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Abstract. A bounded linear operator T, which operates on a complex separable Hilbert space H, is referred
to as C-symmetric if T = CT∗C, where C represents a conjugate-linear isometric involution on H. In this
paper, we thoroughly investigate mappings Φ : B(H) → B(H), where B(H) denotes the algebra of all
bounded linear operators on H, that fulfill the following condition:

ABA is C-symmetric ⇐⇒ Φ(A)Φ(B)Φ(A) is C-symmetric

for all A,B ∈ B(H) and conjugations C on H.

1. Introduction

In the present paper, we shall consistently adopt the symbol H to represent a separable Hilbert space,
over the complex fieldC, of dimension greater than two, endowed with the inner product ⟨·, ·⟩. The notation
B(H) will refer to the algebra of all bounded linear operators that act on H, and the identity operator is
denoted by I.

A conjugate-linear map C : H → H is called a conjugation on H if it is isometric; i.e., ⟨Cx,Cy⟩ = ⟨y, x⟩ for
all x, y ∈ H, and is involutive; i.e., C2 = I.

One can readily observe that, for any orthonormal basis E, the map K, defined by

Kx =
∑
e∈E

⟨x, e⟩e for every x ∈ H,

is a conjugation on H. It is important to note that this specific conjugation satisfies Ke = e for every e ∈ E.
Conversely, it is proved in [11, Lemma 1], that for any conjugation C on H, there is a corresponding

orthonormal basis E satisfying the condition:

Ce = e for every e ∈ E. (1)

An operator T ∈ B(H) is referred to as C-symmetric if it fulfills the equality T = CT∗C, where T∗ denotes
the adjoint of T. We also use the term complex symmetric when there is no need to specify the conjugation.
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Notably, if T is C-symmetric, then T∗ and λT are also C-symmetric for any λ ∈ C. Moreover, it can be easily
seen that the set of all C-symmetric operators, denoted by LC, is a closed subspace of B(H) and is stable
under the triple Jordan product A.B = ABA.

It is well-known that an operator is complex symmetric if and only if, in some orthonormal basis, it can
be represented by a symmetric (i.e., self-transpose) matrix (see [11]). In fact, for any operator T ∈ B(H) and
an orthonormal basis E of H that satisfies (1), it can be verified that:

T is C-symmetric ⇐⇒ ⟨Te, f ⟩ = ⟨T f , e⟩ for all e, f ∈ E; (2)

implying that T possesses a symmetric matrix relative to E.
The pioneering investigation of such operators was conducted by Garcia, Putinar, and Wogen ([9–12, 14]).

Subsequently, complex symmetry has captivated the attention of numerous researchers. The applications of
complex symmetric operators extend across various disciplines, including complex analysis, matrix theory,
differential equations, function theory, and even quantum mechanics ([9–12, 18]).

Given a subset L ⊂ B(H), a map Φ : B(H)→ B(H) is said to preserve the triple Jordan product of L if:

ABA ∈ L =⇒ Φ(A)Φ(B)Φ(A) ∈ L for all A,B ∈ B(H),

and it is referred to as preserves the triple Jordan product of L in both directions if:

ABA ∈ L ⇐⇒ Φ(A)Φ(B)Φ(A) ∈ L for all A,B ∈ B(H).

In recent decades, significant attention has been drawn to the intriguing Non-linear preserving problem.
This area revolves around describing mapsΦ on matrix algebras, linear operator algebras, or more generally,
Banach algebras, that retain specific subsets or properties under certain operations, without assuming
linearity or additivity in Φ. Notably, researchers have extensively investigated the special case L = {0} (see
for instance, [6–8]).

In a noteworthy result ([7, Theorem 2.2]), it was shown that if X is an infinite-dimensional Banach space
over F = R or C, and Φ : B(X)→ B(X) is a surjective map that preserves the triple Jordan product of {0} in
both directions, then there exists f : B(X)→ F \ {0} such that one of the following statements holds:

(i) There exists a bounded linear (or conjugate-linear) bijective operator T : X→ X such that

Φ(A) = f (A)TAT−1 for every A ∈ B(X).

