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C1 Hermite interpolations with RPH curves
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Abstract. In this paper, we study C1 Hermite interpolation with a spatial rational Pythagorean hodograph
(RPH) curve for a regular C1 Hermite data set. In particular, we completely classify simple PH Möbius
cubics and prove that there exist two scaled Enneper surfaces as a PH-preserving mapping satisfying the
given C1 Hermite data set. Also, we give the algorithm to construct RPH curves on the Enneper surface by
using PH Möbius cubics and scaled PH-preserving mappings. Finally, we calculate arc-length and bending
energy of these RPH curves to choice the best RPH curves on the Enneper surface, and give some examples
for RPH curves.

1. Introduction

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) system mostly respond to
Non-Uniform Rational B-Spline (NURBS) representations of curves and surfaces, given by polynomial or
rational parameterizations. A natural question is to have offset curves and surfaces represented by rational
parameterizations. However, the rationality of these both curves and surfaces is not generally preserved.
To study special classes of curves and surfaces with rational offsets, Farouki and Sakkalis [6] introduced
firstly a Pythagorean Hodograph (PH) curve, which is the planar polynomial curve with a polynomial
speed function. The most significant properties of these curves offer a polynomial arc length, a rational
curvature and a rational offset curve.

Later, the concept of polynomial planar PH curves is extended to spatial polynomial PH curves [4, 9], to
planar rational PH curves [16], and to spatial rational PH curves [8, 14] in Euclidean space. Such PH curves
are used in mechanical engineering and interpolation of discrete data control of motion along curved paths,
and the related results for practical applications of PH curves are shown in [1, 3, 7, 13, 16–18]. Also, PH
curves have been generalized to participate in the medial axis transform defined by the set of the centers of
the maximal inscribed disks, becoming Minkowski PH (MPH) curves in the three dimensional Minkowski
space [5, 15]. For the results of MPH curves, we refer to [2, 10, 11]

The paper is arranged as follows: In Section 2, after briefly reviewing some fundamental definitions of
a PH curve and a C1 Hermite data set, we clarify the existence of simple PH Möbius cubics. In Section 3, we
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show that a parametrization of the Enneper surface is PH-preserving, and also there are two scaled Enneper
surfaces satisfying any regular C1 Hermite data set. Also, we construct spatial RPH curves satisfying the C1

Hermite data set on the Enneper surfaces. Moreover, we introduce how to compute the bending energy for
curves on the surface in order to choose better curves as well as we analyze arc length and bending energy
through examples.

2. PH Möbius cubics

Let Rn be the n-dimensional Euclidean space and let R(t) be the set of rational functions with real
coefficients. We express a rational curve inRn as a mapping r : R→ Rn, via t 7→ (x1(t), x2(t), . . . , xn(t)) , xi(t) ∈
R(t) (1 ≤ i ≤ n).

Definition 2.1. A rational curve r(t) = (x1(t), x2(t), . . . , xn(t)) is said to be a rational Pythagorean-hodograph
(RPH) curve if its velocity vector or hodograph r′(t) = (x′1(t), . . . x′n(t)) satisfies the Pythagorean condition;

∃ σ(t) ∈ R(t) such that ∥r′(t)∥2 = x′1(t)2 + x′2(t)2 + · · · + x′n(t)2 = σ(t)2.

Now, we introduce PH Möbius cubics as planar RPH curves satisfying a C1 Hermite data set.
Let P0 and P1 be the initial and final points in R2(or C) to be interpolated with P0 , P1. Let V0 and V1

be the initial vector at P0 and the final vector at P1, respectively. In this case, a set H2
C1 = {P0, P1, V0, V1}

is called a C1 Hermite data set. In particular, by an appropriate rigid motion we can arrange as P0 = 0 and
P1 = 1, a set {0, 1,V0,V1} is called a standard C1 Hermite date set and denoted by H̃2

C1 .

Consider a planar PH curve r(t) (0 ≤ t ≤ 1) and a Möbius transformation Φ(z) = az+b
cz+d in the extended

complex plane C∞ = C ∪ {∞} for some complex numbers a, b, c, d with ad − bc , 0. We known that (Φ ◦ r)(t)
is a RPH curve [12]. If r(t) is a PH cubic then (Φ◦ r)(t) is called a PH Möbius cubic. Suppose that a RPH curve
(Φ ◦ r)(t) satisfies the standard C1 Hermite data set H̃2

C1 . Then one yields

(Φ ◦ r)(0) = 0,
∫ 1

0
(Φ ◦ r)′(t) dt = 1,

(Φ ◦ r)′(0) = V0, (Φ ◦ r)′(1) = V1.

