Filomat 38:29 (2024), 10193–10206 https://doi.org/10.2298/FIL2429193C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some new criteria for judging *H*-tensors and its application

Xiaoyong Chen^{a,b}, Yaqiang Wang^{b,*}

^a School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China ^bSchool of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, P. R. China

Abstract. In this paper, some new criteria which only depend on elements of the given tensors are proposed to judge \mathcal{H} -tensors. Moreover, based on these new criteria, some sufficient conditions of the positive definiteness for even-order real symmetric tensors are obtained. In addition, some numerical examples are presented to illustrate those new results.

1. Introduction

Let $n \ge 2$ and $m \ge 2$ be integers, $N = \{1, 2, ..., n\}$, and $\mathbb{C}(\mathbb{R})$ be the set of all complex(real) numbers. A tensor $\mathcal{A} = (a_{i_1i_2\cdots i_m})$ is called a complex (real) order *m* dimension *n* tensor, if $a_{i_1i_2\cdots i_m} \in \mathbb{C}(\mathbb{R})$, where $i_j = 1, 2, ..., n$ for j = 1, 2, ..., m. Let $\mathbb{C}^{[m,n]}$ ($\mathbb{R}^{[m,n]}$) be the set of all complex (real) order *m* dimension *n* tensors. A tensor $I = (\delta_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$ is called the unit tensor [1], if its elements satisfy

$$\delta_{i_1 i_2 \cdots i_m} = \begin{cases} 1, & i_1 = i_2 = \cdots = i_m, \\ 0, & otherwise. \end{cases}$$

For a tensor $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$, if there exists a complex number λ and a complex vector $x = (x_1, x_2, \dots, x_n)^T \neq (0, 0, \dots, 0)^T$ satisfy the following homogeneous polynomial equations:

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]},$$

then λ is called an eigenvalue of \mathcal{A} and x is its corresponding eigenvector [2–4], where $\mathcal{A}x^{m-1}$ and $\lambda x^{[m-1]}$ are vectors, and whose *i*th components are

$$(\mathcal{A}x^{m-1})_i = \sum_{i_2,\ldots,i_m \in \mathbb{N}} |a_{ii_2\cdots i_m}| x_{i_2}\cdots x_{i_m},$$

and

$$x_i^{[m-1]} = x_i^{m-1},$$

- 2020 *Mathematics Subject Classification*. Primary 15A15; Secondary 15A48, 65F05, 65F40. *Keywords*. *H*-tensor; positive diagonal matrix; symmetric tensor; irreducible tensor.
- Received: 19 March 2024; Revised: 12 August 2024; Accepted: 27 September 2024

Communicated by Dijana Mosić * Corresponding author: Yaqiang Wang

Email addresses: xiaoyongchen816@163.com (Xiaoyong Chen), yaqiangwang1004@163.com (Yaqiang Wang)

respectively, for all $i \in N$. In particular, if λ and x are real, then λ is called an *H*-eigenvalue of \mathcal{A} and x is its corresponding *H*-eigenvector [2].

For an *m*th degree homogeneous polynomial of *n* variables f(x) can be usually denoted as

$$f(x) = \sum_{i_1, i_2, \dots, i_m \in \mathbb{N}} a_{i_1 i_2 \cdots i_m} x_{i_1} x_{i_2} \cdots x_{i_m}$$

where $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$. The homogeneous polynomial f(x) can be represented as the tensor product of a symmetric tensor $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$ and x^m denoted by

$$f(x) \equiv \mathcal{A}x^m = \sum_{i_1, i_2, \dots, i_m \in N} a_{i_1 i_2 \cdots i_m} x_{i_1} x_{i_2} \cdots x_{i_m},$$

where the tensor \mathcal{A} is called symmetric if its elements are invariant under all permutation of indices $\{i_1, i_2, ..., x_m\}$ and $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$ [2]. If *m* is even, and

$$f(x) > 0$$
, for all $x \in \mathbb{R}^n$, $x \neq 0$,

then we call that f(x) is positive definite.

The positive definiteness of homogeneous polynomial play a key role in automatic control [11, 12], magnetic resonance imaging [13] and so on. However, when n > 3, m > 4 and m is even, it is difficult to judge the positive definiteness of the homogeneous polynomial f(x). In order to solve this problem, L.Q. Qi proposed in [2] that f(x) is positive definite if and only if the real symmetric tensor \mathcal{A} is positive definite, and L.Q. Qi gave a method to verify the positive definiteness of \mathcal{A} by eigenvalue, that is,

Theorem 1. [2] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{R}^{[m,n]}$ be a symmetric tensor and *m* be even, then \mathcal{A} is positive definite if and only if all of its *H*-eigenvalues are positive.

According to Theorem 1, one can verify the positive definiteness of an even-order symmetric tensor \mathcal{A} by calculating the *H*-eigenvalues of \mathcal{A} . However, it is hard to compute all these *H*-eigenvalues of \mathcal{A} if *m* and *n* are large. In order to solve this problem, a practical sufficient condition was provided for judging the positive definiteness of an even-order symmetric tensor as follow.

Theorem 2. [7] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{R}^{[m,n]}$ with $a_{kk\cdots k} > 0$ for all $k \in N$ and m be even. If \mathcal{A} is an \mathcal{H} -tensor, then \mathcal{A} is positive definite.

Based on the fact that the identification of \mathcal{H} -tensor is useful in checking the positive definiteness of homogeneous polynomials, some criteria for judging \mathcal{H} -tensor have been widely proposed, see [14–25]. In this paper, we still focus on judging of \mathcal{H} -tensors, and some new criteria which only depend on elements of the given tensors are proposed. As an application, for an even-order real symmetric tensor, some sufficient conditions of the positive definiteness are obtained. Moreover, some numerical examples are presented to illustrate those new results.

2. Some criteria for judging nonsingular H-tensors

In this section, some new criteria for judging \mathcal{H} -tensors are proposed. Before that, some notations, definitions, lemmas and theorems are listed firstly. The calligraphy letters $\mathcal{A}, \mathcal{B}, \mathcal{H}, \cdots$ represent tensors; the capital letters A, B, \cdots denote matrices; the lowercase letters x, y, \cdots refer to vectors. For a tensor $\mathcal{A} = (a_{i,i}, \ldots, i_{i}) \in \mathbb{C}^{[m,n]}$ we denote

For a tensor
$$\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{(m,n_1)}$$
, we denote
 $r_i(\mathcal{A}) = \sum_{\substack{i_2\cdots i_m\in N\\\delta_{ii_2\cdots i_m}=0}} |a_{ii_2\cdots i_m}| = \sum_{i_2\cdots i_m\in N} |a_{ii_2\cdots i_m}| - |a_{ii\cdots i}|,$
 $N_1 = \{i \in N : 0 < |a_{ii\cdots i}| \le r_i(\mathcal{A})\}, N_2 = \{i \in N : |a_{ii\cdots i}| > r_i(\mathcal{A})\},$
 $s_i = \frac{|a_{ii\cdots i}|}{r_i(\mathcal{A})}, t_i = \frac{r_i(\mathcal{A})}{|a_{ii\cdots i}|}, r = \max\{\max_{i\in N_1} s_i, \max_{i\in N_2} t_i\},$

$$\begin{split} r_{i}^{S}(\mathcal{A}) &= \sum_{\substack{i_{2}\cdots i_{m} \in S \\ \delta_{i_{2}\cdots i_{m}} = 0}} |a_{ii_{2}\cdots i_{m}}|, r_{i}^{S^{*}}(\mathcal{A}) = r_{i}(\mathcal{A}) - r_{i}^{S}(\mathcal{A}), \\ N_{1}^{m-1} &= \{i_{2}i_{3}\cdots i_{m} : i_{j} \in N_{1}, j = 2, 3, \dots, m\}, \\ N^{m-1} \setminus N_{1}^{m-1} &= \{i_{2}i_{3}\cdots i_{m} : i_{2}i_{3}\cdots i_{m} \in N^{m-1} \text{ and } i_{2}i_{3}\cdots i_{m} \notin N_{1}^{m-1}\} \\ R_{j}(\mathcal{A}) &= \sum_{j_{2}\cdots j_{m} \in N^{m-1} \setminus N_{2}^{m-1}} |a_{jj_{2}\cdots j_{m}}| + \mu \sum_{\substack{j_{2}\cdots j_{m} \in N_{2}^{m-1} \\ \delta_{jj_{2}\cdots j_{m}} = 0}} \sum_{j_{2}\cdots j_{m} \in N_{2}^{m-1}} |a_{jj_{2}\cdots j_{m}}|} and \mu = \max\{\mu_{j}\}, j \in N_{2}. \end{split}$$