(ii) X is reflexive and there exists a bounded linear (or conjugate-linear) bijective operator T : X∗ → X
such that

Φ(A) = f (A)TA∗T−1 for every A ∈ B(X);

here A∗ : X∗ → X∗ denotes the Banach space adjoint of A.

The problem of characterizing maps on B(H), when H is finite-dimentional, that preserve the Jordan
product of LC, in both directions, was considered in [1]. It is proved that those maps must satisfy

Φ(A) = f (A)A for every A ∈ B(H) or Φ(A) = f (A)A∗ for every A ∈ B(H)

for some map f : B(H)→ C \ {0}.
In the context of linear preserving problems, the authors in [15] established an interesting result. They

proved that if H is infinite-dimensional, C is a conjugation on H, and Φ : LC → LC is an additive surjection
preserving the usual product of {0} in both directions, then there must exist c ∈ C and a linear (or conjugate-
linear) bijection T : H→ H satisfying TCT∗C = I so that

Φ(A) = cTACT∗C for every A ∈ LC.

Additional findings related to preserving problems involving C-symmetric operators and other operators
associated with conjugations have been achieved. For more details, the interested reader is encouraged to
consult the references [2–4, 16].

The main objective of this paper is to characterize the maps on B(H) that preserve the triple Jordan
product of LC in both directions, for every conjugation C on H.
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2. Main Result and Proof

For an orthonormal basis E of H, the matrix of an operator T ∈ B(H) with respect to E is denoted by
ME(T). More precisely, if E = {en}n, then

ME(T) = (⟨Tem, en⟩)n,m .

The main result of this paper is presented in the following theorem.

Theorem 2.1. Let Φ : B(H)→ B(H) be a map. The following statements are equivalent:

(i) For all A,B ∈ B(H) and every orthonormal basis E of H,

ME(ABA) is symmetric ⇐⇒ ME (Φ(A)Φ(B)Φ(A)) is symmetric.

(ii) For all A,B ∈ B(H) and every conjugation C on H,

ABA ∈ LC ⇐⇒ Φ(A)Φ(B)Φ(A) ∈ LC.

(iii) There exists f : B(H)→ C \ {0} such that

Φ(A) = f (A)A for every A ∈ B(H) or Φ(A) = f (A)A∗ for every A ∈ B(H).

The hypothesis that the map Φ preserves the triple Jordan product of LC in one direction, for every
conjugation C, is not adequate to fully characterize Φ. This inadequacy is illustrated through an example
presented in [1] within the context of Jordan product preservers of LC. For the sake of completness, we
will make minor modifications to that example to demonstrate the essential role of “both directions” in
Theorem 2.1.

Example 2.2. Consider the operator At = Bt ⊕ 0 ∈ B(H), where Bt is defined, with respect to an orthonormal subset
{e1, e2, e3} of H, as follows:

Bt =

1 t 1
0 1 0
0 0 0

 e1
e2
e3

.

DefineΩ = {At : t > 0}, and let us show that any mapΦ vanishing onB(H)\Ωmust satisfy the direct implication
of assertion (ii) of Theorem 2.1 for every conjugation.

If T = At and S = As where t, s > 0, we have TST = A2t+s. Moreover, letting r = 2t + s, calculations show that
the trace of the following operator

B∗rB
2
r B∗2r Br − BrB∗2r B2

r B∗r

is equal to r2 > 0. Hence, by [13, Proposition 2.5], the operator Br is not J-symmetric for any conjugation J on
Span{e1, e2, e3}. Furthermore, it follows from [14, Lemma 1] that

TST = Br ⊕ 0 < LC for any conjugation C on H.

On the other hand, if T < Ω or S < Ω, then

Φ(T)Φ(S)Φ(T) = 0 ∈ LC for all conjugations C on H.

