dp,σ), and

ρB( f ) =
∥∥∥S f

∥∥∥ ≤ dp,σ(S f ) = dBp,σ( f )

by using also that [Dp,σ, dp,σ] is a Banach operator ideal.

(N2): Let 1 ∈ B̂(D) and x ∈ X. Then 1 · x ∈ DB̂p,σ(D,X) with dBp,σ(1 · x) = ρB(1) ∥x∥.
Since Λ(1) · x ∈ L(G(D),X) and

(1 · x)′(z) = 1′(z)x = Λ(1)(γz)x = (Λ(1) · x)(γz) = (Λ(1) · x ◦ Γ)(z)

for all z ∈ D, Theorem 2.2 gives S1·x = Λ(1) ·x. By the operator ideal property of [Dp,σ, dp,σ] (see [1, Corollary

4.6]), it follows that S1·x ∈ Dp,σ(G(D),X) with dp,σ(S1·x) =
∥∥∥Λ(1)

∥∥∥ ∥x∥ = ρB(1) ∥x∥. Hence 1 · x ∈ DB̂p,σ(D,X)
with dBp,σ(1 · x) = ρB(1) ∥x∥ by Theorem 3.3.
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(N3): Let f ∈ DB̂p,σ(D,X), T ∈ L(X,Y) and h ∈ B̂(D,D). Then T ◦ f ◦ h ∈ DB̂p,σ(D,Y) with dBp,σ(T ◦ f ◦ h) ≤
∥T∥ dBp,σ( f ).

Since T ◦ S f ◦ ĥ ∈ L(G(D),Y) and

(T ◦ f ◦ h)′ = T ◦ [h′ · ( f ′ ◦ h)] = T ◦ [h′ · (S f ◦ Γ ◦ h)]

= T ◦ [S f (h′ · (Γ ◦ h))] = T ◦ [S f ◦ (̂h ◦ Γ)]

= (T ◦ S f ◦ ĥ) ◦ Γ

we deduce that ST◦ f◦h = T ◦ S f ◦ ĥ by Theorem 2.2. Since S f ∈ Dp,σ(G(D),X) by Theorem 3.3, we get that
ST◦ f◦h ∈ Dp,σ(G(D),Y) with dp,σ(ST◦ f◦h) ≤ ∥T∥ dp,σ(S f )||̂h|| by the operator ideal property of [Dp,σ, dp,σ], and

thus T ◦ f ◦ h ∈ DB̂p,σ(D,Y) with dBp,σ(T ◦ f ◦ h) ≤ ∥T∥ dBp,σ( f ) by Theorem 3.3.

(I): Let f ∈ B̂ (D,X) and let ι : X→ Y be a linear isometry so that ι ◦ f ∈ DB̂p,σ(D,Y). Then f ∈ DB̂p,σ(D,X)
with dBp,σ( f ) = dBp,σ(ι ◦ f ).

Note that ι ◦ S f = Sι◦ f ∈ Dp,σ(G(D),Y). Since the operator ideal [Dp,σ, dp,σ] is injective, it follows that

S f ∈ Dp,σ(G(D),X) with
∥∥∥S f

∥∥∥ = ∥∥∥ι ◦ S f

∥∥∥ or, equivalently, f ∈ DB̂p,σ(D,X) with dBp,σ( f ) ≤ dBp,σ(ι ◦ f ). The reverse
inequality follows from (N3).

The Möbius group of D, denoted Aut(D), consists of all biholomorphic bijections from D onto itself.
Let us recall that a linear spaceA(D,X) ⊆ B(D,X), under a seminorm ρA, is Möbius-invariant if: (i) there
is C > 0 such that ρB( f ) ≤ CρA( f ) for all f ∈ A(D,X); and (ii) f ◦ϕ ∈ A(D,X) with ρA( f ◦ϕ) = ρA( f ) for all
ϕ ∈ Aut(D) and f ∈ A(D,X).

Invariance of strongly (p, σ)-absolutely continuous Bloch maps by Möbius transformations over D can
be now derived.

Proposition 3.5. (Möbius invariance). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1, and let X
be a complex Banach space. Then (DBp,σ(D,X), dBp,σ) is Möbius-invariant.