Definition 1. [8] Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If there is a positive vector $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ such that

$$|a_{ii\cdots i}|x_i^{m-1} > \sum_{\substack{i_2,\dots,i_m \in N\\\delta_{ii_2\cdots i_m}=0}} |a_{ii_2\cdots i_m}|x_{i_2}\cdots x_{i_m},$$

where |a| for the modulus of $a \in \mathbb{C}$, then \mathcal{A} is called an \mathcal{H} -tensor.

Definition 2. [2] Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

$$|a_{ii\cdots i}| > r_i(\mathcal{A}), i \in N,$$

then \mathcal{A} is called an strictly diagonally dominant tensor.

Definition 3.[15] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$ and $X = diag(x_1, x_2, \dots, x_n)$. If

$$\mathcal{B} = (b_{i_1 i_2 \dots i_m}) = \mathcal{A} X^{m-1}$$

where

$$b_{i_1i_2\cdots i_m} = a_{i_1i_2\cdots i_m} x_{i_2} \dots x_{i_m}, \ i_j \in N, \ j = 2, 3, \dots, m,$$

then \mathcal{B} is called the product of the tensor \mathcal{A} and the matrix X.

Definition 4.[6] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$. If there exists a $\emptyset \neq S \subset N$ such that $a_{i_1i_2\cdots i_m} = 0$, $\forall i_1 \in S$ and $i_2, \ldots, i_m \notin S$, then \mathcal{A} is called reducible. Otherwise, \mathcal{A} is called irreducible.

Definition 5.[15] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$, for $i, j \in N$ $(i \neq j)$, if there exist indices k_1, k_2, \dots, k_l with

$$\sum_{\substack{i_{2},...,i_{m}\in N\\ \delta_{k_{s}i_{2}\cdots i_{m}}=0\\k_{s+1}\in\{i_{2},...,i_{m}\}}} |a_{k_{s}i_{2}\cdots i_{m}}| \neq 0, \ s = 0, 1, \dots, l,$$

where $k_0 = i$, $k_{l+1} = j$, we call that there is a nonzero elements chain from *i* to *j*.

Lemma 1. [8] If \mathcal{A} is an strictly diagonally dominant tensor, then \mathcal{A} is an \mathcal{H} -tensor.

Lemma 2.[7] Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. \mathcal{A} is an \mathcal{H} -tensor, if

(i) \mathcal{A} is irreducible,

(ii) $|a_{ii\cdots i}| \ge r_i(\mathcal{A})$, for each $i \in N$,

(iii) for inequality of (ii), strictly inequality holds for at least one *i*.

10195

Lemma 3. [15] Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. \mathcal{A} is an \mathcal{H} -tensor, if

(i) $|a_{ii\cdots i}| \geq r_i(\mathcal{A}), i \in N$,

(ii) $N_2 = \{i \in N : |a_{ii\cdots i}| > r_i(\mathcal{A})\} \neq \emptyset,$

(iii) for any $i \in N_2$, there exists a nonzero elements chain from *i* to *j* such that $j \in N_1$.

Lemma 4.[15, 17] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$. If there exists a positive diagonal matrix X such that $\mathcal{A}X^{m-1}$ is an \mathcal{H} -tensor, then \mathcal{A} is an \mathcal{H} -tensor.

In the following, some new criteria are proposed to judge *H*-tensors.

Theorem 3. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

 $|a_{ii\cdots i}|s_i > h_i, i \in N_1,$

where

$$h_{i} = \sum_{\substack{i_{2} \cdots i_{m} \in \mathbb{N}_{1}^{m-1} \\ \delta_{i_{2} \cdots i_{m}} = 0}} |a_{i_{1} 2 \cdots i_{m}}| (s_{i_{2}})^{\frac{1}{m-1}} \cdots (s_{i_{m}})^{\frac{1}{m-1}} + \sum_{\substack{i_{2} \cdots i_{m} \in \mathbb{N}_{2}^{m-1} \\ j \in \{i_{2}, i_{3}, \dots, i_{m}\}}} \max_{j \in \{i_{2}, i_{3}, \dots, i_{m}\}} \{t_{j}\} |a_{i_{2} \cdots i_{m}}| + r \sum_{\substack{i_{2} \cdots i_{m} \in \mathbb{N}_{2}^{m-1} \\ (\mathbb{N}_{1}^{m-1} \cup \mathbb{N}_{2}^{m-1})}} |a_{i_{1} 2 \cdots i_{m}}|,$$
(1)

then \mathcal{A} is an \mathcal{H} -tensor. **Proof** Let

$$M_{i} = \frac{|a_{ii\cdots i}|s_{i} - h_{i}}{\sum_{i_{2}\cdots i_{m} \in N^{m-1} \setminus N_{i}^{m-1}} |a_{ii_{2}\cdots i_{m}}|}, \ i \in N_{1}.$$

If $\sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_1^{m-1}} |a_{ii_2 \cdots i_m}| = 0$, we define $M_i = +\infty$. Obviously, $M_i > 0$, $i \in N_1$. Hence, there exists $\varepsilon > 0$ such

that

$$0 < \varepsilon < \min\left\{\min_{i \in N_1} M_i, 1 - \max_{i \in N_2} t_i\right\}.$$

Construct diagonal matrix $X = diag\{x_1, x_2, ..., x_n\}$ and denote $\mathcal{B} = (b_{i_1 i_2 \cdots i_m}) = \mathcal{A} X^{m-1}$, where

$$x_j = \begin{cases} (s_j)^{\frac{1}{m-1}}, & j \in N_1, \\ (\varepsilon + t_j)^{\frac{1}{m-1}}, & j \in N_2. \end{cases}$$

Obviously, *X* is a positive diagonal matrix.

Next, we will prove that \mathcal{B} is an strictly diagonally dominant tensor, and divided it into two cases as follows.