Remark 2.3. The equivalence between statements (i) and (ii) can easily be deduced from (2). Additionally, the
implication (iii)⇒(ii) is obviously true. Thus, our focus now lies solely on proving the implication (ii)⇒(iii).
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For the remainder of this section, we denote byΦ : B(H)→ B(H) a mapping that fulfills the second assertion
of Theorem 2.1.

To simplify notation throughout this paper, we will use the symbol T ∼ S to denote that for every
conjugation C, the following equivalence holds:

T is C-symmetric ⇐⇒ S is C-symmetric.

Given an orthonormal basis E of H, we shall say that an operator T ∈ B(H) is E-diagonal if, for every
e ∈ E, there exists some αe ∈ C such that Te = αee.

Proposition 2.4. Let A,B ∈ B(H) be such that A = A1⊕A2 with respect to an orthogonal decomposition H = H1⊕H2,
where H2 , {0}, A1 is a C1-symmetric operator, and A2 is {ei}i∈I2

-diagonal. If A ∼ B, then

(i) B = B1⊕B2 with respect to the decomposition H = H1⊕H2, where B1 is C1-symmetric and B2 is {ei}i∈I2
-diagonal.

(ii) For n, m ∈ I2, if ⟨A2en, en⟩ = ⟨A2em, em⟩, then ⟨B2en, en⟩ = ⟨B2em, em⟩.

Proof. Let C2 be the conjugate-linear map given by C2 (
∑
αiei) =

∑
αiei. It is easy to check that C2 is a

conjugation on H2. Furthermore, for every i ∈ I2,

C2A2C2ei = C2A2ei = C2 (⟨A2ei, ei⟩ei) = ⟨A2ei, ei⟩ei = ⟨A∗2ei, ei⟩ei = A∗2ei,

and so C2A2C2 = A∗2 and A2 is C2-symmetric. According to [1, Lemma 2.4], we may write B = B1 ⊕ B2 with
respect to the decomposition H = H1 ⊕ H2 with B1 being C1-symmetric. Moreover, by the same lemma,
if A2 is J-symmetric, for some conjugation J, then so is B2. Therefore, by [1, Remark 2.3], B2 must be
{ei}i∈I2

-diagonal and ⟨B2en, en⟩ = ⟨B2em, em⟩whenever ⟨A2en, en⟩ = ⟨A2em, em⟩.

Remark 2.5. Taking H1 = {0} in Proposition 2.4, we readily see that if two operators T and S are such that T ∼ S
with T being diagonal, with respect to an orthonormal basis E, then so is S with respect to the same orthonormal basis.
In this case, we have

⟨Te, e⟩ =
〈
T f , f

〉
⇐⇒ ⟨Se, e⟩ =

〈
S f , f

〉
for all e, f ∈ E.

In particular, if T = αP + β(I − P) where P is an orthogonal projection and α, β ∈ C, then there exist α̃, β̃ ∈ C such
that the following statements hold:

(i) S = α̃P + β̃(I − P).
(ii) If P , 0 and P , I, then α = β if and only if α̃ = β̃.

Proposition 2.6. Let A ∈ B(H) be a non-zero operator such that An = λI for some positive integer n and λ ∈ C.
Then, there exist orthonormal vectors x and y in H so that ⟨Ax, x⟩ and ⟨Ay, y⟩ are both non-zero.

Proof. Since A , 0, there exists a unit vector x ∈ H such that ⟨Ax, x⟩ , 0. Suppose for the sake of contradiction
that ⟨Ay, y⟩ = 0 for all y ∈ {x}⊥.

First, we show that the rank of A is less than 3. Let P be the orthogonal projection onto {x}⊥. Then, for
every y ∈ {x}⊥, we have

⟨PAPy, y⟩ = ⟨APy,Py⟩ = ⟨Ay, y⟩ = 0.

