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Abstract. In this article, we explore the relationships between the Darboux frame and the Frenet frame
by investigating the invariant sufficient conditions for the isometric image of a Darboux normal curve
when using the Darboux frame instead of the Frenet frame. Additionally, we analyze the deviation in
the component of the position vector of a Darboux normal curve on a smooth surface in relation to the
provided isometry. The results of this study contribute to the improvement and generalization of certain
earlier findings in the literature.

1. Introduction

The notion of the position vector field is a fundamental geometric concept essential for discussing man-
ifold characteristics. It allows us to determine the position of any point on the manifold with a reference
point. When investigating curves, the position vector field can be interpreted as illustrating the trajectory
of a particle as it moves along the curve. The first and second derivatives of the curve provide insights into
the particle’s speed and acceleration along the curve, respectively. To study the properties of space curves
or curves on surfaces, it is essential to understand their behavior when restricting their position vectors to
specific planes associated with the surface. Since each point on a space curve exists in three-dimensional
space, such as Euclidean 3 space, a dynamic orthonormal frame known as the Serret-Frenet frame can be
established. This frame comprises three vectors, namely, the binormal vector, the principal normal vector,
and the unit tangent vector. Each of these vectors corresponds to a specific orthogonal plane—the rectifying
plane, the normal plane, and the osculating plane.

In 2003, Chen [1] introduced the concept of a rectifying curve, defining it as a space curve where its
position vector consistently resides within its rectifying plane. Chen also established specific defining char-
acteristics for such curves. In 2005, Chen and Dillen [2] explored the relationship between rectifying curves,
centrodes, and extremal curves. In [3, 4], the authors examined rectifying curves in three-dimensional
Minkowski space, presenting a description similar to Chen’s work in 2003. In 2008, Ilarslan and Nesovic

2020 Mathematics Subject Classification. 53A04, 53A05, 53A15.
Keywords. Darboux normal curve; isometry; smooth surfaces; normal curvature.
Received: 26 February 2024; Accepted: 09 June 2024
Communicated by Pratulananda Das
* Corresponding author: Absos Ali Shaikh
Email addresses: aask2003@yahoo.co.in, aashaikh@math.buruniv.ac.in (Absos Ali Shaikh), kulljeet83@gmail.com (Kuljeet

Singh), sandeep.greater123@gmail.com (Sandeep Sharma)



A. A. Shaikh et al. / Filomat 38:29 (2024), 10485–10494 10486

[5, 6] investigated the characteristics of osculating and rectifying curves in Euclidean spaces. In 2018,
Deshmukh et al. [7] characterized rectifying curves by analyzing the centrodes of unit-speed curves in
Euclidean space. Shaikh and Ghosh [8, 9, 12, 15] discussed rectifying and osculating curves on smoothly
immersed surfaces within three-dimensional Euclidean space by using the Frenet frame and deriving some
intriguing results. Shaikh et al. [10, 11, 13, 14] investigated the characterizations of normal, osculating, and
rectifying curves under conformal and isometric transformations on smooth surfaces in Euclidean 3-space
with the help of the Frenet frame. Lone [16] studied the geometric invariant properties of normal curves
under conformal transformation. In [11, 17, 18], authors investigated curves by constraining their position
vectors to the osculating, normal, and rectifying planes on a surface, determining how they change under
isometry, homothetic, and conformal transformations between surfaces.

Camci et al. [19] investigated specific surface curves by restricting their position vector within three mu-
tually perpendicular planes on the surface, exploring the existence and properties of such curves. For more
comprehensive details regarding the characterizations of space curves, one can refer to [20, 21, 25, 26, 28]. In
the examination of the geometry of space curves on a continuous surface, researchers frequently encounter
the Frenet frame and the Darboux frame, which manifest at non-umbilic points of a surface immersed in
Euclidean space. The Darboux frame is named after the French mathematician Jean Gaston Darboux. In
[22, 23], the authors delved into the Frenet and Darboux rotation vectors of curves on time-like surfaces,
elucidating the Darboux frame of these curves concerning the Lorentzian properties of the surfaces and the
curves themselves.

