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Abstract. This paper focuses on studying regional controllability and observability for fractional linear
systems using the conformable derivative of order 0 < α ≤ 1. Utilizing fractional calculus theory and
fractional semigroup theory, we provide the necessary and sufficient conditions for exact and approximate
regional controllability and observability of the conformable fractional linear system. Finally, we present
some examples to illustrate our theoretical results.

1. Introduction

Fractional calculus is a branch of mathematics that aims to extend the concept of classical differentiation
to non-integer orders. This field has evolved into one of the most developed areas of mathematical
analysis and has proven to be a powerful tool in modeling various phenomena across several fields [11].
Consequently, numerous definitions for fractional derivatives have emerged in the literature to provide
more accurate models for real-life phenomena. Some of the most well-known fractional derivatives include
Riemann-Liouville, Caputo, Hadamard, Erdèlyi-Kober, Riesz, Grünwald-Letnikov, Marchaud, and others(
see [28, 33]).

A recent advancement in fractional calculus, known as the conformable derivative and proposed by
Khalil et al. [23], is described by the following formula:

ϕ(ρ)(s) = lim
µ→0

ϕ(s + µt1−ρ) − ϕ(s)
µ

This new fractional derivative has significantly contributed to various disciplines, including engineering,
finance, biology, medicine, physics, and applied mathematics [7, 29, 35, 40].

The choice of the conformable derivative in this study is motivated by several key factors. Firstly, the
conformable derivative preserves many fundamental properties of classical derivatives, such as the product
rule, quotient rule, chain rule, Rolle’s theorem, and the mean value theorem. These properties make the
conformable derivative particularly attractive for extending classical analysis techniques to the fractional
domain. Additionally, the conformable derivative has a straightforward and intuitive definition, which
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simplifies its application across various fields. This simplicity does not compromise its ability to model
complex dynamic systems with memory effects and hereditary properties, which are essential in many real-
world scenarios. Moreover, the conformable derivative has been shown to be highly effective in control
theory. It provides a natural and cohesive framework for addressing issues of controllability, observability,
stability, and optimization in both finite and infinite-dimensional systems. This is evident from recent stud-
ies that have successfully applied the conformable derivative to various control problems, demonstrating its
versatility and robustness. Given these advantages, the conformable derivative is particularly well-suited
for our investigation into regional controllability and observability of infinite-dimensional systems. Its
properties and ease of use allow us to extend classical control theory results to the fractional context in a
coherent manner, thus providing a solid foundation for our theoretical and practical contributions. These
properties have been examined by numerous researchers, including those cited in [1, 6, 24, 32], among
many others.

In recent years, conformable derivatives have emerged as a competing means of studying control
systems. As a result, extensive research has focused on control theory, particularly with respect to the
fundamental concepts and classical findings of dynamical systems described by the conformable deriva-
tive. This research encompassing topics such as solving the Cauchy problem, applying Gronwall’s lemma,
studying controllability, observability, stability, stabilization, and solving optimal linear quadratic prob-
lems.
The study of conformable fractional dynamical systems in finite dimensions has yielded intriguing results.
For example, the solutions of conformable linear and semilinear systems have been treated in several works
(see [3, 26]). Several research studies have been conducted to examine the controllability and observability
of conformable fractional systems within the framework of finite-dimensional state space. For instance,
Xiaowen et al. in [34] have provided sufficient and necessary conditions for the null controllability of con-
formable linear systems, and in [4], based on the conformable exponential matrix, Al-Zhour discussed the
controllability and observability behaviors of a non-homogeneous conformable fractional dynamic system.
To explore further, there are additional findings on the controllability and observability of conformable
systems (see [8, 36]). We can also cite some works on the stability problems of conformable fractional linear
and nonlinear systems [22, 25, 27, 39]. The problem of fractional linear-quadratic optimization for systems
governed by conformable fractional derivatives is also a subject of investigation i.e, see [10].