Case 1: For any $i \in N_1$, we obtain

$$r_{i}(\mathcal{B}) = \sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\\\delta_{ii_{2}\cdots i_{m}}=0}} |b_{ii_{2}\cdots i_{m}}| + \sum_{i_{2}\cdots i_{m}\in\mathbb{N}_{2}^{m-1}} |b_{ii_{2}\cdots i_{m}}| + \sum_{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\cup\mathbb{N}_{2}^{m-1}} |b_{ii_{2}\cdots i_{m}}| \\ = \sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\\\delta_{ii_{2}\cdots i_{m}}=0}} |a_{ii_{2}\cdots i_{m}}| (s_{i_{2}})^{\frac{1}{m-1}}\cdots (s_{i_{m}})^{\frac{1}{m-1}} + \sum_{i_{2}\cdots i_{m}\in\mathbb{N}_{2}^{m-1}} |a_{ii_{2}\cdots i_{m}}| (\varepsilon + t_{i_{2}})^{\frac{1}{m-1}}\cdots (\varepsilon + t_{i_{m}})^{\frac{1}{m-1}} \\ + \sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\cup\mathbb{N}_{2}^{m-1}\cup\mathbb{N}_{2}^{m-1}} |a_{ii_{2}\cdots i_{m}}| x_{i_{2}}\cdots x_{i_{m}} \\ \leq \sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\\\delta_{ii_{2}\cdots i_{m}}=0}} |a_{ii_{2}\cdots i_{m}}| (s_{i_{2}})^{\frac{1}{m-1}}\cdots (s_{i_{m}})^{\frac{1}{m-1}} + \sum_{i_{2}\cdots i_{m}\in\mathbb{N}_{2}^{m-1}} |a_{ii_{2}\cdots i_{m}}| (\varepsilon + t_{i_{2}})^{\frac{1}{m-1}}\cdots (\varepsilon + t_{i_{m}})^{\frac{1}{m-1}} \\ + (r + \varepsilon)\sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}^{m-1}\setminus(\mathbb{N}_{1}^{m-1}\cup\mathbb{N}_{2}^{m-1})} |a_{ii_{2}\cdots i_{m}}|. \end{cases}$$

$$(2)$$

10196

If $\sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_1^{m-1}} |a_{ii_2 \cdots i_m}| = 0$, then from inequality (2) and condition that $|a_{ii \cdots i}| s_i > h_i$ for each $i \in N_1$, it is easy to obtain that

$$r_{i}(\mathcal{B}) \leq \sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\\\delta_{ii_{2}\cdots i_{m}}=0}} |a_{ii_{2}\cdots i_{m}}|(s_{i_{2}})^{\frac{1}{m-1}}\cdots(s_{i_{m}})^{\frac{1}{m-1}}$$

$$< |a_{ii\cdots i}|s_{i}$$

$$= |b_{ii\cdots i}|.$$

If $\sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_1^{m-1}} |a_{ii_2 \cdots i_m}| \neq 0$, then from inequality (2) and condition that $|a_{ii \cdots i}|s_i > h_i$ for each $i \in N_1$, we obtain

$$\begin{aligned} r_i(\mathcal{B}) &\leq h_i + \varepsilon \sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_1^{m-1}} |a_{ii_2 \cdots i_m}| \\ &< h_i + M_i \sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_1^{m-1}} |a_{ii_2 \cdots i_m}| \\ &= |a_{ii \cdots i}| s_i \\ &= |b_{ii \cdots i}| \end{aligned}$$

Case 2: For any $i \in N_2$, we obtain $|a_{ii\cdots i}| > r_i(\mathcal{A}) \ge 0$, and from $0 < x_{i_j} \le 1$ for $i_j \in N$ and $j = 2, 3, \dots, m$, thus we get

$$\begin{split} |b_{ii\cdots i}| - r_i(\mathcal{B}) = &|a_{ii\cdots i}|(\varepsilon + t_i) - \sum_{i_2\cdots i_m \in N_1^{m-1}} |a_{ii_2\cdots i_m}| x_{i_2}\cdots x_{i_m} - \sum_{\substack{i_2\cdots i_m \in N_2^{m-1} \\ \delta_{ii_2\cdots i_m} = 0}} |a_{ii_2\cdots i_m}| x_{i_2}\cdots x_{i_m} \\ &- \sum_{i_2\cdots i_m \in N^{m-1} \setminus (N_1^{m-1} \cup N_2^{m-1})} |a_{ii_2\cdots i_m}| x_{i_2}\cdots x_{i_m} \\ &\geq \varepsilon |a_{ii\cdots i}| + r_i(\mathcal{A}) - \sum_{i_2\cdots i_m \in N_1^{m-1}} |a_{ii_2\cdots i_m}| - \sum_{\substack{i_2\cdots i_m \in N_2^{m-1} \\ \delta_{ii_2\cdots i_m} = 0}} |a_{ii_2\cdots i_m}| - \sum_{i_2\cdots i_m \in N_1^{m-1}} |a_{ii_2\cdots i_m}| x_{i_2\cdots i_m}| x_{i_2\cdots i_m} |x_{i_2\cdots i_m}| x_{i_2\cdots i_m \in N_2^{m-1}} |x_{i_2\cdots i_m}| x_{i_2\cdots i_m \in N_2^{m-1}} |x_{i_2\cdots i_m}| x_{i_2\cdots i_m \in N_2^{m-1}} |x_{i_2\cdots i_m \in N_2^{m-1}}| x_{i_2\cdots i_m \in N_2^{m-1}}| x_{i_2\cdots i_m \in N_2^{m-1}} |x_{i_2\cdots i_m \in N_2^{m-1}}| x_{i_2\cdots i_m \in N_2^{m-1}}| x_{$$

From Cases 1 and 2, we obtain $|b_{ii\cdots i}| > r_i(\mathcal{B})$ for all $i \in N$, that is, \mathcal{B} is an strictly diagonally dominant tensor, thus from Lemmas 1 and 4, \mathcal{A} is an \mathcal{H} -tensor.

From Theorem 3, we obtain the following corollary.

Corollary 1. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

$$|a_{ii\cdots i}|s_i > p_i, i \in N_1,$$

where

$$p_{i} = \sum_{\substack{i_{2}\cdots i_{m} \in N_{1}^{m-1} \\ \delta_{ii_{2}\cdots i_{m}} = 0}} \max_{j \in \{i_{2}, i_{3}, \dots, i_{m}\}} \{s_{j}\} |a_{ii_{2}\cdots i_{m}}| + \sum_{\substack{i_{2}\cdots i_{m} \in N_{2}^{m-1} \\ j \in \{i_{2}, i_{3}, \dots, i_{m}\}}} \max_{j \in \{i_{2}, i_{3}, \dots, i_{m}\}} \{t_{j}\} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1})} |a_{ii_{2}\cdots i_{m}}|,$$
(3)

then \mathcal{A} is an \mathcal{H} -tensor.

Proof From equalities (1) and (3), it is obvious to get $p_i \ge h_i$ for any $i \in N_1$, then from the condition that

 $|a_{ii\cdots i}|s_i>p_i,\ i\in N_1,$

we obtain

 $|a_{ii\cdots i}|s_i > p_i \ge h_i, \ i \in N_1,$

thus from Theorem 3, \mathcal{A} is an \mathcal{H} -tensor.

The following example is presented to illustrate Theorem 3.

Example 1. Let us consider tensor $\mathcal{A} = (a_{ijk}) = [A(1, :, :), A(2, :, :), A(3, :, :)] \in \mathbb{C}^{[3,3]}$, where

$$A(1,:,:) = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A(2,:,:) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 24 \end{pmatrix} and A(3,:,:) = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 100 \end{pmatrix}.$$

Obviously,

 $|a_{111}| = 16$, $r_1(\mathcal{A}) = 25$, $|a_{222}| = 9$, $r_2(\mathcal{A}) = 25$, $|a_{333}| = 100$ and $r_3(\mathcal{A}) = 10$,

hence $N_1 = \{1, 2\}, N_2 = \{3\}$. By calculation, we obtain

$$s_1 = \frac{16}{25}, \ s_2 = \frac{9}{25}, \ t_3 = \frac{1}{10} \ and \ r = \frac{16}{25}.$$

Thus, we get

$$|a_{111}|s_1 = \frac{256}{25} > 9 = h_1 = \sum_{\substack{jk \in N_1^2\\\delta_{1ik} = 0}} |a_{1jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + 0$$

and

$$|a_{222}|s_2 = \frac{81}{25} > \frac{76}{25} = h_2 = \sum_{\substack{jk \in N_1^2\\\delta_{2jk} = 0}} |a_{2jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + \sum_{jk \in N_2^2} \max_{l \in \{j,k\}} \{t_l\} |a_{2jk}| + 0,$$

hence, from Theorem 3, \mathcal{A} is an *H*-tensor.

