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Abstract. This study extends algebraic perspectives to non-topological closure spaces by introducing Hopf
structures. We define closure Hopf spaces and groups, investigate their properties, and explore homotopy
theory within this framework. Contravariant functors are established between the homotopy category
of closure Hopf groups and the category of groups. We also introduce the concept of sub-CH groups
for analyzing similar algebraic properties within CH group subsets. This research significantly advances
our understanding of algebraic structures in closure spaces, and broadening the scope of mathematical
exploration in this field.

1. Introduction

As a multidisciplinary field, algebraic topology uses algebraic techniques to transform topological
problems into algebraic ones, providing practical tools for their solution. This mathematical discipline
covers two main areas: homotopy theory and homology theory.

Homotopy theory relies on the notion of homotopy of mappings: Two maps f , 1 : X→ Y are homotopic
if and only if there exists a continuous function F : X × [0, 1]→ Y such that F(x, 0) = f (x) and F(x, 1) = 1(x).
We use the notation ≃ for homotopy of functions [22].

Within the framework of transitioning from topology to algebra, the Hopf group (H-group) concept
emerges as an extension of the notion of a topological group, employing the machinery of homotopy
theory. An H-group is characterized by a structure closely resembling a group, exhibiting an associative
multiplication operation defined up to homotopy, along with homotopy inverses and a homotopy iden-
tity element. More precisely, a topological H-group is a pointed topological space (X, x0) with a binary
multiplication m : X × X→ X and the constant function c : X→ X, c(x) = x0 such that:

i) m(c, 1X) ≃ 1X ≃ m(1X, c)
ii) m(m × 1X) ≃ m(1X ×m)

iii) m(n, 1X) ≃ c ≃ m(1X,n), for a continuous function n : X→ X.

If only (i) holds, then (X, x0) is called a Hopf space (H-space); see [2, 10, 19]. n is said to be a homotopy
inverse.
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H-space and H-group structures are topics of study across various mathematical areas. The digital
counterparts of these concepts have been defined in [8, 12–16]. Investigating H-group structures extends
to fuzzy topological spaces in [5, 6]. Serving as the dual concept to H-space, the notion of co-H-space has
been examined in the context of digital images in [9, 15], fuzzy topological spaces in [7], and closure spaces
in [4].

This work focuses on constructing H-space and H-group structures on closure spaces, also called
pretopological spaces.

A closure space [3] is defined as a generalization of a topological space in the following manner: Given
a space X and the operator c : P(X) → P(X), where P(X) represents the power set of X. If the following
conditions are satisfied:

i) c(∅) = ∅
ii) A ⊆ c(A) for all A ∈ P(X)

iii) c(A ∪ B) = c(A) ∪ c(B)

then the operator c is referred to as a closure operator on X, and the space equipped with this operator is
termed a closure space. If the closure operator c is topological, i.e., it satisfies the axiom:

iv) c(c(A)) = c(A), for all A ∈ P(X),

then we arrive at the classical definition of a topological space. However, this additional axiom can introduce
limitations in specific applications. For instance, in graph theory, when considering the closure of a vertex
in a graph as the set of all adjacent points, it becomes evident that this operator is not a topological closure
operator. Consequently, closure spaces find significance in fields like graph theory, where mathematical
objects are employed for modeling purposes in both natural and social sciences.

This study aims to establish H-space and H-group structures in closure spaces by utilizing the homotopy
definition provided in [18]. Consequently, in non-topological closure spaces, a group-like structure is
established, transforming problems in closure spaces into algebraic problems.

The sections of this study are organized as follows. In Section 2, we provide essential information about
closure spaces. Furthermore, we define certain operations between closure operators and offer illustrative
examples. Section 3 is divided into two parts. In the first part, 3.1, we introduce the concept of H-space
within closure spaces. We present an example of the H-space structure in non-topological closure spaces.
Additionally, we demonstrate that the H-space concept remains preserved in closure spaces under Cartesian
multiplication. We also define deformation retracts, retracts, and weak retracts in the context of closure
spaces and investigate the relationships between these structures and the H-space concept. For instance, we
establish that a weak retract of a commutative closure H-space retains its commutative H-space property.
The second part of Chapter 3, 3.2, focuses on the study of H-groups in closure spaces. After defining
the concept of Closure H-group, we prove that having the same homotopy type preserves the H-group
structure within closure spaces. We also explore the transitions of retract species within Closure H-group
structures. In Section 3, we establish a group structure on the set of homotopy classes of functions defined on
pointed closure H-spaces. Consequently, we establish the existence of a contravariant functor between the
category of closure Hopf groups and the category of groups. This result is achieved by demonstrating that
the set comprising homotopy classes of functions between closure Hopf groups possesses the fundamental
characteristics of a group. Therefore, we establish a significant link between these two categories. In Section
4, we define the subspace of the H-space concept within closure spaces and analyze some of its properties.
Finally, Section 5 concludes the paper with summary.