In recent years, researchers have shown a particular interest in conformable fractional dynamic systems
in an infinite-dimensional setting. For example, noteworthy works include those of Jaiswal and Bahuguna
mentioned in [20], and Rabhi et al. in [31], who provided the solution of the conformable fractional abstract
initial value problem using the results discussed by Abdeljawad [1] regarding the theory of conformable
fractional groups. Along the same lines, Al Sharif et al. have notably contributed by extending the classical
Hille-Yosida theorem to fractional semigroups of operators acting on Hilbert spaces, as exposed in [2]. Das
[12] studied the exact controllability of a class of semilinear systems modeled by conformable fractional
derivatives of order (1 < α ≤ 2).

Recently, Ennouari et al. [16, 17] utilized conformable calculus, specifically the notion of fractional
semigroups, to establish exact and approximate controllability and observability conditions for conformable
linear systems in an infinite-dimensional setting, represented by the following equations:{

ω(α)(t) = Λω(t) + Γu(t)
z(t) = Cω(t) (1)

These conditions encompass both necessary and sufficient criteria. Their work also presented examples
where controllability and observability were not attained in both the exact and approximate senses. Fur-
thermore, recent research by Jneid et al. [21] delved into the partial approximate controllability of fractional
control systems in Hilbert spaces utilizing conformable derivatives. Such findings are not uncommon, as
in classical cases, the studied concepts are not always realized. Hence, exploring alternative methods to
guide the state of systems towards desired states and to reconstruct the state of systems based on observed
states becomes a natural course of action.
In this paper, we delve into the regional observability and controllability of conformable fractional dynam-
ical linear systems within an infinite-dimensional context. Regional controllability entails the capability to
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guide a dynamical system from an initial state to a desired final state within a specified time frame using
admissible controls limited to a subregion of its evolution domain. Initially addressed by El Jai et al. [14],
this notion holds paramount importance in practical applications. For instance, consider the regional con-
trollability scenario in an industrial furnace, where control is tasked with maintaining temperature within
a prescribed subregion of the furnace.

Conversely, regional observability pertains to estimating and reconstructing the initial state of a par-
ticular system over a designated subregion ω within the larger system domain Ω. Introduced by El Jai
et al. in their seminal works [5, 13], this concept emerged to address practical challenges encountered
in real-world applications. One such challenge is exemplified by the energy exchange problem, which
involves determining energy transfer within a plasma striking a flat target oriented perpendicular to the
flow direction, as detailed in [37].

As evident from the cited literature [16, 17], it is increasingly evident that many conformable systems
cannot be fully observed and controlled throughout their evolution. This observation motivates a deeper
exploration of regional controllability and observability for fractional systems utilizing the conformable
derivative. Several researchers have investigated these notions using various fractional derivatives, includ-
ing the Riemann-Liouville, Caputo, and others [9, 15, 18, 19, 38].

The structure of our paper is as follows: Section 2 provides a review of basic definitions and preliminary
results on conformable derivatives. In Section 3, we present necessary and sufficient conditions to establish
the regional controllability of conformable linear systems. Section 4 outlines the necessary and sufficient
conditions for regional observability. To illustrate the effectiveness of our theoretical approach, several
examples are included in Section 5. Finally, Section 6 summarizes the main conclusions of our research.

2. Preliminary concepts

The purpose of this section is to give a brief overview of some concepts and results of the conformable
fractional derivative theory. We begin by defining the conformable fractional derivative

Definition 2.1. Let X be a Banach space. The conformable fractional derivative of a X valued functionϕ : [0,+∞[−→
X of order α ∈]0, 1] , at t > 0 is defined as follows

ϕ(α)(t) = lim
ϵ→0

ϕ(t + ϵt1−α) − ϕ(t)
ϵ

(2)

Furthermore, we say ϕ is α−differentiable at t when the limit exists.

If ϕ is α−differentiable in some interval ]0, a], a > 0 and limt→0+ ϕ(α)(t) exists in X, we define ϕ(α)(0) by
ϕ(α)(0) = limt→0+ ϕ(α)(t).
The following result is established in [31].

Theorem 2.2. If a function ϕ : [0,+∞[−→ X is α−differentiable at t0 > 0, α ∈]0, 1], then ϕ is continuous at t0.