Theorem 4. Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

(i) \mathcal{A} is irreducible,

(ii) $|a_{ii\cdots i}|s_i \ge h_i$, for each $i \in N_1$, where h_i is defined as equality (1),

(iii) for inequality of (ii), strictly inequality holds for at least one $i \in N_1$,

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Firstly, let the diagonal matrix $X = diag\{x_1, x_2, ..., x_n\}$ and $\mathcal{B} = (b_{i_1 i_2 \cdots i_m}) = \mathcal{A}X^{m-1}$, where

$$x_j = \begin{cases} (s_j)^{\frac{1}{m-1}}, & j \in N_1, \\ (t_j)^{\frac{1}{m-1}}, & j \in N_2. \end{cases}$$

Since \mathcal{A} is irreducible, we get $0 < t_j < 1$ for all $j \in N_2$, and from the definition of s_j , we obtain X is a positive diagonal matrix.

From the condition that \mathcal{A} has at least one $i \in N_1$ such that $|a_{ii\cdots i}|s_i > h_i$, therefore, without less of generality, suppose $|a_{jj\cdots j}|s_j > h_j$, $j \in N_1$.

Secondly, similar to the proof of Theorem 3, we conclude that $|b_{ii\cdots i}| \ge r_i(\mathcal{B})$ for all $i \in N \setminus \{j\}$ and $|b_{ij\cdots j}| > r_j(\mathcal{B})$.

Finally, since \mathcal{A} is irreducible and X is a positive diagonal matrix, \mathcal{B} is also irreducible, thus \mathcal{B} satisfies the conditions of Lemma 2. Therefore, by Lemmas 2 and 4, \mathcal{A} is an \mathcal{H} -tensor.

From Theorem 4, it is easy to get the following corollary.

Corollary 2. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

(i) \mathcal{A} is irreducible,

(ii) $|a_{ii\cdots i}|s_i \ge p_i$, for each $i \in N_1$, where p_i is defined as equality (3),

(iii) for inequality of (ii), strictly inequality holds for at least one $i \in N_1$,

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Using the same technique as in the proof of Corollary 1, obviously, we obtain that \mathcal{A} is an \mathcal{H} -tensor. The example 2 is presented to illustrate Theorem 4.

Example 2. Let us consider irreducible tensor $\mathcal{A} = (a_{ijk}) = [A(1, :, :), A(2, :, :), A(3, :, :)] \in \mathbb{C}^{[3,3]}$, where

$$A(1,:,:) = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A(2,:,:) = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 9 & 0 \\ 0 & 0 & 12 \end{pmatrix} and A(3,:,:) = \begin{pmatrix} 20 & 5 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 192 \end{pmatrix}.$$

Obviously,

$$|a_{111}| = 16$$
, $r_1(\mathcal{A}) = 16$, $|a_{222}| = 9$, $r_2(\mathcal{A}) = 16$, $|a_{333}| = 192$ and $r_3(\mathcal{A}) = 33$,

hence $N_1 = \{1, 2\}, N_2 = \{3\}$. By calculation, we obtain

$$s_1 = 1, \ s_2 = \frac{9}{16}, \ t_3 = \frac{11}{64} \ and \ r = 1$$

Thus, we get

$$|a_{111}|s_1 = 16 > 9 = h_1 = \sum_{\substack{jk \in N_1^2\\\delta_{1ik} = 0}} |a_{1jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + 0$$

and

$$|a_{222}|s_2 = \frac{81}{16} = h_2 = \sum_{\substack{jk \in N_1^2\\\delta_{jk} = 0}} |a_{2jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + \sum_{jk \in N_2^2} \max_{l \in \{j,k\}} \{t_l\} |a_{2jk}| + 0,$$

hence, \mathcal{A} satisfies the conditions of Theorem 4, that is, \mathcal{A} is an \mathcal{H} -tensor by Theorem 4.

Theorem 5. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

(i) \mathcal{A} is irreducible,

(ii) $|a_{ii\cdots i}|s_i \ge h_i$, $i \in N_1$, where h_i is defined as equality (1),

(iii) at least one $a_{i_1i_2\cdots i_m} \neq 0$, $i_j \in N_2$, $j = 1, 2, \dots, m$ and $i_1 \neq i_2 \neq \cdots \neq i_m$,

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Firstly, let the diagonal matrix $X = diag\{x_1, x_2, ..., x_n\}$ and $\mathcal{B} = (b_{i_1 i_2 \cdots i_m}) = \mathcal{A}X^{m-1}$, where

$$x_j = \begin{cases} (s_j)^{\frac{1}{m-1}}, & j \in N_1, \\ (t_j)^{\frac{1}{m-1}}, & j \in N_2. \end{cases}$$

Similarly as in the proof of Theorem 4, we obtain *X* is a positive diagonal matrix.

From the condition that \mathcal{A} has at least one $a_{i_1i_2\cdots i_m} \neq 0$, where $i_j \in N_2$, $j = 1, 2, \ldots, m$ and $i_1 \neq i_2 \neq \cdots \neq i_m$, therefore, without less of generality, suppose $a_{i_pi_2\cdots i_m} \neq 0$, where $i_j \in N_2$, $j = p, 2, 3, \ldots, m$ and $i_p \neq i_2 \neq \cdots \neq i_m$. Secondly, similarly as in the proof of Theorem 3, we conclude that $|b_{ii\cdots i}| \geq r_i(\mathcal{B})$ for all $i \in N \setminus \{i_p\}$ and

Secondly, similarly as in the proof of Theorem 3, we conclude that $|b_{ii\cdots i}| \ge r_i(\mathcal{B})$ for all $i \in \mathbb{N} \setminus \{l_p\}$ at $|b_{i_p i_p \cdots i_p}| > r_{i_p}(\mathcal{B})$.

Finally, since \mathcal{A} is irreducible and X is a positive diagonal matrix, \mathcal{B} is also irreducible, thus \mathcal{B} satisfies the conditions of Lemma 2. Therefore, by Lemmas 2 and 4, \mathcal{A} is an \mathcal{H} -tensor. From Theorem 5, we get the following corollary.

Corollary 3. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

(i) \mathcal{A} is irreducible,

(ii) $|a_{ii\cdots i}|s_i \ge p_i$, $i \in N_1$, where p_i is defined as equality (3),

(iii) at least one $a_{i_1i_2\cdots i_m} \neq 0$, $i_j \in N_2$, $j = 1, 2, \dots, m$ and $i_1 \neq i_2 \neq \cdots \neq i_m$,

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Using the same technique as in the proof of Corollary 1, it is easy to get that \mathcal{A} is an \mathcal{H} -tensor. The example 3 is presented to illustrate Theorem 5.