Within this study, each non-original theorem, definition, example, etc., is presented with proper citations.

2. Closure space

Kuratowski introduced the concept of a closure space via a topological closure operator capable of
constructing a topological space [11]. Subsequently, Cech introduced the Cech closure space, a more
general form of the earlier closure space, which is also referred to as a pretopological space [3]. In Cech’s
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closure space, the closure operator is not constrained to satisfy the idempotent property, which states that
c(c(A)) = c(A).

In our study, our focus will be on Cech’s closure spaces. For conciseness, we will refer to them as closure
spaces instead of specifying them as Cech closure spaces. If a closure operator happens to be idempotent,
we will designate that space as a topological space.

Definition 2.1. ( [3]) Let (X, c) be a closure space. A subset A ⊂ X is called a closed set if c(A) = A. If its
complement is closed, i.e., c(X − A) = X − A, then A is called an open set. For all A ⊆ X, if c(A) = A, then c
is called discrete. If c(A) = X, for all nonempty A ⊆ X, then c is called a trivial closure operator on X.

If multiple closure spaces are under consideration, we will employ the notation cX to represent the
closure operator associated with the space X.

Definition 2.2. ( [3]) Let Y ⊆ X, then the subspace (Y, cY) of (X, cX) is a closure space with the closure operator
cY(A) = cX(A) ∩ Y, for all A ⊆ Y.

Definition 2.3. ( [3]) Let (X, cX) and (Y, cY) are closure spaces. A map f : (X, cX) → (Y, cY) is said to be
continuous iff f (cX (A)) ⊆ cY

(
f (A)
)

for all A ⊆ X. Also f is called closed iff f (cX (A)) = cY
(

f (A)
)
.

Like Kuratowski’s closure operator, an interior operator is also defined to establish a topological space.

Definition 2.4. ( [3]) Let P(X) denote the set of all subsets of a set X. The operator intc : P(X)→ P(X) defined
as

intc(u) = X − c(X − u)

is called an interior operator and intc(u) is called the interior of u.A set v ⊆ X is called a neighbourhood of u
iff u ⊆ X − c (X − v) . The set of all neighbourhood of u is called as neighborhood systems of u and denoted
byVu.

Lemma 2.5. ( [21]) Let (X, c) be a closure space and α : X→ Y be an onto map. Then cα : P(Y)→ P(Y), defined as
cα(B) = αcα−1(B), is a closure operator on Y, named as quotient closure operator induced by c.

Example 2.6. Let X = {1, 2, 3} and define a closure operator c on X such that

c(∅) = ∅, c({1}) = c({2}) = c({1, 2}) = {1, 2},

c({3}) = {3}, c({1, 3}) = c({2, 3}) = c({1, 2, 3}) = {1, 2, 3}.

a) Y = {a, b, c} and α : X → Y be defined as α(1) = b, α(2) = a, α(3) = c. The quotient closure operator cα
is defined as

cα(∅) = ∅, cα({a}) = cα({b}) = cα({a, b}) = {a, b}, cα({c}) = {c},

cα({a, c}) = cα({b, c}) = cα({a, b, c}) = {a, b, c}.

b) Z = {a, b} and β : X → Z be defined as β(1) = β(2) = a, β(3) = b. The quotient closure operator cβ is
defined as

cβ(∅) = ∅, cβ({a}) = {a}, cβ({b}) = {b}, cβ({a, b}) = {a, b}.

c) W = {a, b, c} and γ : X→W be defined as γ(1) = γ(2) = a, γ(3) = b. Then

cγ({c}) = γcγ−1({c}) = γc(∅) = γ (∅) = ∅.