When examining the relationship between two surfaces and their transformations, it becomes apparent
that in the case of isometry, both the lengths of curves and the angles between intersecting curves are
preserved. In the case of conformal motion, only the angles between curves remain constant, while the
distances may undergo changes. In [24], the authors demonstrated that isometric mappings are a subset
of conformal mappings where the dilation function equals to one. Recently, several authors [8, 16, 17]
have explored osculating curves, rectifying curves, and normal curves on a smooth surface. These studies
have established sufficient conditions under which a rectifying curve on such a surface remains unchanged
when subjected to isometric transformations and also maintains its conformal invariance when exposed
to conformal transformations. These conclusions have been derived using the concept of the Serret-Frenet
frame.

However, when examining a space curve on a flat surface immersed in Euclidean 3-space, we naturally
come across to another dynamic orthonormal frame known as the Darboux frame, denoted as {T1,P1,U1}.
In this frame, T1 represents the unit tangent vector at a specific point on the curve, U1 signifies the unit
normal to the surface, and P1 is the result of taking the cross product of T1 and U1. In [19, 27], authors
provided specific descriptions regarding the position vector of a unit-speed curve on a smooth surface
immersed in three-dimensional Euclidean space. They established that this position vector consistently
lies within three distinct planes defined by {T1,U1}, {T1,P1}, and {P1,U1}, respectively, characterizing their
findings by employing the Darboux frame.

The motivation for the study and its findings are quite interesting because the research integrates the
characteristics of Darboux normal curves on smoothly immersed surfaces under isometry between the
surfaces. The primary objective of this study is to derive sufficient conditions for the isometric image
of Darboux normal curves. By employing these conditions, we explore the components of the position
vector of Darboux normal curves along any tangent vector, principal normal, and binormal to the surface.
Furthermore, we establish the invariant conditions for these components under isometric transformation.

The work presented in this paper is organized into four sections. Sections 1 and 2 provide an introduction
and cover the preliminaries necessary for a basic understanding of the topic, establishing relationships
between the Frenet frame and Darboux frame in Euclidean space. Section 3 deals with the basics of the
Darboux normal curve and obtains the invariant sufficient conditions for Darboux normal curves on smooth
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surfaces under isometry. Furthermore, we analyze the deviations of the tangential and normal components
for the position vector of a Darboux osculating curve in this section. Section 4 concludes the paper and
outlines potential future avenues for this study.

2. Preliminaries

In this section, we introduced some fundamental concepts for space curves that are essential for this
study. In this paper, we consider E3 as the 3-dimensional Euclidean space, where ∥.∥ denotes the Euclidean
norm, and < ., . > denotes the Euclidean inner product.

Suppose a unit-speed curve δ = δ(r) in E3, parameterized by the arc length r. Let T1, N1, and B1 represent
the vector fields corresponding to the tangent, principal normal, and binormal directions along the curve
δ(r). The Frenet formula can then be expressed as followsT

′

1
N′1
B′1

 =
 0 κ 0
−κ 0 τ
0 −τ 0


T1
N1
B1

 .
In this context, we refer to the quantities κ(r), greater than zero, and τ(r) as the curvature and torsion of the
curve, respectively. The prime notation indicates differentiation with respect to the arc length parameter r.
Let {T1,P1,U1} be the Darboux frame of the curve δ(r), where T1 is the tangent vector of δ, U1 is the unit
normal to the surface Q, and P1 = U1 × T1. The connection between the Frenet and Darboux frames can be
expressed as followsT1

P1
U1

 =
1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ


T1
N1
B1

 .
In this context, there exists a unique angle ϕ such that rotating within the plane defined by N1 and B1 results
in the pair P1 and U1. Consequently, the Darboux formula for δ(r) can be expressed as followsT

′

1
P′1
U′1

 =
 0 κ1 κn
−κ1 0 τ1
−κn −τ1 0


T1
P1
U1

 ,
where κ1, κn, and τ1 represent the geodesic curvature, normal curvature, and geodesic torsion, respectively.