Example 3. Let us consider irreducible tensor $\mathcal{A} = (a_{ijk}) = [A(1,:,:), A(2,:,:), A(3,:,:)] \in \mathbb{C}^{[3,3]}$, where

$$A(1,:,:) = \begin{pmatrix} 16 & 0 & 5 \\ 4 & 16 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A(2,:,:) = \begin{pmatrix} 20 & 2 & 2 \\ 0 & 100 & 0 \\ 0 & 0 & 4 \end{pmatrix} and A(3,:,:) = \begin{pmatrix} 2 & 5 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 100 \end{pmatrix}.$$

Obviously,

$$|a_{111}| = 16$$
, $r_1(\mathcal{A}) = 25$, $|a_{222}| = 100$, $r_2(\mathcal{A}) = 28$, $|a_{333}| = 100$ and $r_3(\mathcal{A}) = 15$,

hence $N_1 = \{1\}$, $N_2 = \{2, 3\}$. By calculation, we obtain

$$s_1 = \frac{16}{25}, t_2 = \frac{7}{25}, t_3 = \frac{3}{20} and r = \frac{16}{25}$$

Since \mathcal{A} is irreducible, $N_1 = \{1\}, a_{233} = 4$ and

$$|a_{111}|s_1 = \frac{256}{25} = h_1 = \sum_{jk \in N_2^2} \max_{l \in \{j,k\}} \{t_l\} |a_{1jk}| + r \sum_{jk \in N^2 \setminus (N_1^2 \cup N_2^2)} |a_{1jk}| + 0,$$

 \mathcal{A} satisfies the conditions of Theorem 5, thus from Theorem 5, \mathcal{A} is an \mathcal{H} -tensor.

Theorems 4 and 5 are given to judge whether an irreducible tensor is \mathcal{H} -tensor. Obviously, Example 2 does not satisfy the conditions of Theorem 5 since $N_2 = \{3\}$, Example 3 does not satisfy the conditions of Theorem 4 since $N_1 = \{1\}$ and $|a_{111}|s_1 = \frac{256}{25} = h_1$. Therefore, Examples 2 and 3 show that Theorem 4 and Theorem 5 are mutually included.

Theorem 6. Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

(i) $|a_{ii\cdots i}|s_i \ge h_i$ for each $i \in N_1$, where h_i is defined as equality (1),

(ii) $G_1(\mathcal{A}) \cup G_2(\mathcal{A}) \neq \emptyset$, where $G_1(\mathcal{A}) = \{i : |a_{ii\cdots i}|s_i > h_i, i \in N_1\}$ and $G_2(\mathcal{A}) = \{i : |a_{ii\cdots i}|t_i > h_i, i \in N_2\}$,

(iii) for any $i \in (N_1 \setminus G_1(\mathcal{A}) \cup G_2 \setminus G_2(\mathcal{A}))$, there exists a nonzero elements chain from i to j such that $j \in (G_1(\mathcal{A}) \cup G_2(\mathcal{A}))$,

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Firstly, construct diagonal matrix $X = diag\{x_1, x_2, ..., x_n\}$ and denote $\mathcal{B} = (b_{i_1i_2\cdots i_m}) = \mathcal{A}X^{m-1}$, where

$$x_j = \begin{cases} (s_j)^{\frac{1}{m-1}}, & j \in N_1, \\ (t_j)^{\frac{1}{m-1}}, & j \in N_2. \end{cases}$$

From the condition that for any $i \in (N_1 \setminus G_1(\mathcal{A}) \cup G_2 \setminus G_2(\mathcal{A}))$, \mathcal{A} exists a nonzero elements chain from i to j such that $j \in (G_1(\mathcal{A}) \cup G_2(\mathcal{A}))$ and set $G_2(\mathcal{A})$ and Definition 5, it is easy to get $r_i(\mathcal{A}) \neq 0$ for any $i \in N_2$. Thus, from the definitions of s_i and t_j , we obtain X is a positive diagonal matrix.

Secondly, similar to the proof of Theorem 3, we conclude that $|b_{ii\cdots i}| \ge r_i(\mathcal{B})$ for all $i \in N$. From the condition $G_1(\mathcal{A}) \cup G_2(\mathcal{A}) \neq \emptyset$, we obtain that there exists at least an $i_p \in N$ such that $|b_{i_p i_p \cdots i_p}| > r_{i_p}(\mathcal{B})$.

On the other hand, if $|b_{ii\cdots i}| = r_i(\mathcal{B})$, then $i \in (N_1 \setminus G_1(\mathcal{A}) \cup N_2 \setminus G_2(\mathcal{A}))$, and from the condition that for any $i \in (N_1 \setminus G_1(\mathcal{A}) \cup N_2 \setminus G_2(\mathcal{A}))$, \mathcal{A} exists a nonzero elements chain from i to j such that $j \in (G_1(\mathcal{A}) \cup G_2(\mathcal{A}))$, we obtain that \mathcal{B} exists a nonzero elements chain from i to j with $|b_{ij\cdots i}| > r_i(\mathcal{B})$.

Finally, based on above analysis, we draw a conclusion that \mathcal{B} satisfies the conditions of Lemma 3, hence by Lemmas 3 and 4, \mathcal{A} is an \mathcal{H} -tensor.

From Theorem 6, we obtain the following corollary.

Corollary 4. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

(i) $|a_{ii\cdots i}|s_i \ge p_i$, for each $i \in N_1$, where p_i is defined as equality (3),

(ii) $K_1(\mathcal{A}) \cup K_2(\mathcal{A}) \neq \emptyset$, where $K_1(\mathcal{A}) = \{i : |a_{ii\cdots i}| s_i > p_i, i \in N_1\}$ and $K_2(\mathcal{A}) = \{i : |a_{ii\cdots i}| t_i > p_i, i \in N_2\}$,

(iii) for any $i \in (N_1 \setminus K_1(\mathcal{A}) \cup N_2 \setminus K_2(\mathcal{A}))$, there exists a nonzero elements chain from i to j such that $j \in (K_1(\mathcal{A}) \cup K_2(\mathcal{A}))$,

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Using the same technique as in the proof of Corollary 1, obviously, we get that \mathcal{A} is an \mathcal{H} -tensor. The following example is presented to illustrate Theorem 6.

Example 4. Let us consider tensor $\mathcal{A} = (a_{ijk}) = [A(1, :, :), A(2, :, :), A(3, :, :)] \in \mathbb{C}^{[3,3]}$, where

$$A(1,:,:) = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A(2,:,:) = \begin{pmatrix} 0 & 0 & 5 \\ 0 & 16 & 0 \\ 0 & 0 & 27 \end{pmatrix} and A(3,:,:) = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 27 \end{pmatrix}.$$

Obviously,

$$|a_{111}| = 16$$
, $r_1(\mathcal{A}) = 20$, $|a_{222}| = 16$, $r_2(\mathcal{A}) = 32$, $|a_{333}| = 27$ and $r_3(\mathcal{A}) = 4$

hence $N_1 = \{1, 2\}, N_2 = \{3\}$. By calculation, we obtain

$$s_1 = \frac{4}{5}, \ s_2 = \frac{1}{2}, \ t_3 = \frac{4}{27} \ and \ r = \frac{4}{5}$$

Since $J_1(\mathcal{A}) = \{1\}, J_2(\mathcal{A}) = \emptyset, a_{213} = 5, a_{312} = 1,$

$$|a_{111}|s_1 = \frac{64}{5} > 10 = h_1 = \sum_{\substack{jk \in N_1^2\\\delta_{1jk} = 0}} |a_{1jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + 0,$$

and

$$|a_{222}|s_2 = 8 = h_2 = \sum_{jk \in N_2^2} \max_{l \in \{j,k\}} \{t_l\} |a_{2jk}| + r \sum_{jk \in N^2 \setminus (N_1^2 \cup N_2^2)} |a_{2jk}| + 0,$$

thus from Theorem 6, \mathcal{A} is an \mathcal{H} -tensor.