(2.1)

From these conditions, we have the following theorem:

Theorem 2.2. For a given standard C1 Hermite data set H̃2
C1 = {0, 1,V0,V1}with V0V1 < R+, there are PH Möbius

cubics satisfying the set H̃2
C1 .

Proof. Consider a Möbius transformationΦ(z) = αz
(α−1)z+1 and a PH cubic r(t) = k(t− c)3 +d, where α, k ∈ C∗,

c ∈ C/R, d ∈ C. From (2.1), the PH cubic r(t) satisfies

r(0) = 0,
∫ 1

0
r′(t) dt = 1, r′(0) =

1
α

V0, r′(1) = αV1, (2.2)

which imply

r(1) − r(0) = k(1 − 3c + 3c2) = 1,

r′(0) = 3kc2 =
V0

α
,

r′(1) = 3k(1 − c)2 = αV1.

(2.3)

Eliminating α and k in (2.3), we have

V0V1(3c2
− 3c + 1)2 = 9(c2

− c)2. (2.4)
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Let A = 3c2
− 3c. Then equation (2.4) can be rewritten as

A =
1

−1 ± ω
, (2.5)

where ω =
√

1
V0V1

. Solving the quadratic equation (2.5), we obtain

c =
1
2

1 ±

√
1 +

4
3 (−1 ± ω)

 . (2.6)

Since V0V1 < R+, c ∈ C/R. Consequently, we can find four distinct PH Möbius cubic interpolants satisfying
the standard C1 Hermite data set H̃2

C1 according to the complex number c. Thus, this completes the proof.

Note that if V0V1 ∈ R+, we need additional explanation about the possibility of PH Möbius cubic
interpolants according to c in (2.6), and we give the classification for PH Möbius cubics in the following
theorem.

Theorem 2.3. If V0V1 ∈ R+, we can classify all the possible PH Möbius cubic interpolants as follows:

(1) If V0V1 > 9, then 1 + 4
3(−1+ω) < 0 and 1 + 4

3(−1−ω) < 0. Therefore there exist four distinct PH Möbius cubic
interpolants.

(2) If 1 < V0V1 ≤ 9, then 1+ 4
3(−1+ω) < 0 and 1+ 4

3(−1−ω) ≥ 0. Therefore there exist two distinct PH Möbius cubic
interpolants.

(3) If 0 < V0V1 ≤ 1 and c ∈ R, there exist no any PH Möbius cubic interpolants.

Furthermore, since a Möbius transformation is a one-to-one correspondence on the extended complex
plane C∞ = C ∪ {∞}, we can determine whether the interpolate of a PH Möbius cubic is a loop as the
following lemma.

Lemma 2.4. Let r(t) =
∫ t

0 k(τ − c)2dτ + r(0) be a PH cubic. Then r(t) has a loop if and only if c ∈ Ω1 ∪ Ω2,
where

Ω1 = {z ∈ C | 0 ≤ Re(z) −
√

3 Im(z) < Re(z) +
√

3 Im(z) ≤ 1}

and
Ω2 = {z ∈ C | 0 ≤ Re(z) +

√

3 Im(z) < Re(z) −
√

3 Im(z) ≤ 1}

shown in Figure 1(a).

In Theorem 2.2, let A(z) = 3z2
− 3z. Then we have A(Ω1) = A(Ω2). Since −1+ω and −1−ω are mutually

symmetric at the point −1 + 0 i, one of 1
−1+ω and 1

−1−ω belongs to the circle D = {z ∈ C : |z| = 1} and the other

is not in D. Also, in (2.6), letting υ = 1
2

√
1 + 4

3(−1±ω) , c = 1
2 + υ and c = 1

2 − υ are symmetric each other at

the point 1
2 + 0 i. On Ω1 and Ω2, 1

2 + υ and 1
2 − υ are thus all simple curves or all loops (see Figure 1.(b)).

Consequently, we obtain the following theorem.

Theorem 2.5. For a given standard C1 Hermite data set H̃2
C1 = {0, 1,V0,V1}, the following statements are hold for

PH Möbius cubics:

(1) If V0V1 ∈ C /{x ∈ R : 0 ≤ x < 9}, there are at least two simple PH Möbius cubic interpolants.

(2) If 1 < V0V1 ≤ 9, two interpolants are all simple curves or all loops.