Furthermore, it is obvious that ⟨PAPx, x⟩ = 0, which implies that ⟨PAPh, h⟩ = 0 for all h ∈ H; that is, PAP = 0.
Now, noting that I − P is rank-one, we can see that

A = PA(I − P) + (I − P)A

has rank less than 3.
Note that if λ , 0, then A is invertible, and as dim H ≥ 3, the rank of A would be greater than 2; a

contradiction.
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Now if λ = 0, then A is nilpotent and finite-rank. Consequently, the trace of A, denoted as trace(A),
exists and equals 0. However, choosing any orthonormal basis E of H containing x, we can observe that

trace(A) =
∑
e∈E

⟨Ae, e⟩ = ⟨Ax, x⟩ +
∑

e∈E,e,x

⟨PAPe, e⟩ = ⟨Ax, x⟩ , 0,

which leads to a contradiction. Therefore, there must exist y ∈ {x}⊥ satisfying ⟨Ay, y⟩ , 0.

Let u and v be non-zero vectors in H. We use u ⊗ v to represent the rank-one operator defined as
(u ⊗ v)(x) = ⟨x, v⟩u for all x ∈ H. It is a recognized fact that each rank-one operator acting on a H can be
expressed in this form. Additionally, note that

u ⊗ v is diagonal ⇐⇒ u and v are linearly dependent, (3)

and that

u ⊗ v is an orthogonal projection ⇐⇒ u ⊗ v = x ⊗ x (4)

for some x ∈ H satisfying ∥x∥ = 1.

Next, we provide the form of Φwhen it is restricted to the set of multiples of orthogonal projections.

Lemma 2.7. Let P ∈ B(H) be an orthogonal projection, and let λ ∈ C be non-zero. Then, there exists a non-zero
αλ,P ∈ C such that Φ(λP) = αλ,PP.

Proof. Since λ3P = (λP)3
∼ Φ(λP)3, according to Remark 2.5, there exist γλ,P, βλ,P ∈ C, with γλ,P , βλ,P when

P < {0, I}, such that

Φ(λP)3 =

[
γλ,PI 0

0 βλ,PI

]
Ran(P)
Ker(P) . (5)

Moreover, noting that Φ(λP) commutes with Φ(λP)3, we can see that

Φ(λP) =
[
Aλ,P 0

0 Bλ,P

]
Ran(P)
Ker(P) (6)

for some Aλ,P ∈ B(Ran(P)) and Bλ,P ∈ B(Ker(P)). Clearly, we need to show that Aλ,P is a non-zero multiple
of the identity and that Bλ,P = 0. The remainder of the proof is divided into three claims:

Claim 1. For all orthonormal vectors x and y in H, we have

Φ(x ⊗ x)Φ(y ⊗ y)Φ(x ⊗ x) = 0.

As (x ⊗ x)(y ⊗ y)(x ⊗ x) = (y ⊗ y)(x ⊗ x)(y ⊗ y) = 0, we obtain by Remark 2.5 that

Φ(x ⊗ x)Φ(y ⊗ y)Φ(x ⊗ x) = γI and Φ(y ⊗ y)Φ(x ⊗ x)Φ(y ⊗ y) = βI

for some γ, β ∈ C. We need to show that γ = 0. For the sake of contradiction, we assume that γ , 0. Then,
we have

Φ(y ⊗ y) = γ−1Φ(y ⊗ y)(γI) = γ−1Φ(y ⊗ y)Φ(x ⊗ x)Φ(y ⊗ y)Φ(x ⊗ x)

= γ−1(βI)Φ(x ⊗ x) = γ−1βΦ(x ⊗ x),

and henceΦ(y⊗ y)3 = γ−3β3Φ(x⊗ x)3. Since, by (4), x⊗ x is an orthogonal projection, it follows from (5) that,
for every unit vector z ∈ {x, y}⊥ ⊆ Ker(x ⊗ x),

⟨Φ(y ⊗ y)3y, y⟩ = ⟨γ−3β3Φ(x ⊗ x)3y, y⟩ = ⟨γ−3β3Φ(x ⊗ x)3z, z⟩ = ⟨Φ(y ⊗ y)3z, z⟩.
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Consequently, Remark 2.5 implies that