Theorem 7. Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

$$|a_{ii\cdots i}|s_{i} > \sum_{\substack{i_{2}\cdots i_{m} \in N_{1}^{m-1} \\ \delta_{ii_{2}\cdots i_{m}} = 0}} |a_{ii_{2}\cdots i_{m}}|(s_{i_{2}})^{\frac{1}{m-1}} \cdots (s_{i_{m}})^{\frac{1}{m-1}} + r \sum_{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1})} |a_{ii_{2}\cdots i_{m}}|, \ i \in N_{1},$$

$$(4)$$

and

$$\sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_2^{m-1}} |a_{ii_2 \cdots i_m}| = 0, \ i \in N_2,$$

then \mathcal{A} is an \mathcal{H} -tensor.

Proof From inequality (4), we obtain that for each $i \in N_1$, there exists a positive number K > 1 such that for any $i \in N_1$,

$$\begin{aligned} |a_{ii\cdots i}|s_{i} &> \sum_{\substack{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\\\delta_{ii_{2}\cdots i_{m}}=0}} |a_{ii_{2}\cdots i_{m}}|(s_{i_{2}})^{\frac{1}{m-1}}\cdots(s_{i_{m}})^{\frac{1}{m-1}} + r\sum_{i_{2}\cdots i_{m}\in\mathbb{N}_{1}^{m-1}\cup\mathbb{N}_{2}^{m-1}} |a_{ii_{2}\cdots i_{m}}| \\ &+ \frac{1}{K}\sum_{i_{2}\cdots i_{m}\in\mathbb{N}_{2}^{m-1}} \max_{j\in\{i_{2},i_{3},\dots,i_{m}\}}\{t_{j}\}|a_{ii_{2}\cdots i_{m}}|.\end{aligned}$$

For any $i \in N_1$, denote

$$T_{i} = \frac{|a_{ii\cdots i}|s_{i} - q_{i}}{\sum_{i_{2}\cdots i_{m} \in N^{m-1} \setminus N_{1}^{m-1}} |a_{ii_{2}\cdots i_{m}}|}, \ i \in N_{1},$$

where

$$q_{i} = \sum_{\substack{i_{2}\cdots i_{m} \in N_{1}^{m-1} \\ \delta_{ii_{2}\cdots i_{m}} = 0}} |a_{ii_{2}\cdots i_{m}}| (s_{i_{2}})^{\frac{1}{m-1}} \cdots (s_{i_{m}})^{\frac{1}{m-1}} + \frac{1}{K} \sum_{\substack{i_{2}\cdots i_{m} \in N_{2}^{m-1} \\ j \in \{i_{2}, i_{3}, \dots, i_{m}\}}} \max_{j \in \{i_{2}, i_{3}, \dots, i_{m}\}} \{t_{j}\} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N}} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N}} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N}} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N}} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N}} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N}} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) \\ i_{2}\cdots i_{m} \in N} |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1} \cup N_{2}^{m-1}) |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1}) |a_{ii_{2}\cdots i_{m}}| + r \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1} \cup N_{2}^{m-1}) |a_{ii_{2}\cdots i_{m}}| +$$

If $\sum_{i_2 \cdots i_m \in N^{m-1} \setminus N_1^{m-1}} |a_{ii_2 \cdots i_m}| = 0$, we define $T_i = +\infty$. Obviously, $T_i > 0$, $i \in N_1$. Hence, there exists $\varepsilon > 0$ such that

$$0 < \varepsilon < \min\left\{\min_{i \in N_1} T_i, 1 - \max_{i \in N_2} \frac{t_i}{K}\right\}.$$

Construct diagonal matrix $X = diag\{x_1, x_2, ..., x_n\}$, and denote $\mathcal{B} = (b_{i_1 i_2 \cdots i_m}) = \mathcal{A} X^{m-1}$, where

$$x_{j} = \begin{cases} (s_{j})^{\frac{1}{m-1}}, & j \in N_{1}, \\ (\varepsilon + \frac{t_{j}}{K})^{\frac{1}{m-1}}, & j \in N_{2}. \end{cases}$$

Obviously, *X* is a positive diagonal matrix.

Next, similarly as in the proof of Theorem 3, we obtain that \mathcal{B} is an strictly diagonally tensor. Thus, from Lemmas 1 and 4, \mathcal{A} is an \mathcal{H} -tensor.

From Theorem 7, a corollary is obtained as follows.

Corollary 5. Let
$$\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$$
. If

$$|a_{ii\cdots i}|s_{i} > \sum_{\substack{i_{2}\cdots i_{m} \in N_{1}^{m-1} \\ \delta_{ii_{2}\cdots i_{m}} = 0}} \max_{j \in \{i_{2}, i_{3}, \dots, i_{m}\}} \{s_{j}\} |a_{ii_{2}\cdots i_{m}}| + r \sum_{i_{2}\cdots i_{m} \in N^{m-1} \setminus (N_{1}^{m-1} \cup N_{2}^{m-1})} |a_{ii_{2}\cdots i_{m}}|, \ i \in N_{1},$$

and

$$\sum_{i_2\cdots i_m\in N^{m-1}\setminus N_2^{m-1}} |a_{ii_2\cdots i_m}| = 0, \ i\in N_2,$$

then \mathcal{A} is an \mathcal{H} -tensor.

Proof Using the same technique as in the proof of Corollary 1, obviously, it is easy to obtain that \mathcal{A} is an \mathcal{H} -tensor.

The following example is presented to illustrate Theorem 7.

Example 5. Let us consider tensor $\mathcal{A} = (a_{ijk}) = [A(1, :, :), A(2, :, :), A(3, :, :)] \in \mathbb{C}^{[3,3]}$, where

$$A(1,:,:) = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 5 \end{pmatrix}, A(2,:,:) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 9 & 1 \\ 0 & 1 & 22 \end{pmatrix} and A(3,:,:) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 10 & 2 \\ 0 & 2 & 100 \end{pmatrix}.$$

Obviously,

 $|a_{111}| = 16$, $r_1(\mathcal{A}) = 25$, $|a_{222}| = 9$, $r_2(\mathcal{A}) = 25$, $|a_{333}| = 100$ and $r_3(\mathcal{A}) = 14$,

hence $N_1 = \{1, 2\}, N_2 = \{3\}$. By calculation, we obtain

$$s_1 = \frac{16}{25}, \ s_2 = \frac{9}{25}, \ t_3 = \frac{7}{50} \ and \ r = \frac{16}{25}.$$

Thus, we obtain

$$|a_{111}|s_1 = \frac{256}{25} > \frac{36}{5} = \sum_{\substack{jk \in N_1^2\\\delta_{1jk} = 0}} |a_{1jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + r \sum_{jk \in N^2 \setminus (N_1^2 \cup N_2^2)} |a_{1jk}|,$$

and

$$|a_{222}|s_2 = \frac{81}{25} > \frac{48}{25} = \sum_{\substack{jk \in N_1^2\\\delta_{2jk} = 0}} |a_{2jk}| (s_j)^{\frac{1}{2}} (s_k)^{\frac{1}{2}} + r \sum_{\substack{jk \in N^2 \setminus (N_1^2 \cup N_2^2)}} |a_{2jk}|,$$

hence \mathcal{A} satisfies the conditions of Theorem 7, thus from Theorem 7, \mathcal{A} is an \mathcal{H} -tensor.

At the end of this section, we give a numerical example, which shows that some criteria of existing \mathcal{H} -tensor can not be used to determine whether it is an \mathcal{H} -tensor, but we can use new criterion which is proposed by us to judge that it is an \mathcal{H} -tensor. Before that, some criteria for judging \mathcal{H} -tensor are recalled.