Let δ : (µ, ν) → Q be a unit-speed parametrized curve on the coordinate chart σ : V → Q of the smooth
surface Q, where (µ, ν) ⊂ R. This implies that the curve δ(r) lies within the region covered by the surface
patch σ. Thus, we can express it as follows

δ(r) = σ(x(r), y(r)). (1)

Now, differentiating equation (1) with respect to the parameter r, we obtain

T1(r) = δ′(r) = σxx′ + σyy′, (2)

which again differentiating with respect to the parameter r entails

T′1(r) = σxx′′ + σyy′′ + x′2σxx + 2x′y′σxy + y′2σyy. (3)

Since κ(r) is the curvature of δ(r) and U1 represents the normal vector to the surface Q, then the principal
normal vector N1(r) at the point δ(r) is defined by the following equation

N1(r) =
1
κ(r)

(x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy). (4)
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The binormal vector B1(r) can be written as follows

B1(r) = T1(r) ×N1(r).

On substituting the values of T1(r) and N1(r) from equations (2) and (4),we obtain the following

B1(r) =
1
κ(r)

[(σxx′ + σyy′) × (x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy)],

=
1
κ(r)

[(y′′x′ − y′x′′)U1 + x′3σx × σxx + 2x′2y′σx × σxy + x′y′2σx × σyy

+x′2y′σy × σxx + 2x′y′2σy × σxy + y′3σy × σyy]. (5)

Now, the normal U1 to the surface Q is defined as follows

U1(r) =
σx × σy

∥σx × σy∥
=
σx × σy
√

EG − F2
, (6)

where E = σx · σx, F = σx · σy, and G = σy · σy are the magnitudes of the first fundamental form. As we
know that P1(r) = U1(r) × T1(r), we can employ equations (2) and (6), followed by simplification, to derive

P1(r) =
1

√

EG − F2
(Ex′σy + F(y′σy − x′σx) − Gy′σx). (7)

3. Darboux normal curve on smooth surface

In this section, we explore Darboux normal curves on a smooth surface and establish a set of conditions
that guarantee the invariance of Darboux normal curves under isometries.

Definition 3.1. Let Q and Q̃ be smooth surfaces in E3. Then a diffeomorphism J from Q to Q̃ represents an isometry
if it preserves the lengths of curves, i.e., mapping curves of the same length from Q to Q̃.

Definition 3.2. A curve δ(r) on a smooth surface Q such that its position vector lies within the {U1,P1}- Darboux
normal plane is referred to as a Darboux normal curve.

Hence, the equation representing a Darboux normal curve is expressed as follows

δ(r) = λ1(r)U1(r) + λ2(r)P1(r), (8)

for some smooth function λ1(r) and λ2(r).
By virtue of (6) and (7), (8) yields

δ(r) = λ1(r)
(σx × σy)
√

EG − F2
+ λ2(r)

1
√

EG − F2

{
Ex′σy + F(y′σy − x′σx) − Gy′σx

}
. (9)

Next, we examine the representation of the derivative map of δ(r), denoted as J∗(δ(r)), as the product of a
3 × 3 matrix J∗ and a 3 × 1 matrix δ(r).

Theorem 3.3. Let Q and Q̃ be smooth surfaces and let J : Q→ Q̃ be an isometry. Suppose δ(r) is a Darboux normal
curve on the surface Q. Then δ̃(r) is a Darboux normal curve on Q̃ if

δ̃(r) = J∗(δ(r)).
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Proof. Let J be an isometry between Q and Q̃. Then J∗ : TpQ→ TJ(p)Q̃ is such that J∗σx = σ̃x and J∗σy = σ̃y.
Since the surfaces Q and Q̃ are isometric, therefore Ẽ = E, F̃ = F and G̃ = G.
Now from equation (9) of Darboux normal curve, we have

δ̃(r) = J∗(δ(r))

= λ1(r)
(J∗σx × J∗σy)
∥J∗σx × J∗σy∥

+
λ2(r)

∥J∗σx × J∗σy∥

{
Ex′ J∗σy + F(y′ J∗σy − x′ J∗σx) − Gy′ J∗σx

}
,

= λ1(r)
(σ̃x × σ̃y)
∥σ̃x × σ̃y∥

+
λ2(r)
∥σ̃x × σ̃y∥

{
Ex′σ̃y + F(y′σ̃y − x′σ̃x) − Gy′σ̃x

}
,

= λ1(r)
(σ̃x × σ̃y)
√

ẼG̃ − F̃2
+

λ2(r)
√

ẼG̃ − F̃2

{
Ex′σ̃y + F(y′σ̃y − x′σ̃x) − Gy′σ̃x

}
,

= λ̃1(r)Ũ1(r) + λ̃2(r)P̃1(r),

where λ̃1(r) = λ1(r) and λ̃2(r) = λ2(r) are smooth functions. Thus δ̃(r) is the linear combination of Ũ1(r)
and P̃1(r). This proves that δ̃(r) is a Darboux normal curve on the surface Q̃.