Therefore, cγ is not a closure operator on W, since γ is not an onto map.

Lemma 2.7. ( [18]) Let (X, c) be a closure space, α : X→ Y be an onto map and (Y, cα) be the closure space induced
by α. Then cα is the finest closure operator on Y, which makes α continuous.
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In [3], a particular closure operator is defined uniquely via a neighborhood system on closure spaces.
Before we get to that description, let us first identify the concept of a neighborhood base defined on closure
spaces.

Definition 2.8. ( [18]) Let (X, c) be a closure space and A ⊂ X. If a collectionB ⊂ P(X) satisfies the following
conditions, then B is called a base of the neighborhood systemVA:

i) B ∈ VA, for all B ∈ B,
ii) For all U ∈ VA there exists B ∈ B such that B ⊂ U.

A subbase of the neighborhood system VA is a collection SA ⊂ P(X) such that the collection of all finite
intersections of elements of SA is a base of the neighborhood systemVA.

Theorem 2.9. ( [3]) Let (Xα, cα)α∈I be a collection of closure spaces, let
∏
α∈I Xα be the cartesian product of underlying

sets, and let πβ :
∏
α∈I Xα → (Xβ, cβ) be the projection mappings. For each x ∈

∏
α∈I Xα, let

Vx = {π
−1
β (V) : β ∈ I,V ⊂ Xβ a neighborhood of πβ(x) ∈ Xβ}.

Then there exist a unique closure structure cΠ on
∏
α∈I Xα such thatVx is a subbase for each x ∈

∏
α∈I Xα.

In certain instances, to prevent any potential confusion, we prefer to utilize the notation cX×Y to represent
the closure operator of X × Y.

3. Hopf structures on closure spaces

This part defines Hopf space and Hopf group structures on closure spaces. Also, the subspace concept
is defined for these structures.

In the subsequent part of the study, unless otherwise specified, we will consider (X, c), (X, cX), (Y, cY),
etc., as closure spaces.

3.1. Closure Hopf space

Following [18], continuous functions f , 1 : (X, cX) → (Y, cY) are called homotopic, denoted by f ≃ 1, if
there exists a continuous map

H : (X × I, cΠ)→ (Y, cY)

such that H|X×{0} = f and H|X×{1} = 1, where I = [0, 1] with topological closure structure T. Then H is called
a homotopy between f and 1.

The homotopy relation ” ≃ ” is an equivalence relation. We use [ f ] to denote the homotopy class of f ,
and [(X, cX), (Y, cY)] to denote the set of all homotopy classes of the functions from (X, cX) to (Y, cY):

[(X, cX); (Y, cY)] = { [ f ] | f : (X, cX)→ (Y, cY)}

[ f ] = { 1 | f ≃ 1, 1 : (X, cX)→ (Y, cY)}

It is easy to see that if the continuous functions f , 1 : (X, cX)→ (Y, cY) are homotopic with the homotopy
F, then h ◦ f ≃ h ◦ 1with the homotopy H = h ◦ F for any continuous function h : (Y, cY)→ (Z, cZ).

Definition 3.1. A continuous map f : (Y, cY) → (Z, cZ) is called a monomorphism if, f ◦ 1 ≃ f ◦ h implies
that 1 ≃ h, for the continuous maps 1, h : (X, cX)→ (Y, cY).

Let (X, cX) be a closure space and x0 ∈ X be a point. Then (X, x0, cX) is called a pointed closure space and
x0 is called base point of (X, x0, cX). In this study, only functions from (X, x0, cX) to (Y, y0, cY) that preserve
the base point, that is, satisfy the condition f (x0) = y0, are considered. Also, homotopies that are relative to
the base point are discussed, i.e., if f ≃ 1 and F is the homotopy, then F(x0, t) = f (x0) = 1(x0) for all t ∈ [0, 1].
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Definition 3.2. Let (X, x0, c) be a pointed closure space, m : X × X → X be a continuous multiplication,
ς : X → X be a constant function such that ς(x) = x0 for all x ∈ X, and 1X be the identity function on X.
Then (X, x0, c) is called as a closure Hopf space (CH-space for short) if m ◦ (ς, 1X) ≃ 1X ≃ m ◦ (1X, ς). Also ς
is called homotopy identity of (X, x0, c).