Theorem 8. [15] Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

$$|a_{ii\cdots i}|s_{i} > r \sum_{\substack{i_{2}\cdots i_{m} \in \mathbb{N}^{m-1} \setminus \mathbb{N}_{2}^{m-1} \\ \delta_{ii_{2}\cdots i_{m}} = 0}} |a_{ii_{2}\cdots i_{m}}| + \sum_{\substack{i_{2}\cdots i_{m} \in \mathbb{N}_{2}^{m-1} \\ j \in \{i_{2}, i_{3}, \dots, i_{m}\}}} \max_{j \in \{i_{2}, i_{3}, \dots, i_{m}\}} \{t_{j}\}|a_{ii_{2}\cdots i_{m}}|, \forall i \in \mathbb{N}_{1}$$

then \mathcal{A} is an \mathcal{H} -tensor.

Theorem 9. [16] Let $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. If

$$|a_{ii\cdots i}| > \sum_{\substack{i_2 \cdots i_m \in N^{m-1} \setminus N_2^{m-1} \\ \delta_{ii_2 \cdots i_m} = 0}} |a_{ii_2 \cdots i_m}| + \sum_{\substack{i_2 \cdots i_m \in N_2^{m-1} \\ j \in \{i_2, i_3, \dots, i_m\}}} \max_{j \in \{i_2, i_3, \dots, i_m\}} \{t_j\} |a_{ii_2 \cdots i_m}|, \ \forall i \in N_1$$

then \mathcal{A} is an \mathcal{H} -tensor.

Theorem 10. [17] Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{C}^{[m,n]}$. If for all $i \in N_1, j \in N_2$

$$\begin{pmatrix} R_{j}(A) - \sum_{\substack{j_{2}\cdots j_{m} \in N_{2}^{m-1} \\ \delta_{jj_{2}\cdots j_{m}} = 0}} \max_{j \in \{j_{2}, j_{3}, \dots, j_{m}\}} \{t_{j}\} | a_{jj_{2}\cdots j_{m}}| \\ \end{pmatrix} \begin{pmatrix} |a_{ii\cdots i}| - \sum_{\substack{i_{2}\cdots i_{m} \in N^{m-1} \setminus N_{2}^{m-1} \\ \delta_{ii_{2}\cdots i_{m}} = 0}} |a_{ii_{2}\cdots i_{m}}| \\ \end{pmatrix} \\ > \sum_{j_{2}\cdots j_{m} \in N^{m-1} \setminus N_{2}^{m-1}} |a_{jj_{2}\cdots j_{m}}| \sum_{\substack{i_{2}\cdots i_{m} \in N_{1}^{m-1} \\ j \in \{i_{2}, i_{3}, \dots, i_{m}\}}} \max_{\{t_{j}\}} |a_{ii_{2}\cdots i_{m}}|,$$

then \mathcal{A} is an \mathcal{H} -tensor.

Theorem 11. [19] Let $\mathcal{A} = (a_{i_1 i_2 \dots i_m}) \in \mathbb{C}^{[m,n]}$. If there exists a nonempty subset *S* of *n* such that

(i) $|a_{ii\cdots i}| > r_i(\mathcal{A}), \forall i \in S,$ (ii) $|a_{ii\cdots i}|(|a_{jj\cdots j}| - r_j^{S^*}(\mathcal{A})) > r_i(\mathcal{A})r_j^S(\mathcal{A}), \forall i \in S, j \in \overline{S}, \text{ where } S \cup \overline{S} = n,$ here \mathcal{A} is an \mathcal{H} tensor

then \mathcal{A} is an \mathcal{H} -tensor.

Example 6. We still consider the tensor \mathcal{A} in Example 1. By calculation, we obtain

$$|a_{111}| = 16, r_1(\mathcal{A}) = 25, |a_{222}| = 9, r_2(\mathcal{A}) = 25, |a_{333}| = 100, r_3(\mathcal{A}) = 10,$$

 $N = \{1, 2, 3\}, N_1 = \{1, 2\}, N_2 = \{3\}, s_1 = \frac{16}{25}, s_2 = \frac{9}{25}, t_3 = \frac{1}{10} and r = \frac{16}{25},$

Thus, we get

$$|a_{111}|s_1 = \frac{256}{25} < 16 = r \sum_{\substack{jk \in N^2 \setminus N_2^2 \\ \delta_{1jk} = 0}} |a_{1jk}| + 0 \text{ and } |a_{111}| = 16 < 25 = \sum_{\substack{jk \in N^2 \setminus N_2^2 \\ \delta_{1jk} = 0}} |a_{1jk}| + 0,$$

hence we can not judge whether the tensor \mathcal{A} is an \mathcal{H} -tensor or not by Theorems 8, 9 and 10. Since $N_2 = \{3\}$, we can only take $S = \{3\}$ and $\overline{S} = \{1, 2\}$ from Theorem 11, thus we obtain $|a_{111}| - r_1^{S^*}(\mathcal{A}) = -9$, it is obvious that the \mathcal{A} does not satisfy the conditions of Theorem 11, hence we can not use Theorem 11 to determine whether it is an \mathcal{H} -tensor. However, in fact, \mathcal{A} is an \mathcal{H} -tensor from Example 1.

3. An application

In this section, based on new criteria for judging \mathcal{H} -tensors in section 2, some new criteria for identifying the positive definiteness of an even-order real symmetric tensor are presented.

From Theorems 3, 4, 5, 6 and 7, we get the following result.

Theorem 12. Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{R}^{[m,n]}(m, n \ge 2)$. If *m* is even, $a_{pp\cdots p} > 0$ for all $p \in N$, \mathcal{A} is symmetric and satisfies one of the following conditions, then \mathcal{A} is positive definite:

(i) all the conditions of Theorem 3;

(ii) all the conditions of Theorem 4;

(iii) all the conditions of Theorem 5;

(iv) all the conditions of Theorem 6;

(v) all the conditions of Theorem 7.

From Theorem 8 and Corollaries 1, 2, 3, 4 and 5, it is easy to obtain the following corollary.

Corollary 6. Let $\mathcal{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{R}^{[m,n]}$. If *m* is even, $a_{pp\cdots p} > 0$ for all $p \in N$, \mathcal{A} is symmetric and satisfies one of the following conditions, then \mathcal{A} is positive definite:

(i) all the conditions of Corollary 1;

(ii) all the conditions of Corollary 2;

(iii) all the conditions of Corollary 3;

(iv) all the conditions of Corollary 4,

(v) all the conditions of Corollary 5.

The following example is given to show this result.