1 = ⟨(y ⊗ y)3y, y⟩ = ⟨(y ⊗ y)3z, z⟩ = 0;

a contradiction. Thus, γ = 0, and the claim is proved.
Claim 2. For each unit vector u ∈ H, there is a non-zero αu ∈ C satisfying Φ(u ⊗ u) = αuu ⊗ u.
It follows from (6) that Φ(u ⊗ u) can be expressed as

Φ(u ⊗ u) =
[
αuI 0
0 Au

]
Span{u}
{u}⊥ ,

where A3
u = βuI and α3

u , βu.
Suppose that Au , 0. According to Proposition 2.6, there are orthonormal vectors e1 and e2 in {u}⊥

satisfying ⟨Aue1, e1⟩ , 0 and ⟨Aue2, e2⟩ , 0. Furthermore, by Claim 1, we haveΦ(e1⊗ e1)Φ(u⊗u)Φ(e1⊗ e1) = 0,
and in particular, we also have Φ(e1 ⊗ e1)3Φ(u ⊗ u)Φ(e1 ⊗ e1)3 = 0. So, we obtain

α2
e1
⟨Aue1, e1⟩ = ⟨Φ(u ⊗ u)αe1 e1, αe1 e1⟩

= ⟨Φ(u ⊗ u)Φ(e1 ⊗ e1)e1,Φ(e1 ⊗ e1)∗e1⟩

= ⟨Φ(e1 ⊗ e1)Φ(u ⊗ u)Φ(e1 ⊗ e1)e1, e1⟩ = 0,

and similarly, we get
β2

e1
⟨Aue2, e2⟩ = ⟨Φ(e1 ⊗ e1)3Φ(u ⊗ u)Φ(e1 ⊗ e1)3e2, e2⟩ = 0.

Since α3
u , βu, at least one of αe1 and βe1 is non-zero; this contradicts the above equalities. Consequently,

Au = 0 and α3
u , βu = 0. Thus, Φ(u ⊗ u) = αuu ⊗ u with αu , 0.

Claim 3: Φ(λP) has the the desired form.
The reader will see that we can assume, without loss of generality, that Ran(P) , {0} and Ker(P) , {0}.

Let u ∈ Ran(P) and v ∈ Ker(P) be unit vectors. As (λP)(u ⊗ u)(λP) = λ2u ⊗ u and (v ⊗ v)(λP)(v ⊗ v) = 0,
Remark 2.5 and Claim 2 imply that there exist α0, β0, γ0 ∈ C such that

(Φ(λP)u) ⊗ (Φ(λP)∗u) = Φ(λP)(u ⊗ u)Φ(λP) = α−1
u Φ(λP)Φ(u ⊗ u)Φ(λP)

=

[
α0I 0
0 β0I

]
Span{u}
{u}⊥

with α0 , β0, and

⟨Φ(λP)v, v⟩v ⊗ v = (v ⊗ v)Φ(λP)(v ⊗ v) = α−2
v Φ(v ⊗ v)Φ(λP)Φ(v ⊗ v) = γ0I.

As dim H > 2, we must have β0 = γ0 = 0. Consequently, α0 , 0 = β0,

0 , Aλ,Pu = Φ(λP)u ∈ Span{u},

and
⟨Bλ,Pv, v⟩ = ⟨Φ(λP)v, v⟩ = 0.

Since u and v were arbitrary, we get that Aλ,P = αλ,PI for some non-zero αλ,P ∈ C, and that Bλ,P = 0. This
proves the last claim and ends the proof of the lemma.

Remark 2.8. Using elementary linear algebra, one can easily show that every rank-one operator x ⊗ y in B(H) can
be presented as

x ⊗ y = (au + bv) ⊗ v =

0 a 0
0 b 0
0 0 0

 u
v
{u, v}⊥

(7)
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where u and v are orthonormal vectors and a, b ∈ C. Moreover, according to [11, Example 6], the operator[
0 a
0 b

]
u
v

is J-symmetric for some conjugation J on Span{u, v}.