Theorem 3.4. Let Q and Q̃ be smooth surfaces and let J : Q→ Q̃ be an isometry. Suppose δ(r) and δ̃(r) are Darboux
normal curves on surfaces Q and Q̃ respectively. Then under the isometry, the component of the position vector of the
curve δ(r) in the direction of any tangent vector T(r) = aσx + bσy, where a and b are real numbers, to the surface Q
is invariant, i.e.,

δ̃(r) · (T̃(r) = (aσ̃x + bσ̃y)) = δ(r) · (T(r) = (aσx + bσy)).

Proof. Let T(r) = aσx + bσy be an arbitrary tangent vector to the surface Q at the point δ(r), where a and b are
real numbers. Then we can write

δ(r) · T(r) = (λ1(r)
(σx × σy)
√

EG − F2
+

λ2(r)
√

EG − F2

{
Ex′σy + F(y′σy − x′σx) − Gy′σx

}
) · (aσx + bσy),

⇒ δ(r) · T(r) =
λ2(r)
√

EG − F2

{
Ex′σy + F(y′σy − x′σx) − Gy′σx

}
· (aσx + bσy),

⇒ δ(r) · T(r) =
λ2(r)
√

EG − F2

{
bx′EG + ay′F2

− bx′F2
− ay′EG

}
,

⇒ δ(r) · T(r) =
λ2(r)
√

EG − F2
(EG − F2)(x′b − ay′),

⇒ δ(r) · T(r) = λ2(r)(
√

EG − F2)(x′b − ay′). (10)

Similarly, we get

δ̃(r) · T̃(r) = λ̃2(r)(
√

EG − F2)(x′b − ay′). (11)

In view of (10) and (11),we get

δ̃(r) · T̃(r) − δ(r) · T(r) = (λ̃2(r) − λ2(r))(
√

EG − F2)(x′b − ay′).

Since δ(r) and δ̃(r) are respectively Darboux normal curves on the surface Q and Q̃, we can write λ̃2(r) =
λ2(r). Therefore, δ̃(r) · T̃(r) = δ(r) · T(r).

Theorem 3.5. Let J : Q→ Q̃ be an isometry between smooth surfaces Q and Q̃. If δ(r) and δ̃(r) are Darboux normal
curves on the surfaces Q and Q̃ respectively, then under the isometry, the component of the position vector of the
curves δ(r) and δ̃(r) along the principal normals N1(r) and Ñ1(r) to the curves, the following relation holds:

δ̃(r) · Ñ1(r) − δ(r) ·N1(r) = λ1(r)
{
κ̃n
κ̃(r) −

κn
κ(r)

}
+ λ2(r)ζ(E,F,G,Ex,Ey,Fx,Fy,Gx,Gy)

{
1
κ̃(r) −

1
κ(r)

}
,
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where ζ(E,F,G,Ex,Ey,Fx,Fy,Gx,Gy) are defined by equation (18).

Proof. Let J be an isometric transformation between the surfaces Q and Q̃, and also let δ be a Darboux
normal curve on the surface Q. Then, under the isometry between Q and Q̃, we have

Ẽ = E, F̃ = F, and G̃ = G. (12)

Since E = (σx · σx), F = (σx · σy) and G = (σy · σy), upon differentiation with respect to x and y, we obtain

Ex = (σx · σx)x = 2σxx · σx

⇒ σxx · σx =
Ex

2
. (13)

Likewise, we can determine

σxx · σy = Fx −
Ey

2
, σxy · σx =

Ey

2
, σxy · σy =

Gx

2
,

σyy · σx = Fy −
Gx

2
, σyy · σy =

Gy

2
.