Example 7. Consider the following 4th-degree homogeneous polynomial

 $f(x) = 598000x_1^4 + 64x_2^4 + 27x_3^4 + 320x_1^3x_2 + 452x_1^3x_3 + 4x_1x_3^3 + 36x_1x_2^3 + 18x_1^2x_2^2 + 18x_2^2x_3^2,$

where $x = (x_1, x_2, x_3)^T$. Then we can obtain a symmetric tensor $\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{[4,3]}$, where

$$\begin{aligned} A(1,1,:,:) &= \begin{pmatrix} 598000 & 80 & 113 \\ 80 & 3 & 0 \\ 113 & 0 & 0 \end{pmatrix}, A(1,2,:,:) &= \begin{pmatrix} 80 & 3 & 0 \\ 3 & 9 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A(1,3,:,:) &= \begin{pmatrix} 113 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ A(2,1,:,:) &= \begin{pmatrix} 80 & 3 & 0 \\ 3 & 9 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A(2,2,:,:) &= \begin{pmatrix} 3 & 9 & 0 \\ 9 & 64 & 0 \\ 0 & 0 & 3 \end{pmatrix}, A(2,3,:,:) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}, \\ A(3,1,:,:) &= \begin{pmatrix} 113 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A(3,2,:,:) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}, A(3,3,:,:) &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 27 \end{pmatrix}. \end{aligned}$$

Obviously,

$$|a_{1111}| = 598000, r_1(\mathcal{A}) = 598, |a_{2222}| = 64, r_2(\mathcal{A}) = 125, |a_{3333}| = 27 and r_3(\mathcal{A}) = 125,$$

so $N_1 = \{2, 3\}$, $N_2 = \{1\}$. By simple calculation, we obtain

$$t_1 = \frac{1}{1000}, \ s_2 = \frac{64}{125}, \ s_3 = \frac{27}{125} \ and \ r = \frac{64}{125}.$$

Thus, we get

$$|a_{2222}|s_{2} = \frac{4096}{125} > \frac{2638}{125} = h_{2} = \sum_{\substack{jkl \in N_{1}^{3} \\ \delta_{2jkl} = 0}} |a_{2jkl}| (s_{j})^{\frac{1}{3}} (s_{k})^{\frac{1}{3}} (s_{l})^{\frac{1}{3}} + \sum_{jkl \in N_{2}^{3}} \max_{\substack{j \in \{j,k,l\}}} \{t_{j}\} |a_{2jkl}| + r \sum_{\substack{jkl \in N^{3} \setminus (N_{1}^{3} \cup N_{2}^{3}) \\ \delta_{2jkl} = 0}} |a_{2jkl}| (s_{j})^{\frac{1}{3}} (s_{k})^{\frac{1}{3}} (s_{k})^{\frac{1}{3}} (s_{k})^{\frac{1}{3}} + \sum_{\substack{j \in \{j,k,l\}}} \max_{\substack{j \in \{j,k,l\}}} \{t_{j}\} |a_{2jkl}| + r \sum_{\substack{jkl \in N^{3} \\ \delta_{2jkl} = 0}} |a_{2jkl}| (s_{j})^{\frac{1}{3}} (s_{k})^{\frac{1}{3}} (s_{$$

and

$$|a_{3333}|s_3 = \frac{729}{125} > \frac{1021}{200} = h_3 = \sum_{\substack{jkl \in N_1^3 \\ \delta_{3jkl} = 0}} |a_{3jkl}| (s_j)^{\frac{1}{3}} (s_k)^{\frac{1}{3}} (s_l)^{\frac{1}{3}} + \sum_{jkl \in N_2^3} \max_{j \in \{j,k,l\}} \{t_j\} |a_{3jkl}| + r \sum_{jkl \in N_1^3 \setminus (N_1^3 \cup N_2^3)} |a_{3jkl}|,$$

which means that \mathcal{A} satisfies the conditions of Theorem 3, and m = 4, hence, f(x) is positive definite by Theorem 8.

4. Conclusions

In this paper, some new criteria are proposed for judging \mathcal{H} -tensors, which is easy to verify since they only depend on elements of the given tensors. As an application, some sufficient conditions of the positive definiteness for even-order real symmetric tensors are obtained. In addition, some numerical examples are presented to illustrate those new results.

Availability of data and materials: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Author's contributions: All authors jointly worked on the results and they read and approved the final manuscript.

Funding

This work is partly supported by the National Natural Science Foundations of China (31600299); The Natural Science Basic Research Program of Shaanxi, China (2020JM-622); The Science and Technology Project of Baoji (2017JH2-24); The Key Project of Baoji University of Arts and Sciences (ZK16050) and the Postgraduate Innovative Research Project of Baoji University of Arts and Sciences(YJSCX20ZD05).

Acknowledgements

The authors are grateful to the referee for careful reading of the paper and valuable suggestions and comments.

References

- Y.N. Yang, Q.Z. Yang, Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM. J. Matrix Anal. Appl. 2010;31:2517-2530.
- [2] L.Q. Qi, Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005;40:1302-1324.
- [3] C.Q. Li, Y.T. Li, K. Xu, New eigenvalue inclusion sets for tensor. Numer. Algebra App. 2014;21;39-50.
- [4] T.G. Kolda, J.R. Mayo, Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 2011;32:1095-1124.
- [5] Q. Ni, L. Q. Qi, F. Wang, An eigenvalue method for the positive definiteness identification problem. IEEE Trans. Automat. Control. 2008;53:1096-1107.
- [6] K.C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 2008;6:507-520.
- [7] C.Q. Li, F, Wang, J.X. Zhao, Y.T. Li, Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 2014;255:1-14.
- [8] W.Y. Ding, L.Q. Qi, Y.M. Wei, M-tensors and nonsingular M-tensors. Linear Algebra Appl. 2013;439:3264-3278.
- [9] L.Q. Qi, Y.S. Song, An even order symmetric *B*-tensor is positive definite. Linear Algebra Appl. 2014;457:303-312. [10] C.Q. Li, F. Wang, J.X. Zhao, Y.T. Li, Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math.
- 2014;255:1-14.
- [11] L.P. Zhang, L.Q. Qi, G.L. Zhou, M-tensors and some applications. SIAM J. Matrix Anal. Appl. 2014;32:437-452.
- [12] F. Wang, L.Q. Qi, Comments on explicit criterion for the positive definiteness of a general quartic form. IEEE Trans. Autom. Control. 2005;50:416-418.
- [13] L.Q. Qi, G.H. Yu, Y. Xu, Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 2013;45:103-113.
- [14] R.J. Zhao, L. Gao, Q.L. Liu, Y.T. Li, Criterions for identifying *H*-tensors. Front. Math. China. 2016;11:661-678.
- [15] F. Wang, D.S. Sun, New criteria for H-tensors and an application. J. Inequal. Appl. 2016;96:1-12.
- [16] Y.T. Li, Q.L. Liu, L.Q. Qi, Programmable criteria for strong *H*-tensors. Numer Algor. 2017;74:199-211.
- [17] F. Wang, D.S. Sun, J.X. Zhao, C.Q. Li, New practical criteria for *H*-tensors and its application. Linear Multilinear Algebra. 2017;65:269-283.
- [18] M.R. Kannan, N. Shaked-Monderer, A. Berman, Some properties of strong *H*-tensors and general *H*-tensors. Linear Algebra Appl. 2015;476:42-55.
- [19] Y.Y. Xu, R.J. Zhao, B. Zheng, Some criteria for identifying strong *H*-tensors. Numer Algor. 2019;80:1121-1141.
- [20] J.J. Cui, G.H. Peng, Q. Lu, Z.G. Huang, New iterative criteria for strong *H*-tensors and an application. Jinequal Appl. 2017;49:1-16.
- [21] G.L. Zhou, L. Caccetta, Nonsingular H-tensor and its criteria. J. Ind. Manag. Optim. 2016:1173-1186.
- [22] F. Wang, D.S. Sun, Y.M. Xu, Some criteria for identifying *H*-tensors and its applications. Calcolo. 2019;56:1-19.
- [23] G. Li, Y.C. Zhang, Y. Feng, Criteria for nonsingular *H*-tensors. J. Adv. Appl. Math. 2018;3(2):66-72.
- [24] W.B. Gong, Y.Q. Wang, Some new criteria for judging \mathcal{H} -tensors and their applications. AIMS Math. 2023;8(4):7606-7617.
- [25] W.B. Gong, Y. Li, Y.Q. Wang, An Improved Iterative Algorithm for Identifying Strong *H*-Tensors. Communications on Applied Mathematics and Computation, 2024: 1-17.