In addition, if ϕ is differentiable, then ϕ(α)(t) = t1−α dϕ
dt

(t).

The α−fractional integral of a function ϕ is given by

Ia
α(ϕ)(t) =

∫ t

a
ϕ(s)dαs =

∫ t

a

ϕ(s)
s1−α ds where a ≥ 0 (3)

In the upcoming discussion, we expound upon the concept of the C0-α-semigroup, an idea originally
introduced by Abdeljawad et al. in their work [1].

Definition 2.3. Let X be a Banach space and α ∈]0, 1]. A family of bounded linear operators (S(t))t≥0 on X, is called
a fractional C0-α-semigroup of operators if

1. S(0) = I,
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2. S(t + s)
1
α = S(t

1
α )S(s

1
α ), t, s ≥ 0

3. limt→0+ S(t)x = x, pour tout x ∈ X.

If α = 1, then the 1−semigroup is just the usual C0−semigroup.

Definition 2.4. Let (S(t))t≥0 be a C0-α-semigroup on a Banach space X. We call the α-infinitesimal generator of
(S(t))t≥0 the operator (A,D(A)) given by

D(A) = {x ∈ X lim
t→0+

S(α)(t)x exists}

Ax = lim
t→0+

S(α)(t)x, x ∈ D(A)

The following theorems are shown in [31]

Theorem 2.5. Let (S(t))t≥0 be a C0-α-semigroup on the Banach space X and let A be its α-infinitesimal generator.
Then

1. For x ∈ X

lim
ϵ→0

∫ t+ϵt1−α

t

1
s1−α S(s)xds = S(t)x for every t > 0.

2. For x ∈ X ,
∫ t

0

1
s1−α S(s)xds ∈ D(A) and

A
(∫ t

0

1
s1−α S(s)xds

)
= S(t)x − x

3. For x ∈ D(A), S(t)x ∈ D(A) and
S(α)(t)x = AS(t)x = S(t)Ax.

4. For x ∈ D(A)

S(t)x − S(s)x =

∫ t

s

1
u1−α S(u)Axdu

=

∫ t

s

1
u1−αAS(u)xdu

Theorem 2.6. Let ((S(t))t≥0 be a C0-α-semigroup on the Banach space X. There exist constants M ≥ 1 and ω ≥ 0
such that

∥S(t)∥ ≤Meωtα .

Corollary 2.7. If (S(t))t≥0 be a C0 − α−semigroup, then for every x ∈ X, t → S(t)x is a continuous function from
[0,+∞[ into X.

Next, We will recall the following space:

Lp
α([0, a]; X) := {ϕ : [0, a]→ X

is measurable function such that
∫ a

0
∥ϕ(s)∥pdαs < ∞}

Under the norm,

∥ϕ∥α =
(∫ a

0
∥ϕ(s)∥pdαs

) 1
p

(4)

Lp
α([0, a]; X) is a Banach space.

The space L2
α([0, a]; X) is a Hilbert space with the inner product

< f , 1 >:=
∫ a

0
f (s)1(s)dαs, f , 1 ∈ L2

α([0, a]; X)
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3. Regional controllability

In this section, we study the regional controllability of conformable linear systems. We start by de-
scribing the conformable linear system and recalling its mild solution. We consider the following abstract
conformable fractional linear system:{

x(α)(t) = Ax(t) + Bu(t) t ∈ I = [0, t f ]
x(0) = x0 ∈ D(A) (5)

Where, x(α) is the conformable derivative of x of order α, A is the α−infinitesimal generator of a C0-α-
semigroup (T(t))t≥0 on the Hilbert space X = L2

α(Ω) ( where Ω be an open bounded set of Rn)
The operator B is defined as a bounded linear operator from the control space U to X, i.e., B ∈ L(U,X),
where U is a Hilbert space representing the control input space.
Under these conditions, the conformable linear system (5) admits a mild solution which is written as

x(t) = T(t)x0 +

∫ t

0
T(tα − sα)

1
αBu(s)dαs (6)

(see [31] )
In this section, our aim is to identify conditions that ensure regional controllability of the system described
by equation (5).