The next lemma reveals Φ on the set of rank-one operators. Denote such set by F1(H).

Lemma 2.9. For every R ∈ F1(H) there exists a non-zero αR ∈ C such that either Φ(R) = αRR or Φ(R) = αRR∗.

Proof. Let R ∈ F1(H). According to Lemma 2.7, we may assume that R is not a multiple of an orthogonal
projection. In this case, by (7) and (3), we can write

R =

0 a 0
0 b 0
0 0 0

 u
v
{u, v}⊥

where u and v are orthonormal vectors in H and a, b ∈ Cwith a , 0. By Lemma 2.7, we have Φ(I) = αII with
αI , 0; therefore

R = IRI ∼ Φ(I)Φ(R)Φ(I) ∼ α2
IΦ(R) ∼ Φ(R).

Then, Remark 2.8 and Proposition 2.4 imply that

Φ(R) =

η α 0
β γ 0
0 0 λI

 u
v
{u, v}⊥

(8)

for some α, β, η, γ, λ ∈ C. Let P be the orthogonal projection onto {u, v}⊥. Since (u⊗u)R(u⊗u) = PRP = 0, by
Remark 2.5, the operators Φ(u ⊗ u)Φ(R)Φ(u ⊗ u) and Φ(P)Φ(R)Φ(P) are both multiples of the identity, and
so, by Lemma 2.7, we get

ηu ⊗ u = (u ⊗ u)Φ(R)(u ⊗ u) ∈ CI and λP = PΦ(R)P ∈ CI,

and consequently, as u ⊗ u , I and P , I, we must have η = λ = 0.
Using a similar argument, one can show that

b = 0 ⇐⇒ γ = 0. (9)

Note that if α and β are both zero, then (I − P)Φ(R)(I − P) is a non-zero multiple of v ⊗ v. It follows by
Lemma 2.7 that

v ⊗ v ∼ (I − P)Φ(R)(I − P) ∼ Φ(I − P)Φ(R)Φ(I − P) ∼ (I − P)R(I − P).

Hence, using Remark 2.5, we infer that (I − P)R(I − P) ∈ Cv ⊗ v + C(I − v ⊗ v), and consequently,

au ⊗ v + bv ⊗ v = (I − P)R(I − P) ∈ Cv ⊗ v,

which is impossible because a , 0. Therefore, α , 0 or β , 0. Now, noting that

R
(
(bu − av) ⊗ (bu − av)

)
R = 0,

then, using similar arguments as in the preceding, we get

Φ(R)
(
(bu − av) ⊗ (bu − av)

)
Φ(R) = 0;
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which implies that

Φ(R)(au − bv) = 0 or Φ(R)∗(au − bv) = 0. (10)

Calculations show that α = 0 or β = 0. Consequently,

either α , 0 or β , 0. (11)

If b = 0, the proof of the lemma is completed by combining (9) and (11). Suppose that b , 0. From (8)
and (10), one can easily see that{

Φ(R)∗(au − bv) = 0 if α , 0;
Φ(R)(au − bv) = 0 if β , 0,

and so, calculations show that{
Φ(R) = a−1αR if α , 0;
Φ(R) = a−1βR∗ if β , 0.

The proof is now completed.

Now, we shall improve the result in the previous lemma.

Lemma 2.10. We have either

Φ(R) = αRR for every R ∈ F1(H) (12)

or

Φ(R) = αRR∗ for every R ∈ F1(H), (13)

where αR is a non-zero complex number that depends on R.