Remark 2.6. For a given standard C1 Hermite data set H̃2
C1 = {0, 1,V0,V1} with V0V1 < {x ∈ R : 0 ≤ x ≤ 9}, there

exist simple PH Möbius cubic interpolants satisfying the set H̃2
C1 .
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(a) (b)

Figure 1. (a) c belongs to Ω1 ∪Ω2 if and only if a PH cubic r(t) =
∫ t

0 k(τ − c)2dτ + r(0) has a loop.

(b) c ∈ A(Ω1) if and only if a PH Möbius cubic has a loop

3. RPH curves on Enneper surfaces

In this section, we describe a PH preserving mapping on Enneper surfaces and construct a RPH curve
from a C1 Hermite date set.

Definition 3.1. A mapping S is called a PH preserving mapping if for any RPH-curve r(t), S(r(t)) is a RPH curve.
In particular, a mapping S(u, v) = (x(u, v), y(u, v), z(u, v)) is called a scaled PH preserving mapping if, for any RPH
curve r(t) = (u(t), v(t)), there is a rational function P(u, v) such that

∥ α′ (t) ∥2= P(u, v)2
(
u′(t)2 + v′(t)2

)
,

where α (t) = S(r(t)).

Lemma 3.2. ([9]) Let S(u, v) = (x(u, v), y(u, v), z(u, v)) be a mapping. Then S is scaled PH preserving if and only if

∥ Su(u, v) ∥2=∥ Sv(u, v) ∥2= P(u, v)2,

< Su(u, v),Sv(u, v) >= 0

for some rational function P(u, v).

Now, we explain that an Enneper surface is one of scaled PH preserving mappings from the following
example :

Example 3.3. Let E : R2
→ R3 be an Enneper surface, given by

E(u, v) =
(

u3

3
− uv2 + u,

v3

3
− vu2 + v, 2uv

)
.

Since ∥Eu∥
2 = ∥Ev∥

2 = (u2 + v2 + 1)2 and ⟨Eu,Ev⟩ = 0, the Enneper surface E(u, v) is a scaled PH preserving
mapping (see Figure 2).

Definition 3.4. A C1 Hermite data set H3
C1 = {P0, P1,V0, V1}, consisting of two end-points P0 and P1, and

two velocities V0 and V1 at those end-points in R3, is said to be regular if P1 − P0, V0 and V1 are linearly
independent. In particular, a regular C1 Hermite data set

{(0, 0, 0), (1, 0, 0), V0 = (v01, v02, 0), V1 = (v11, v12, v13)} (3.1)

is called the standard C1 Hermite data set, where v02 , 0 and v13 , 0, denoted by H̃3
C1 .
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(a) (b)

Figure 2. (a) r(t) = (t2, t − 1
3 t3) is a planar PH cubic.

(b) α(t) = E(r(t)) is the PH curve on an Enneper surface.

Now, we describe a relation between a C1 Hermite data set in R2 and a C1 Hermite data set in R3 by using
the Enneper surface E.
Consider a RPH curve β(t) = (u(t), v(t)). Since the Enneper surface E is a scaled PH preserveing mapping,
α(t) = λE(β(t)) is a RPH curve with the standard C1 Hermite data set H̃3

C1 . On the other hand, we have

α′ (t) = λu′(t)Eu(β(t)) + λv′(t)Ev(β(t)). (3.2)

Since E(0, 0) = (0, 0, 0), E(u0, 0) = (
u3

0
3 + u0, 0, 0), we can put β(0) = (0, 0) and β(1) = (u0, 0), which imply

α(0) = λE(β(0)) = (0, 0, 0),

α(1) = λE(β(1)) = λ(
u3

0

3
+ u0, 0, 0).

We know that α(t) is a RPH curve with H̃3
C1 , therefore α(1) = (1, 0, 0) and from the last equation we get

λ =
3

u3
0 + 3u0

. (3.3)

Consequently, the following theorem characterizes a scaled Enneper surface, which is a PH preserving
mapping, from a C1 Hermite data set.

Theorem 3.5. There exist two scaled Enneper surfaces with a given standard C1 Hermite data set H̃3
C1 .

Proof. Let α be a curve on R3 satisfying the standard C1 Hermite data set H̃3
C1 in (3.1). By (3.2), we get

α(0) = λE(β(0)) = (0, 0, 0),
α(1) = λE(β(1)) = (1, 0, 0),
α′(0) = λu′(0)Eu(β(0)) + λv′(0)Ev(β(0)),
α′(1) = λu′(1)Eu(β(1)) + λv′(1)Ev(β(1)).