Proof. (i) Proposition 3.1 yields (DBp,σ(D,X), dBp,σ) ≤ (B(D,X), ρB).
(ii) A reading of the proof of (N3) above shows that f ◦ ϕ ∈ DBp,σ(D,X) with dBp,σ( f ◦ ϕ) ≤ dBp,σ( f ) if

f ∈ DBp,σ(D,X) andϕ ∈ Aut(D), and from this we also deduce that dBp,σ( f ) = dBp,σ(( f ◦ϕ)◦ϕ−1) ≤ dBp,σ( f ◦ϕ).

In clear parallelism with Theorem 3.3, strong (p, σ)-absolute continuity of a Bloch map from D to X is
inherited by its Bloch transpose from X∗ to B̂(D), and vice versa.

Proposition 3.6. (Bloch transposition). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1, let X be
a complex Banach space and let f ∈ B̂(D,X). Then f ∈ DB̂p,σ(D,X) if and only if f t

∈ Πp∗,σ(X∗, B̂(D)). In this case,
dBp,σ( f ) = πp∗,σ( f t).

Proof. Applying Theorem 3.3, [1, Remark 3.3] and [8, Theorem 2.4], we have

f ∈ DB̂p,σ(D,X)⇔ S f ∈ Dp,σ(G(D),X)

⇔ (S f )∗ ∈ Πp∗,σ(X∗,G(D)∗)

⇔ f t = Λ−1
◦ (S f )∗ ∈ Πp∗,σ(X∗, B̂(D)),

with

dBp,σ( f ) = dp,σ(S f ) = πp∗,σ((S f )∗) = πp∗,σ( f t).
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We now relate strong (p, σ)-absolute continuity and compactness of Bloch maps. Following [10, Defini-
tion 5.1], a map f ∈ H(D,X) is called compact Bloch if its Bloch range

rang
B

( f ) :=
{
(1 − |z|2) f ′(z) : z ∈ D

}
is a relatively compact subset of X.

Proposition 3.7. (Bloch compactness). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1 and let X
be a reflexive complex Banach space. Every strongly (p, σ)-absolutely continuous Bloch map f : D → X is compact
Bloch.

Proof. Let f ∈ DB̂p,σ(D,X). Then f t
∈ Πp∗,σ(X∗, B̂(D)) by Proposition 3.6. Hence f t is a compact linear

operator by [7, Corollary 5.2] and, equivalently, f is compact Bloch by [10, Theorem 5.19].

Our next goal is to get a result on Pietsch factorization for strongly (p, σ)-absolutely continuous Bloch
maps. Its proof is based on some results of [7, Section 3.2] which we recall next.

Given a complex Banach space X, let ιX : X→ C(BX∗ ) be the isometric linear embedding defined by

ιX(x)(φ) = φ(x) (φ ∈ BX∗ , x ∈ X).

Given µ ∈ P(BX∗ ), define the seminorm

∥∥∥ f
∥∥∥

p,σ = inf

 n∑
k=1

∥∥∥ fk
∥∥∥σ
ιX(X)

(∫
BX∗

∣∣∣ fk(φ)
∣∣∣p dµ(φ)

) 1−σ
p
 ( f ∈ ιX(X)),

being the infimum taken over all decompositions of f as f =
∑n

k=1 fk in ιX(X). Let Lp,σ(µ) be the completion
of the quotient normed space ιX(BX)/ ∥·∥−1

p,σ ({0}) with the quotient norm ∥·∥p,σ, let Jp,σ : ιX(X)→ Lp,σ(µ) be the

canonical projection, and let J̃p,σ denote the operator Jp,σ considered from C(BX∗ ) into Lp,σ(µ).

Theorem 3.8. (Pietsch factorization). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1, let X be a
complex Banach space and let f ∈ B̂(D,X). Then f ∈ DB̂p,σ(D,X) if and only if there exist a measure µ ∈ P(BG(D)∗ ),

a map 1 ∈ B̂(D,Lp,σ(µ)) and an operator T ∈ L(Lp,σ(µ),X) such that f ′ = T ◦ 1′.
Furthermore, dBp,σ( f ) = inf

{
∥T∥ρB(1)

}
, the infimum being taken over all such factorizations of f ′ as above, and

this infimum is attained.