To begin, let’s establish the definition of regional controllability. For this purpose, let ω be a subregion
of Ω, and we’ll define the restriction operator in ω as follows

χω : L2
α(Ω) −→ L2

α(ω) (7)
x −→ x|ω .

The adjoint operator of χω can be expressed as

(χ∗ωx)(z) :=
{

x(z), z ∈ ω;
0, z ∈ Ω \ ω.

Definition 3.1. 1. The system (5) is said to be exactly regionally controllable to xd ∈ L2
α(ω) if there exists a control

u ∈ U such that

χωx(t f ) = xd (8)

2. The system (5) is said to be approximately regionally controllable to xd ∈ L2
α(ω) if, for all ε > 0, there exists a

control u ∈ U such that

∥χωx(t f ) − xd∥L2
α(ω) ≤ ε (9)

3. The system (5) is said to be exactly (approximately) regionally controllable if it is regionally controllable to all
(a dense set of) L2

α(ω).

Let

H : L2
α([0, t f ],Rn) −→ X (10)

to be defined as

Hu =
∫ t

0
T(tα − sα)

1
αBu(s)dαs f or t > 0. (11)

The following result is crucial in the following paragraphs; it is provided in [16]
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Lemma 3.2. The operator H satisfies the following properties:

1. H ∈ L(L2
α([0, t f ]; V),X)

2. (H∗x)(s) = B∗T((tαf − sα)
1
α )x for s ∈ [0, t f ]

3. (HH∗x)(t) =
∫ t f

0 T((tαf − sα)
1
α )BB∗T∗((tαf − sα)

1
α )xdαs

By using the properties of the operator H given in Lemma 3.2, we obtain the following result, which
provides a detailed characterization of regional controllability (exact and approximate) for the conformable
system described by equation (5).

Theorem 3.3. The following properties are equivalent:

1. The system (5) is exactly regionally controllable on ω at time t f .
2. ImχωH = L2

α(ω).
3. kerχω + Im H = X.
4. For every x ∈ L2

α(ω), there exists a δ > 0 such that

∥x∥L2
α(ω) ≤ δ∥H

∗χ∗ωx∥L2
α([0,t f ];Rn). (12)

Proof. It is easy to see that (1)⇔ (2).
(2) ⇒ (3): For any x ∈ L2

α(ω), let x̃ be its extension to L2
α(Ω). Since ImχωH = L2

α(ω), there exist
u ∈ L2

α([0, t f ];Rn) and x1 ∈ kerχω such that x̃ = x1 +Hu.
(3) ⇒ (2): For any x̃ ∈ X, decompose x̃ = x1 + x2 where x1 ∈ kerχω and x2 ∈ Im H. Then there exists

u ∈ L2
α([0, t f ];Rn) such that Hu = x2. Hence, by definition of χω, ImχωH = L2

α(ω).
The following general result [30] can be used to deduce the equivalence between (1) and (4):
Let E, F, and G be reflexive Hilbert spaces, and f ∈ L(E,G), 1 ∈ L(E,G). The following properties are

equivalent:

1. Im( f ) ⊆ Im(1),
2. There exists δ > 0 such that ∥ f ∗x∗∥E∗ ≤ δ∥1∗x∗∥F∗ for all x∗ ∈ G.

By choosing E = G = L2
α(ω), F = L2

α([0, t f ];Rn), f = IdL2
α(ω), and 1 = χωH, we conclude the proof.

Theorem 3.4. The following properties are equivalent:

1. The system (5) is approximately regionally controllable on ω at time t f .

2. ImχωH = L2
α(ω).

3. kerχω + ImH = X
4. The operator χωHH∗χ∗ω is positive definite.

Proof. According to Theorem 3.3, (1) ⇔ (2) ⇔ (3). Finally, we demonstrate that (2) ⇔ (4). Indeed, it is
widely acknowledged that

ImχωH = L2
α(ω)⇔< χωHu, x >= 0, ∀u ∈ L2

α([0, t f ],Rn) implies x = 0.