(3.4)

Since Eu(0, 0) = (1, 0, 0) and Ev(0, 0) = (0, 1, 0), the tangent plane of the Enneper surface at the origin is the
xy−plane. Without loss of generality, we may assume β(0) = (0, 0) and β(1) = (u0, 0). By (3.4), we obtain
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u′(0) = v01
λ and v′(0) = v02

λ . Since Eu(u0, 0) = λ(u2
0 + 1, 0, 0) and Ev(u0, 0) = λ(0,−u2

0 + 1, 2u0), it follows from
(3.4) that one yields

α′(1) = λu′(1)(u2
0 + 1, 0, 0) + λv′(1)(0,−u2

0 + 1, 2u) = (v11, v12, v13).

Thus, we find

λu′(1)(u2
0 + 1) = v11,

λv′(1)(−u2
0 + 1) = v12,

2uλv′(1) = v13.

(3.5)

Eliminating λv′(1) in (3.5) gives

v13u2
0 + 2v12u0 − v13 = 0,

which implies

u0 =
−v12 ±

√
v2

12 + v2
13

v13
. (3.6)

By (3.5), u′(1) = v11

λ(u2
0+1) and v′(1) = v13

2λu2
0
. Also, from (3.4), we get u′(0) = v01

λ and v′(0) = v02
λ . Thus, a set

(0, 0), (u0, 0), (
v01

λ
,

v02

λ
), (

v11

λ(u2
0 + 1)

,
v13

2λu0
)
 (3.7)

is a C1 Hermite data set of the RPH curve β(t). Since the Enneper surface is a PH preserving mapping, the
spatial curve α(t) = λE(β(t)) is the RPH curve on the Enneper surface and there exist two scaled Enneper
surfaces according to the real number u0 in (3.6). This completes the proof.

Now, we explain the algorithm to construct spatial C1 Hermite interpolation with a RPH curve on an
Enneper surface.

Algorithm: spatial RPH curves on Enneper surfaces

Input: The standard C1 Hermite data set H̃3
C1 .

1. Compute u0 by (3.6) and λ by (3.3).

2. Find the planar C1 Hermite data set H2
C1 by (3.7).

3. Represent the set H2
C1 on a complex plane.

4. Find the standard C1 Hermite data set H̃2
C1 by scaling 1

u0
at H2

C1 .

5. Solve PH Möbius cubic interpolants satisfying the set H̃2
C1 .

6. Find a planar RPH curve β(t), multiplying u0 by the PH Möbius cubics.

Output: The spatial RPH curve α(t) = λE(β(t)) satisfying the set H̃3
C1 .

Example 3.6. Consider the standard C1 Hermite data set H̃3
C1 = {(0, 0, 0), (1, 0, 0),V0,V1} given by V0 =

(1, 2, 0) and V1 = (2, 1, 2). Then, from (3.6) we can obtain u0 =
−1+

√
5

2 or −1−
√

5
2 , that is, there exist two scaled

Enneper surfaces for a spatial PH curve satisfying H̃3
C1
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1. Case u0 =
−1+

√
5

2 : In this case we obtain λ = 21+15
√

5
38 and the planar C1 Hermite data set

H2
C1 = {(0, 0), (

−1 +
√

5
2

, 0), (
−7 + 5

√
5

6
,
−7 + 5

√
5

3
), (
−5 + 9

√
5

15
,

9 −
√

5
6

)}.

By process of the algorithm, we obtain the four PH Möbius cubics β(t) satisfying the standard C1

Hermite data set

H̃2
C1 = {0, 1,

9 −
√

5
6

+
9 −
√

5
3

i,
20 + 2

√
5

15
+

1 + 2
√

5
3

i}

on a complex plane. Thus, we have the four spatial RPH curves α(t) = λE(β(t)) satisfying H̃3
C1 on the

Enneper surface with the help of the PH Möbius cubic β(t) and the scaled PH preserving mapping E
as Figure 3.

2. Case u0 =
−1−

√
5

2 : In this case we have λ = 21−15
√

5
38 and the planar C1 Hermite data set H2

C1 =

{(0, 0), (−1−
√

5
2 , 0), (−7−5

√
5

6 , −7−5
√

5
3 ), (−5−9

√
5

15 , 9+
√

5
6 )}. By process of the algorithm we find the four PH

Möbius cubics β(t) satisfying the standard C1 Hermite data set

H̃2
C1 = {0, 1,

9 +
√

5
6

+
9 +
√

5
3

i,
20 − 2

√
5

15
+

1 − 2
√

5
3

i}

on a complex plane. It follows that we can find the four spatial RPH interpolants α(t) = λE(β(t))
satisfying the set H̃3

C1 on the Enneper surface as Figure 4.