Proof. The proof is divided into two claims:
Claim 1: If a, b ∈ C, with a , 0, and u and v are orthonormal vectors, then

Φ(u ⊗ v) ∈ Cu ⊗ v ⇐⇒ Φ ((au + bv) ⊗ v) ∈ C(au + bv) ⊗ v. (14)

Note first that, by the previous lemma, Φ(u ⊗ v) and Φ (au + bv) ⊗ v) are non-zero, and we have

“Φ(u ⊗ v) ∈ Cu ⊗ v or Φ(u ⊗ v) ∈ Cv ⊗ u ′′

and
“Φ ((au + bv) ⊗ v) ∈ C(au + bv) ⊗ v or Φ ((au + bv) ⊗ v) ∈ Cv ⊗ (au + bv) ′′.

Since (u ⊗ v) ((au + bv) ⊗ v) (u ⊗ v) = 0, Remark 2.5 implies that

Φ(u ⊗ v)Φ ((au + bv) ⊗ v)Φ(u ⊗ v) ∈ CI.

But, Φ(u ⊗ v) is a rank-one operator; hence

Φ(u ⊗ v)Φ ((au + bv) ⊗ v)Φ(u ⊗ v) = 0. (15)

Now, a simple calculation shows that if

Φ(u ⊗ v) ∈ Cu ⊗ v and Φ ((au + bv) ⊗ v) < C(au + bv) ⊗ v,



Z. Amara, M. Oudghiri / Filomat 38:29 (2024), 10157–10167 10165

then (15) does not hold; a contradiction. This proves the direct implication in (14). The reverse implication
can be shown by the same argument.

Claim 2: Either property (12) or property (13) is satisfied.
Combining (7), Lemma 2.9 and Claim 1, it is clear that we need only show that, for all pairs of orthonormal

sets {u, v} and {x, y}, we have

Φ(u ⊗ v) ∈ Cu ⊗ v =⇒ Φ(x ⊗ y) ∈ Cx ⊗ y.

To this end, we first consider the case v = x. Arbitrarily choose ϵ ∈ C so that ⟨u+ϵy,u⟩ , 0 and ⟨u+ϵy, y⟩ , 0.
Then, we have

(u ⊗ v)
(
v ⊗ (u + ϵy)

)
(u ⊗ v) , 0

and (
v ⊗ (u + ϵy)

)
(x ⊗ y)

(
v ⊗ (u + ϵy)

)
=
(
v ⊗ (u + ϵy)

)
(x ⊗ y)

(
x ⊗ (u + ϵy)

)
= 0.

Hence, by Claim 1 and Remark 2.5, we must have

Φ(u ⊗ v)Φ
(
v ⊗ (u + ϵy)

)
Φ(u ⊗ v) , 0

and
Φ
(
v ⊗ (u + ϵy)

)
Φ(x ⊗ y)Φ

(
v ⊗ (u + ϵy)

)
= 0.

Consequently, it is not hard to see that

Φ(u ⊗ v) ∈ Cu ⊗ v =⇒ Φ
(
v ⊗ (u + ϵy)

)
∈ Cv ⊗ (u + ϵy)

=⇒ Φ(x ⊗ y) ∈ Cx ⊗ y.

Now, let us consider the general case. Choose arbitrarily a unit vector z ∈ {v, x}⊥. Then, by the special case,
we have

Φ(u ⊗ v) ∈ Cu ⊗ v =⇒ Φ(v ⊗ z) ∈ Cv ⊗ z =⇒ Φ(z ⊗ x) ∈ Cz ⊗ x
=⇒ Φ(x ⊗ y) ∈ Cx ⊗ y.

Lemma 2.11. Assume that Φ satisfies (12). Then, for every A ∈ B(H), we have Ker(Φ(A)) = Ker(A).

Proof. Let A ∈ B(H). Then,

x ∈ Ker(A) ⇐⇒ Ax ⊗ A∗y = 0,∀y ∈ H
⇐⇒ A(x ⊗ y)A = 0,∀y ∈ H
⇐⇒ Φ(A)(x ⊗ y)Φ(A) = 0,∀y ∈ H (By Remark 2.5 and (12))
⇐⇒ Φ(A)x ⊗Φ(A)∗y = 0,∀y ∈ H
⇐⇒ x ∈ Ker(Φ(A)).

With these results at hand, we are ready to prove the main result of this paper.