 (14)

Now, from equation (12),we can write

Ẽx = Ex, Ẽy = Ey, F̃x = Fx, F̃y = Fy, G̃x = Gx, G̃y = Gy. (15)

The component of δ(r) in the direction normal to the curve yields

δ(r) ·N1(r) = {λ1(r)
(σx × σy)
√

EG − F2
+

λ2(r)
√

EG − F2
{Ex′σy + F(y′σy − x′σx) − Gy′σx}}

{
1
κ(r)

(x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy)},

⇒ δ(r) ·N1(r) =
λ1(r)

κ(r)
√

EG − F2
{x′′(σx × σy) · σx + y′′(σx × σy) · σy + x′2(σx × σy) · σxx

+2x′y′(σx × σy) · σxy + y′2(σx × σy) · σyy} +
λ1(r)

κ(r)
√

EG − F2
{Ex′σy

+F(y′σy − x′σx) − Gy′σx} · {x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy}. (16)

After simplification and employing equations (13) and (14),we obtain

δ(r) ·N1(r) =
λ1(r)

κ(r)
√

EG − F2
{x′2L + 2x′y′M + y′2N} +

λ2(r)

κ(r)
√

EG − F2
{(y′′x′ − y′x′′)

(EG − F2) + x′3{E(Fx −
Ey

2
) − F

Ex

2
} + 2x′2y′{E

Gx

2
− F

Ey

2
} + x′y′2{E

Gy

2

−F(Fy −
Gx

2
)} + x′2y′{F(Fx −

Ey

2
) − G

Ex

2
} + 2x′y′2{F

Gx

2
− G

Ey

2
}

+y′3{F
Gy

2
− G(Fy −

Gx

2
)}},

⇒ δ(r) ·N1(r) =
λ1(r)
κ(r)
κn +

λ2(r)
κ(r)
ζ(E,F,G,Ex,Ey,Fx,Fy,Gx,Gy), (17)



A. A. Shaikh et al. / Filomat 38:29 (2024), 10485–10494 10491

where

ζ(E,F,G,Ex,Ey,Fx,Fy,Gx,Gy) =
1

√

EG − F2
{(y′′x′ − y′x′′)(EG − F2) + x′3{E(Fx −

Ey

2
) − F

Ex

2
}

+2x′2y′{E
Gx

2
− F

Ey

2
} + x′y′2{E

Gy

2
− F(Fy −

Gx

2
)}

+x′2y′{F(Fx −
Ey

2
) − G

Ex

2
} + 2x′y′2{F

Gx

2
− G

Ey

2
}

+y′3{F
Gy

2
− G(Fy −

Gx

2
)}}. (18)

Similarly, we can express

δ̃(r) · Ñ1(r) =
λ̃1(r)
κ̃(r)
κ̃n +

λ̃2(r)
κ̃(r)
ζ(E,F,G,Ex,Ey,Fx,Fy,Gx,Gy). (19)

Since δ(r) and δ̃(r) are Darboux normal curves on the surfaces Q and Q̃ respectively, we can express
λ̃1(r) = λ1(r) and λ̃2(r) = λ2(r).

By subtracting equation (17) from (19),we obtain

δ̃(r) · Ñ1(r) − δ(r) ·N1(r) = λ1(r){
κ̃n

κ̃(r)
−
κn

κ(r)
} + λ2(r){

1
κ̃(r)
−

1
κ(r)
}ζ(E,F,G,Ex,Ey,Fx,Fy,Gx,Gy).

This proves the result.

Corollary 3.6. Let Q and Q̃ be two smooth surfaces and J : Q → Q̃ be an isometry. Suppose δ(r) and δ̃(r) are
Darboux normal curves on the surfaces Q and Q̃ respectively. Then under the isometry, the component of the position
vector of the curve δ(r) in the direction of the normal vector to the curve at δ(r) is invariant, if κ̃n

κ̃(r) =
κn
κ(r) and 1

κ̃(r) =
1
κ(r) ,

i.e., if

δ̃(r) · Ñ1(r) = δ(r) ·N1(r), i.e., if κ̃n
κ̃(r) =

κn
κ(r) and 1

κ̃(r) =
1
κ(r) holds.