(a) spatial RPH curves (b) planar PH Möbius cubics

Figure 3. Case u0 =
−1+

√
5

2 : (a) is four RPH curves on Enneper surface satisfying

H̃3
C1 = {(0, 0, 0), (1, 0, 0),V0 = (1, 2, 0),V1 = (2, 1, 2)}. (b) is four PH Möbius cubics satisfying

the standard C1 Hermite data set H̃2
C1 = {0, 1,

9−
√

5
6 + 9−

√
5

3 i, 20+2
√

5
15 + 1+2

√
5

3 i}

In Example 3.6, for the given set H̃3
C1 we explain C1 Hermite interpolation by using scaled Enneper

surfaces and PH Möbius cubics. Next, we describe a C1 Hermite interpolation with a C1 Hermite data
set H3

C1 in Example 3.7. We add the process to convert a given H3
C1 into H̃3

C1 by using an orthogonal
transformation.
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(a) spatial RPH curves (b) planar PH Möbius cubics

Figure 4. Case u0 =
−1−

√
5

2 : (a) is four RPH curves on Enneper surface satisfying the standard C1 Hermite data set

H̃3
C1 = {(0, 0, 0), (1, 0, 0),V0 = (1, 2, 0),V1 = (2, 1, 2)}. (b) is four PH Möbius cubics satisfying

H̃2
C1 = {0, 1,

9+
√

5
6 + 9+

√
5

3 i, 20−2
√

5
15 + 1−2

√
5

3 i}

Example 3.7. Consider a C1 Hermite data set H3
C1 = {P0,P1,V0,V1} with P0 = (0, 0, 0), P1 = (1, 1, 1), V0 =

(0, 1, 1) and V1 = (2, 1, 2). Let a set {F1,F2,F3} be an orthogonal basis determined by F1 =
P1−P0
∥P1−P0∥

, F3 =
F1×V0
∥F1×V0∥

and F2 = F3 × F1.Then, there exists the orthogonal matrix M ∈ O(3) given by

M =


√

3
3 −

√
6

3 0
√

3
3

√
6

6 −

√
2

2√
3

3

√
6

6

√
2

2

 ,
via MF1 = (1, 0, 0), MF2 = (0, 1, 0) and MF3 = (0, 0, 1) as the matrix multiplication MFi(i = 1, 2, 3). By using
the orthogonal matrix M, we can obtain the standard C1 Hermite data set

H̃3
C1 = {MP0 = (0, 0, 0),MP1 = (1, 0, 0), Ṽ0 =MV0, Ṽ1 =MV1}.

Using the algorithm, one find the RPH curve α̃(t) = λE(β(t)) satisfying H̃3
C1 . Thus, we conclude that the

RPH curves α(t) =M−1(α̃(t)) are interpolants satisfying given the C1 Hermite data set H3
C1 and we have the

picture shown in Figure 5.

(a) RPH curves of case u0 > 0 (b) RPH curves of case u0 < 0

Figure 5. (a) and (b) are RPH curves on two Enneper surfaces satisfying the C1 Hermite data set H3
C1 .
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Next, we consider a bending energy E of a curve as

E(γ) =
∫
γ
κ2 ds,

where κ is the curvature of an interpolant γ. The bending energy E of a curve is an established measure
of its fairness. We can explain an interpolant to have a better shape than another if it has lower bending
energy with a similar arc-length as the following table.

u0 =
−1+

√
5

2 RPH1 RPH2 RPH3 RPH4 MC1 MC2 MC3 MC4

arc-length 1.19 1.19 1.86 2.16 0.74 0.74 1.19 1.22
BE 14.52 14.35 53.31 46.34 20.21 20.65 74.57 86.43

u0 =
−1−

√
5

2 RPH1 RPH2 RPH3 RPH4 MC1 MC2 MC3 MC4

arc-length 1.28 1.34 1.16 1.47 1.96 2.06 1.83 2.13
BE 4393 3328 13.18 13.70 4023 1828 2.94 2.66

Table 1: Comparison of arc-length and bending energy for the interpolants of Figure 4 and Figure 5

4. Conclusions

Representations of curves and surfaces given by polynomial or rational parameterizations are very
important for computer aided design. In this work, we show that a parametrization of the Enneper surface
is PH-preserving, and there are two scaled Enneper surfaces satisfying any regular C1 Hermite data set.
As a result, we construct spatial RPH curves satisfying the C1 Hermite data set on the Enneper surfaces.
Moreover, we introduce how to compute the bending energy for curves on the surface in order to choose
better curves as well as we analyze arc length and bending energy through examples.
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