Proof. Assume that f ∈ DB̂p,σ(D,X). Then S f ∈ Dp,σ(G(D),X) with dp,σ(S f ) = dBp,σ( f ) by Theorem 3.3. By a
version of the Pietsch factorization theorem for (p, σ)-absolutely continuous linear operators [7, Theorem
3.5], there exist a measure µ ∈ P(BG(D)∗ ), an operator J̃p,σ ∈ Dp,σ(C(BG(D)),Lp,σ(µ)) with πp,σ (̃Jp,σ) ≤ 1 (see
Lemma 3.4 and the comment which follows in [7]) and an operator T ∈ L(Lp,σ(µ),X) with ∥T∥ ≤ dp,σ(S f )
such that S f = T ◦ J̃p,σ ◦ ιG(D). Although in [7, Theorem 3.5] the factorization is given through a subspace Xp,σ
of Lp,σ(µ), a quick look to the proof shows that Xp,σ = Lp,σ(µ) (see comment in [1, p. 14]). By [5, Lemma 1.5],
we can find a map 1 ∈ B̂(D,Lp,σ(µ)) with ρB(1) = 1 such that 1′ = J̃p,σ ◦ ιG(D) ◦ Γ. Hence f ′ = S f ◦ Γ = T ◦ 1′

with ∥T∥ρB(1) ≤ dBp,σ( f ).

Conversely, assume that there are a measure µ ∈ P(BG(D)∗ ), a map 1 ∈ B̂(D,Lp,σ(µ)) and an operator
T ∈ L(Lp,σ(µ),X) such that f ′ = T ◦ 1′. We can assume 1 , 0. For any n ∈ N, λ1, . . . , λn ∈ C, z1, . . . , zn ∈ D



A. Bougoutaia et al. / Filomat 38:29 (2024), 10391–10403 10400

and x∗1, . . . , x
∗
n ∈ X∗, Hölder’s Inequality yields

n∑
i=1

|λi|
∣∣∣x∗i ( f ′(zi))

∣∣∣ = n∑
i=1

|λi|
∣∣∣x∗i (T(1′(zi))

∣∣∣
≤ ∥T∥

n∑
i=1

|λi|
∥∥∥x∗i

∥∥∥ ∥∥∥1′(zi)
∥∥∥

≤ ∥T∥ρB(1)

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r
 n∑

i=1

(∥∥∥x∗i
∥∥∥1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

= ∥T∥ρB(1)

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r
 n∑

i=1

(∣∣∣φi(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

≤ ∥T∥ρB(1)

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

,

by taking φi ∈ BX∗∗ with φi(x∗i ) =
∥∥∥x∗i

∥∥∥ for each i = 1, . . . ,n by the Hahn–Banach Theorem. Hence f ∈

D
B̂
p,σ(D,X) with dBp,σ( f ) ≤ ∥T∥ρB(1) by Theorem 3.2. Taking the infimum over all such factorizations of f ′,

we deduce that dBp,σ( f ) ≤ inf
{
∥T∥ρB(1)

}
.

We now introduce a Bloch reasonable crossnorm ϱB̂p,σ onG (D) ⊗̂X∗ (the completion of the tensor product

space G (D) ⊗ X∗) whose dual represents the space (DB̂p,σ(D,X), dBp,σ).
Towards this end, consider the space

lin(Γ(D)) ⊗ X∗ := lin
({
γz ⊗ x∗ : z ∈ D, x∗ ∈ X∗

})
⊆ B̂(D,X)∗,

where γz ⊗ x∗ : B̂(D,X)→ C is the functional given by(
γz ⊗ x∗

)
( f ) = x∗( f ′(z)) ( f ∈ B̂(D,X)).

Each element γ ∈ lin(Γ(D)) ⊗ X∗ is of the form γ =
∑n

i=1 λiγzi ⊗ x∗i for some n ∈N, λi ∈ C, zi ∈ D and x∗i ∈ X∗

for i = 1, . . . ,n, and its action comes given as

γ( f ) =
n∑

i=1

λix∗i ( f ′(zi)) ( f ∈ B̂(D,X)).

Definition 3.9. Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r + (1 − σ)/p∗ = 1, and let X be a complex Banach
space. For each γ ∈ lin(Γ(D)) ⊗ X∗, we set

ϱB̂p,σ(γ) = inf


 n∑

i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

 ,
where the infimum is taken over all representations of γ as γ =

∑n
i=1 λiγzi ⊗ x∗i .