Let u = H∗χ∗ωx. After that, we notice that

ImχωH = L2
α(ω)⇔< χωHH∗χ∗ωx, x >= 0, implies x = 0, ∀x ∈ L2

α(ω)

In other words, the operator χωHH∗χ∗ω is positive definite, and the proof is complete.

Remark 3.5. the results presented above demonstrate that regional controllability can be ensured under the specified
conditions, thus offering a new method to target specific subsets of the state space in fractional dynamic systems.

In the following section, we will delve into the specific conditions that are both necessary and sufficient
for achieving regional observability. This exploration will emphasize how crucial and practical this concept
is in gaining a deep understanding of intricate systems and effectively steering them.
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4. Regional observability

In this section, we will focus on the regional reconstruction of the initial state of linear systems given in
the following form

{
x(α)(t) = Ax(t) t ∈ I = [0, t f ]; x(0) = x0 ∈ D(A)

y(t) = Cx(t) (13)

where X and Y are Banach spaces, and C : X → Y is a bounded linear operator. In the following, we
assume that x0 is unknown on ω, and therefore the goal of regional observability is to reconstruct x0 in ω
from the output equation. Now, let

K : L2
α(Ω)→ L2

α(I; Y)

defined by K(t) = CT(t) and we have;

K∗y =
∫ t f

0
T∗(s)C∗(s)y(s)dαs

Definition 4.1. 1. The system (13) is said to be exactly regionally observable if

ImχωK∗ = L2
α(ω) (14)

2. The system (13) is said to be approximately regionally observable if

ImχωK∗ = L2
α(ω) (15)

Since A∗, the adjoint operator of A, generates the C0-α-semigroup T∗(t) (where T∗(t) is simply the adjoint of
T(t) for all t ≥ 0) on the Hilbert space X (see [2]). Ennouari et al. demonstrated in [17] that observability of
the systems (13) is equivalent to controllability of the following system:{

x̃(α)(t) = A∗x̃(t) + C∗v(t), 0 ≤ t ≤ t f

x̃(0) = x0 = 0,
(16)

Building upon this equivalence and the results obtained in the previous section, we derive the following
characterizations for the two notions of regional observability defined earlier

Corollary 4.2. The following properties are equivalent:

1. The system (13) is said to be exactly regionally observable on ω at time t f .
2. ImχωK∗ = L2

α(ω).
3. kerχω + Im K∗ = Y.
4. For x ∈ L2

α(ω), if there exists a positive constant δω such that

∥x∥L2
α(ω) ≤ δω∥Kχ

∗

ωx∥L2
α(I;Y) (17)

Corollary 4.3. The following properties are equivalent:

1. The system (13) is said to be approximately regionally observable on ω at time t f .

2. ImχωK∗ = L2
α(ω).

3. kerχω + Im K∗ = Y.
4. The operator χωK∗Kχ∗ω is positive definite.

The conditions established here allow for efficient verification of regional observability, which is crucial for
the design of more precise monitoring and control systems.
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Remark 4.4. The concepts of regional controllability and regional observability in conformable systems are highly
practical for analyzing real systems. This practicality is evident for the following reasons:

• The definitions 3.1-4.1 are general and can be applied even when ω = Ω.

• There exist systems that are not controllable (observable) across the entire domain Ω, but they exhibit con-
trollability (observability) within a subregion ω of Ω. This is justified by the following examples, where we
demonstrated that the system is not approximately controllable (respectively, approximately observable) over
the entire domain. However, we have identified a sub-region where the system is controllable (respectively
observable).