Proof. [Proof of Theorem 2.1] (ii)⇒(iii). Suppose first that Φ satisfies (12), and let us show that Φ has the
first form in Theorem 2.1 (iii). By the previous lemma, we have Φ(0) = 0, and by Lemma 2.10, Φ maps
every rank-one operator R to a non-zero multiple of R. Hence, it suffices to show that for every operator
A ∈ B(H) whose rank is at least 2, we have Φ(A) = αA for some non-zero α ∈ C. Moreover, given that
Ker(Φ(A)) = Ker(A), it suffices to prove that for each h ∈ Ker(A)⊥, there exists some αh ∈ C such that
Φ(A)h = αhAh. Let h ∈ Ker(A)⊥ be a non-zero vector. Two situations are distinguished:
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Case 1. Ah ∈ Ran(A∗). Let k ∈ H be such that Ah = A∗k. Then,

A(h ⊗ k)A = (Ah) ⊗ (Ah) = ∥Ah∥2
(
∥Ah∥−1Ah

)
⊗

(
∥Ah∥−1Ah

)
is a non-zero multiple of an orthogonal projection. Applying Remark 2.5 and (12), we get that

(Φ(A)h) ⊗ (Φ(A)∗k) = Φ(A)(h ⊗ k)Φ(A) ∈ C
(
∥Ah∥−1Ah

)
⊗

(
∥Ah∥−1Ah

)
.

Whence, Φ(A)h ∈ Span{Ah}.
Case 2. Ah < Ran(A∗). Since A has rank ≥ 2, then so has A∗. So, we can choose linearly independent

vectors A∗u1 and A∗u2 in Ran(A∗). Noting that, for every i ∈ {1, 2}, the rank-one operator A(h ⊗ ui)A can be
expressed as

A(h ⊗ ui)A =
[
Fi 0
0 0

]
Span{Ah,A∗ui}

{Ah,A∗ui}
⊥

for some complex symmetric operator Fi, Proposition 2.4 and (12) imply that, for every i ∈ {1, 2}, we have

(Φ(A)h) ⊗ (Φ(A)∗ui) = Φ(A)(h ⊗ ui)Φ(A) =
[
Ri 0
0 λiI

]
Span{Ah,A∗ui}

{Ah,A∗ui}
⊥

for some operator Ri and λi ∈ C. Observe that if there is i ∈ {1, 2} such that λi , 0, then we must have Ri = 0
because the rank of (Φ(A)h)⊗ (Φ(A)∗ui) must not exceed 1. Combining this fact with Remark 2.5, we get that

Ah ⊗ A∗ui = A(h ⊗ ui)A =
[
αiI 0
0 βiI

]
Span{Ah,A∗ui}

{Ah,A∗ui}
⊥ ,

for some αi, βi ∈ C. Then, by (3), Ah and A∗ui should be linearly dependent; a contradiction because
Ah < Ran(A∗). Thus, λ1 and λ2 are both zero, and Φ(A)h ∈ Span{Ah,A∗ui} for every i ∈ {1, 2}. Consequently,
since Ah < Span{A∗u1,A∗u2} and {A∗u1,A∗u2} is a linearly independent set, elementary linear algebra can
show that

Φ(A)h ∈ Span {Ah,A∗u1} ∩ Span {Ah,A∗u2} = Span{Ah};

the desired property.

Now Assume that Φ satisfies (13). Define a mapΨ : B(H)→ B(H) byΨ(A) = Φ(A∗) for every A ∈ B(H).
Then, it is easy to see that Ψ satisfies both Theorem 2.1 (ii) and (12). Hence, there must exist a map
f : B(H)→ C \ {0} such thatΨ(A) = f (A)A for every A ∈ B(H). Therefore, for every A ∈ B(H), we have

Φ(A) = Φ((A∗)∗) = Ψ(A∗) = f (A)A∗.

This shows that Φ has the second form in Theorem 2.1 (iii) and concludes the proof.
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