Theorem 3.7. Let Q and Q̃ be two smooth surfaces and J : Q → Q̃ be an isometry. If δ(r) and δ̃(r) are Darboux
normal curves on the surfaces Q and Q̃ respectively. Then under the isometry, for the component of the position vector
of the curve δ(r) and δ̃(r) along the binormal vector B1(r) and B̃1(r), the following relation holds

δ̃(r) · B̃1(r) − δ(r) · B1(r) = λ1(r)η(E,F,G)
{

1
κ̃(r) −

1
κ(r)

}
+ λ2(r)

{
κ̃n
κ̃(r) −

κn
κ(r)

}
,

where η(E,F,G) =
√

EG − F2
{
(y′′x′ − y′x′′) + x′3Γ2

11 + 2x′2y′Γ2
12 + x′y′2Γ2

22 − x′2y′Γ1
11 + 2x′y′2Γ1

12 − y′3Γ1
22

}
.

Proof. Let J : Q → Q̃ be an isometry between the smooth surfaces Q and Q̃ and δ(r) be Darboux normal
curve on the surface Q. From (5) and (9), it follows that

δ(r) · B1(r) = λ1(r)
(σx × σy)
√

EG − F2
· B1(r) +

λ2(r)
√

EG − F2

{
Ex′σy + F(y′σy − x′σx) − Gy′σx

}
· B1(r).

=
λ1(r)

κ(r)
√

EG − F2
{(y′′x′ − y′x′′)U1 · (σx × σy) + x′3(σx × σy) · (σx × σxx)

+2x′2y′(σx × σy) · (σx × σxy) + x′y′2(σx × σy) · (σx × σyy) + x′2y′(σx × σy) · (σy × σxx)

+2x′y′2(σx × σy) · (σy × σxy) + y′3(σx × σy)(σy × σyy)} +
λ2(r)

κ(r)
√

EG − F2
{Ex′σy

+F(y′σy − x′σx) − Gy′σx} · {(y′′x′ − y′x′′)U1 + x′3(σx × σxx) + 2x′2y′(σx × σxy)

+x′y′2(σx × σyy) + x′2y′(σy × σxx) + 2x′y′2(σy × σxy) + y′3(σy × σyy)}. (20)
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After simplifying and applying equations (16) and (17),we obtain

δ(r) · B1(r) =
λ1(r)

κ(r)
√

EG − F2
{(y′′x′ − y′x′′)(EG − F2) + x′3{E(Fx −

Ey

2
) − F

Ex

2
}

+2x′2y′{E
Gx

2
− F

Ey

2
} + x′y′2{E

Gy

2
− F(Fy −

Gx

2
)} + x′2y′{F(Fx −

Ey

2
) − G

Ex

2
}

+2x′y′2{F
Gx

2
− G

Ey

2
} + y′3{F

Gy

2
− G(Fy −

Gx

2
)}} +

λ2(r)

κ(r)
√

EG − F2
{(Ex′4

+2Fx′3y′ + Gx′2y′2)σx · (σx × σxx) + (2Ex′3y′ + 4Fx′2y′2 + 2Gx′y′3)σx · (σx × σxy)

+(Ex′2y′2 + 2Fx′y′3 + Gy′4)σy · (σx × σyy)}.

⇒ δ(r) · B1(r) =
λ1(r)
κ(r)

√

EG − F2{(y′′x′ − y′x′′) + x′3Γ2
11 + 2x′2y′Γ2

12 + x′y′2Γ2
22 − x′2y′Γ1

11

+2x′y′2Γ1
12 − y′3Γ1

22} +
λ1(r)
κ(r)
{x′2σxx ·U1 + 2x′y′σxy ·U1 + y′2σyy ·U1}, (21)

where Γw
uv (where u, v,w = 1, 2) represents the Christoffel symbols of the second kind, and are defined as

follows

Γ1
11 =

1
2H2 {GEx + F[Ey − 2Fx]}, Γ2

11 =
1

2H2 {E[2Fx − Ey] − FEy},
Γ2

22 =
1

2H2 {EGy + F[Gy − 2Fy]}, Γ1
22 =

1
2H2 {G[2Fy − Gx] − FGy},

Γ2
12 =

1
2H2 {EGx − FEy} = Γ

2
21, Γ1

21 =
1

2H2 {GEy − FGx} = Γ
1
12,

where H2 = (EG − F2). Now equation (21), implies that

δ(r) · B1(r) =
λ1(r)
κ(r)