5. Examples

Example 5.1. Let us consider the following one dimension fractional order sub-diffusion system with Bu = 1[a,b]u,
0 ≤ a ≤ b ≤ 1 for 0 < α ≤ 1:

∂αz
∂tα

(x, t) =
∂2z
∂x2 (x, t) + 1[a,b]u(x, t), z(x, 0) = 0,

z(0, t) = z(1, t) = 0, t ∈]0, t f [

This system can be formulated in Z = L2
α([0, 1],R) as follows:

dαz
dtα

= Az(t) + Bu(t), z(0) = z0,

where the operator A is defined by, Az = z” with domain

D(A) = {z ∈ Z | z,
∂z
∂x

are absolutely continuous,
∂2z
∂x2 ,∈ Z}

It is given in [14] that A is the infinitesimal generator of a C0−semigroup (S(t))t≥0 which is defined on Z as,

S(t)z =
∑
n≥1

2e−n2π2t < z, sin(nπ.) >L2
α([0,1]) sin(nπz)

As a consequence A is the α−infinitesimal generator of a α−semigroup given by

T(t) = S(
tα

α
)

The operator H defined in (11) is such that

(H∗z)(t) = B∗T∗(tαf − tα)
1
α z =

∑
n≥1

2e−n2π2(tαf−tα) < z, sin(nπ.) >L2
α([0,1])

∫ b

a
sin(nπy)dy

So, for all a, b such that b − a ∈ Q, the considered system is not approximately controllable (because KerH∗ , {0} see
[16] ).

In the following we are looking for a sub-region [x1, x2] ⊂]0, 1[, for a convenient x1 and x2 so that the system is
approximately controllable in this subregion.
Indeed. Let I := {i/i(b− a) = 2n, n ∈N} , ∅ (since b− a ∈ Q), and note that φi(x) =

√
2 sin(iπx) and λn = −n2π2.

Suppose that (φi)i∈I are the eigenfunctions in KerH∗, so

KerH∗ = span{(φi)i∈I}
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Now, let the subregion [x1, x2] such that x2 = x1 + b − a. We have for all i ∈ I∫ x2

x1

φ2
i (x)dx = x2 − x1

and for i , j, i, j ∈ I ∫ x2

x1

φi(x)φ jdx = 0

• Let i0 ∈ I, so φi0 ∈ ker H∗, and therefore φi0 ∈ L2
α(0, 1) is not approximately controllable.

• Let us show that φi0 ∈ L2
α(ω) is regionally approximately controllable for a subregion ω = [x1, x2]. That is

χωφi0 < ker H∗χ∗ω
Indeed.

H∗χ∗ω(χωφi0 ) =

∞∑
n=1

e−n2π2(tαf−tα) < φi0 , φn) >L2
α(ω)

∫ b

a
φn(y)dy

=
∑
n<I

e−n2π2(tαf−tα) < φi0 , φn) >L2
α(ω)

∫ b

a
φn(y)dy

, 0

Hence, φi0 is regionally approximately controllable on [x1, x2].

This example illustrates the practical application of the theoretical conditions for regional controllability, showing
how they can be implemented in real-world scenarios.

Example 5.2. Consider the following system for 0 < α ≤ 1:

∂αz
∂tα

(x, t) =
∂2z
∂x2 (x, t), ]0, 1[×]0, t f [,

z(0, t) = z(1, t) = 0, t ∈]0, t f [
z(x, 0) = z0(x) unknown in Ω =]0, 1[

Augmented by the output equation
y(t) = z(L, t), L ∈ Ω

and we have
y(t) =

∑
n≥1

e
λntα
α < y0, φn >L2

α(Ω) φn(L) = K(t)y0.

where λn and φn are given in the previous example.

If L ∈ Q, we have
KerK(t) , {0}

So, this system is not approximately observable in Ω ( see [17]).
In the following, we are looking for a subregion ω ⊂ Ω such that the studied systems is regionally observable in this
subregion. Indeed, by following the same calculus in the previous example and if we take

I = {n | nL = 2k, k ∈N∗}

we have for all n0 ∈ I, φn0 is not observable in Ω but is observable on the subregion ω = [
1
4
,

3
4

].
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6. Conclusion

In this study, we delved into the regional controllability and observability of fractional linear systems
using the conformable derivative of order 0 < α < 1. By employing fractional calculus theory and semi-
group theory, we established the necessary and sufficient conditions for exact and approximate regional
controllability and observability of the conformal fractional linear system. Our analysis provided a solid
conceptual framework to assess the feasibility and effectiveness of control and observation in these specific
systems. The regional observability and controllability of conformable infinite-dimensional semilinear sys-
tems is under investigation.
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