According to [5, Definition 2.5], a norm α on lin(Γ(D)) ⊗ X is a Bloch reasonable crossnorm if it holds: (i)
α(γz ⊗ x) ≤

∥∥∥γz

∥∥∥ ∥x∥ for all z ∈ D and x ∈ X; and (ii) Given 1 ∈ B̂(D) and x∗ ∈ X∗, the linear functional
1⊗ x∗ : lin(Γ(D))⊗X→ C given by (1⊗ x∗)(γz ⊗ x) = 1′(x)x∗ (x) is bounded on lin(Γ(D))⊗α X with

∥∥∥1 ⊗ x∗
∥∥∥ ≤

ρB(1) ∥x∗∥.
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Proposition 3.10. Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r+ (1− σ)/p∗ = 1, and let X be a complex Banach
space. Then ϱB̂p,σ is a Bloch reasonable crossnorm on lin(Γ(D)) ⊗ X∗.

Proof. Using a standard reasoning (see, for example, the proof of [4, Theorem 6.2]), it can be shown that ϱB̂p,σ
is a norm on lin(Γ(D))⊗X∗, but to be safe, we check that ϱB̂p,σ is a Bloch reasonable crossnorm on lin(Γ(D))⊗X∗:

(i) Given z ∈ D and x∗ ∈ X∗, we have

ϱB̂p,σ(γz ⊗ x∗) ≤
1

1 − |z|2
sup
φ∈BX∗∗

(∣∣∣φ(x∗)
∣∣∣1−σ ∥x∗∥σ) p∗

1−σ


1−σ
p∗

=
∥x∗∥

1 − |z|2
=

∥∥∥γz

∥∥∥ ∥x∗∥ .
(ii) For any 1 ∈ B̂(D) and x∗∗ ∈ X∗∗, an application of Hahn–Banach Theorem and Hölder’s Inequality

yield

∣∣∣(1 ⊗ x∗∗)(γ)
∣∣∣ = ∣∣∣∣∣∣∣

n∑
i=1

λi(1 ⊗ x∗∗)(γzi ⊗ x∗i )

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

n∑
i=1

λi1
′(zi)x∗∗(x∗i )

∣∣∣∣∣∣∣
≤

n∑
i=1

|λi|
∣∣∣1′(zi)

∣∣∣ ∣∣∣x∗∗(x∗i )∣∣∣ ≤ ρB(1) ∥x∗∗∥
n∑

i=1

|λi|

1 − |zi|
2

∥∥∥x∗i
∥∥∥

= ρB(1) ∥x∗∗∥
n∑

i=1

|λi|

1 − |zi|
2

∣∣∣φi(x∗i )
∣∣∣ = ρB(1) ∥x∗∗∥

n∑
i=1

|λi|

1 − |zi|
2

∣∣∣φi(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ
≤ ρB(1) ∥x∗∗∥

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r
 n∑

i=1

(∣∣∣φi(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

≤ ρB(1) ∥x∗∗∥

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

,

where, for each i = 1, . . . ,n, we have taken a functional φi ∈ BX∗∗ such that
∣∣∣φi(x∗i )

∣∣∣ = ∥∥∥x∗i
∥∥∥. Passing to the

infimum over all the representations of γ, we obtain∣∣∣(1 ⊗ x∗∗)(γ)
∣∣∣ ≤ ρB(1) ∥x∗∗∥ ϱB̂p,σ(γ).

Hence 1 ⊗ x∗∗ ∈ (lin(Γ(D)) ⊗
ϱB̂p,σ

X∗)∗ and
∥∥∥1 ⊗ x∗∗

∥∥∥ ≤ ρB(1) ∥x∗∗∥.

We are now ready to study the duality of the space of strongly (p, σ)-absolutely continuous Bloch maps
fromD into a complex Banach space X.

Theorem 3.11. (Duality). Let 1 < p, r < ∞ and 0 ≤ σ < 1 be such that 1/r+ (1− σ)/p∗ = 1, and let X be a complex

Banach space. Then the space
(
D
B̂
p,σ (D,X) , dBp,σ

)
is isometrically isomorphic to

(
lin(Γ(D))⊗̂

ϱB̂p,σ
X∗

)∗
.