√

EG − F2{(y′′x′ − y′x′′) + x′3Γ2
11 + 2x′2y′Γ2

12 + x′y′2Γ2
22 − x′2y′Γ1

11

+2x′y′2Γ1
12 − y′3Γ1

22} +
λ1(r)
κ(r)
{x′2L + 2x′y′M + y′2N},

⇒ δ(r) · B1(r) =
λ1(r)
κ(r)

√

EG − F2{(y′′x′ − y′x′′) + x′3Γ2
11 + 2x′2y′Γ2

12 + x′y′2Γ2
22 − x′2y′Γ1

11

+2x′y′2Γ1
12 − y′3Γ1

22} +
λ1(r)
κ(r)
κn. (22)

Similarly, we can obtain

δ̃(r) · B̃1(r) =
λ̃1(r)
κ̃(r)

√

EG − F2{(y′′x′ − y′x′′) + x′3Γ̃2
11 + 2x′2y′Γ̃2

12 + x′y′2Γ̃2
22 − x′2y′Γ̃1

11

+2x′y′2Γ̃1
12 − y′3Γ̃1

22} +
λ̃2(r)
κ̃(r)
κ̃n. (23)

Since δ(r) and δ̃(r) are Darboux normal curves on the surfaces Q and Q̃ respectively, and J is an isometry
between the smooth surfaces Q and Q̃, we have λ̃1(r) = λ1(r), λ̃2(r) = λ2(r) and Γ̃w

uv = Γ
w
uv, for u, v,w = {1, 2}.

Then equation (23) becomes

δ̃(r) · B̃1(r) =
λ1(r)
κ̃(r)

√

EG − F2{(y′′x′ − y′x′′) + x′3Γ2
11 + 2x′2y′Γ2

12 + x′y′2Γ2
22 − x′2y′Γ1

11

+2x′y′2Γ1
12 − y′3Γ1

22} +
λ2(r)
κ̃(r)
κ̃n. (24)
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The difference of (22) and (24) entails

δ̃(r) · B̃1(r) − δ(r) · B1(r) = λ1(r)
√

EG − F2{(y′′x′ − y′x′′) + x′3Γ2
11 + 2x′2y′Γ2

12 + x′y′2Γ2
22

−x′2y′Γ1
11 + 2x′y′2Γ1

12 − y′3Γ1
22}{

1
κ̃(r)
−

1
κ(r)
} + λ1(r){

κ̃n

κ̃(r)
−
κn

κ(r)
},

⇒ δ̃(r) · B̃1(r) − δ(r) · B1(r) = λ1(r)η(E,F,G){
1
κ̃(r)
−

1
κ(r)
} + λ2(r){

κ̃n

κ̃(r)
−
κn

κ(r)
},

where

η(E,F,G) =
√

EG − F2{(y′′x′ − y′x′′) + x′3Γ2
11 + 2x′2y′Γ2

12 + x′y′2Γ2
22 − x′2y′Γ1

11 + 2x′y′2Γ1
12 − y′3Γ1

22}.

This proves the result.

Corollary 3.8. Let Q and Q̃ be two smooth surfaces and J : Q → Q̃ be an isometry between them. Suppose δ(r)
and δ̃(r) are Darboux normal curves on the surfaces Q and Q̃ respectively. Then under the isometric transformation,
the component of the position vector of the curve δ(r) along the binormal vector B1(r) to the curve at δ(r) remains
unchanged, if κ̃(r) = κ(r) and κ̃n

κ̃(r) =
κn
κ(r) holds.

4. Conclusion

In this study, we examined the matrix representation of the Frenet frame and Darboux frame, establish-
ing the relationship between them. Additionally, we explored the invariant sufficient conditions for the
isometric image of Darboux normal curves on smooth surfaces immersed in Euclidean space. Finally, we
computed the deviations along the normal and tangential components of the position vector of the Darboux
normal curve under surface isometry and obtained the conditions under which these components remain
invariant during isometric transformation.

For further research, one could introduce the concepts of Darboux rectifying and Darboux osculating
curves under conformal and isometric transformations on smooth surfaces in Euclidean 3-space, using the
Darboux frame. Additionally, these findings could be extended to Euclidean 4-space by incorporating the
concepts of both the Darboux frame and the Frenet frame.
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