Proof. It is easy to see that the map Λ :
(
D
B̂
p,σ (D,X) , dBp,σ

)
→

(
lin(Γ(D))⊗̂

ϱB̂p,σ
X∗

)∗
, defined by

Λ( f )(γz ⊗ x∗) = x∗( f ′(z))
(

f ∈ DB̂p,σ (D,X) , z ∈ D, x∗ ∈ X∗
)
,
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is linear and injective. Fix f ∈ DB̂p,σ(D,X). For γ =
∑n

i=1 λiγzi ⊗x∗i ∈ lin(Γ(D))⊗X∗, an application of Theorem
3.2 gives

∣∣∣Λ( f )(γ)
∣∣∣ ≤ n∑

i=1

|λi|
∣∣∣x∗i ( f ′(zi))

∣∣∣
≤ dBp,σ( f )

 n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

.

Taking the infimun over all the representation of γ, we get
∣∣∣Λ( f )(γ)

∣∣∣ ≤ dBp,σ( f )ϱB̂p,σ(γ), and therefore
∥∥∥Λ( f )

∥∥∥ ≤
dBp,σ( f ).

In order to establish the reverse inequality and the surjectivity of Λ, let ϕ ∈
(
lin(Γ(D))⊗̂

ϱB̂p,σ
X∗

)∗
. Define

Fϕ : D→ X by

x∗(Fϕ(z)) = ϕ(γz ⊗ x∗) (z ∈ D, x∗ ∈ X∗) .

A look at the proof of [5, Proposition 2.4] shows that Fϕ ∈ H(D,X) and Fϕ = f ′ϕ for a convenient map

fϕ ∈ B̂(D,X) with ρB( fϕ) ≤
∥∥∥ϕ∥∥∥.

To prove that fϕ ∈ DB̂p,σ(D,X), let n ∈ N, λi ∈ C and zi ∈ D for i = 1, . . . ,n. For each i ∈ {1, . . . ,n}, we
can take a functional x∗i ∈ X∗ with

∥∥∥x∗i
∥∥∥ = 1 so that |x∗i ( f ′ϕ(zi))| = || f ′ϕ(zi)||. Obviously, the function T : Cn

→ C

defined by

T(t1, . . . , tn) =
n∑

i=1

tiλi

∥∥∥∥ f ′ϕ(zi)
∥∥∥∥ , (t1, . . . , tn) ∈ Cn,

is in (Cn, || · ||∞)∗ and ∥T∥ =
∑n

i=1 |λi| || f ′ϕ(zi)||. For any (t1, . . . , tn) ∈ Cn with ||(t1, . . . , tn)||∞ ≤ 1, we get

|T(t1, . . . , tn)| =

∣∣∣∣∣∣∣ϕ
 n∑

i=1

tiλiγzi ⊗ x∗i


∣∣∣∣∣∣∣ ≤ ∥∥∥ϕ∥∥∥ ϱB̂p,σ

 n∑
i=1

λiγzi ⊗ tix∗i


≤

∥∥∥ϕ∥∥∥  n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥tix∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

≤

∥∥∥ϕ∥∥∥  n∑
i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

,

and therefore

n∑
i=1

|λi|

∣∣∣∣x∗i ( f ′ϕ(zi))
∣∣∣∣ ≤ ∥∥∥ϕ∥∥∥  n∑

i=1

(
|λi|

1 − |zi|
2

)r


1
r

sup
φ∈BX∗∗

 n∑
i=1

(∣∣∣φ(x∗i )
∣∣∣1−σ ∥∥∥x∗i

∥∥∥σ) p∗

1−σ


1−σ
p∗

.

Hence Theorem 3.2 assures that fϕ ∈ DB̂p,σ(D,X) and dBp,σ( fϕ) ≤
∥∥∥ϕ∥∥∥.

Now, for any γ =
∑n

i=1 λiγzi ⊗ x∗i ∈ lin(Γ(D)) ⊗ X∗, we have

Λ( fϕ)(γ) =
n∑

i=1

λix∗i ( f ′ϕ(zi)) =
n∑

i=1

λiϕ(γzi ⊗ x∗i ) = ϕ

 n∑
i=1

λiγzi ⊗ x∗i

 = ϕ(γ),

and so Λ( fϕ) = ϕ on lin(Γ(D))⊗̂
ϱB̂p,σ

X∗. Hence dBp,σ( fϕ) ≤
∥∥∥Λ( fϕ)

∥∥∥ and the proof is complete.
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