Consequently, if (X, x0, c) is a CH-space, then the following diagram is homotopy commutative:

X X × X X

X

(ς,1X)

1X
m

(1X ,ς)

1X

In the case of more than one CH-space, we use the notations mX and ςX for the continuous multiplication
and homotopy identity of the CH-space (X, x0) to avoid confusion.

An example of a non-topological CH-space is provided below.

Example 3.3. Consider the graph represented as (Z,E), where Z is the set of all integers as the vertex set,
and the set of edges is defined as E = {{x, x + 2} | x ∈ Z}. Then (Z,E) is a closure space with the closure
operator defined as c(A) =

⋃
x∈A{c(x)} where c(x) = {x − 2, x, x + 2}. Since the closure operator c is not

idempotent, it is not topological.
Now let us examine the pointed closure space (G, 0, c) where G = (Z,E). Define ς : Z → Z as ς(x) = 0

for all x ∈ Z. Let m : Z ×Z→ Z be defined such that m(x, y) = x + y for all x, y ∈ Z. Then, we can observe
the following:

(m ◦ (ς, 1Z))(x) = m(0, x) = x

(m ◦ (1Z, ς))(x) = m(x, 0) = x

Therefore, (G, 0, c) is a CH-space.

Now, we prove that the product of CH-spaces is a CH-space.

Theorem 3.4. Let (X, x0, cX) and (Y, y0, cY) be CH-spaces. Then X × Y is a CH-space.

Proof. Define mX×Y = (mX ◦ (π1 × π1),mY ◦ (π2 × π2))

(X × Y) × (X × Y) X × X X

Y × Y Y

π1×π1

π2×π2

mX

mY

where π1 : X × Y → X and π2 : X × Y → Y are the first and second projection maps, respectively. Let
ςX×Y = (ςX × ςY) for the homotopy identities ςX and ςY of (X, x0, cX) and (Y, y0, cY), respectively. Then

mX×Y ◦ (1X×Y, ςX×Y) = (mX ◦ (π1 × π1),mY ◦ (π2 × π2)) ◦ (1X × 1Y, ςX × ςY)
= (mX ◦ (1X, ςX),mY ◦ (1Y, ςY))
≃ 1X × 1Y = 1X×Y.

Similarly, we have
mX×Y ◦ (ζX×Y, 1X×Y) ≃ 1X×Y.

Definition 3.5. Let (X, x0, cX) and (Y, y0, cY) be CH-spaces. A function

h : (X, x0, cX)→ (Y, y0, cY)

is called an H-homomorphism if h ◦ mX ≃ mY ◦ (h × h).
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Theorem 3.6. Let 1 : (X, x0, cX) → (Y, y0, cY) and h : (Y, y0, cY) → (Z, z0, cZ) be H-homomorphisms. Then h ◦ 1 is
an H-homomorphism.

Proof. Since 1 and h are H- homomorphisms

1 ◦mX ≃ mY ◦ (1 × 1) and h ◦mY ≃ mZ ◦ (h × h).

Therefore, h ◦ 1 ◦mX ≃ h ◦mY ◦ (1 × 1) ≃ mZ ◦ (h × h) ◦ (1 × 1) = mZ ◦ (h ◦ 1 × h ◦ 1).

The concept of retract plays a fundamental role in understanding and studying topological spaces.
Retracts help us understand how subspaces of a topological space can be retracted within the main space.
This aids in comprehending the topological properties of a space. Also retracts closely related to the
homotopy theory. Retracts are used to describe homotopy equivalence relationships. Deformation retracts,
a specific subset of retracts, demonstrates how a space can be deformed within itself. This concept is
beneficial for examining and understanding the topological properties of a space. Deformation retracts
show that a space is homotopically equivalent to another space; see [20] for further details on related topics.

Let us introduce and delve into these concepts within closure Hopf spaces.

Definition 3.7. A subspace (Z, cZ) of a closure space (X, cX) is called a retract of (X, cX) if there exists a
map r : (X, cX) → (Z, cZ) such that r(x) = x, for all x ∈ Z. This means r ◦ i = 1Z for the inclusion map
i : (Z, cZ) ↪→ (X, cX). In this case, r is called a retraction. If r ◦ i ≃ 1Z, then (Z, cZ) is called a weak retract of
(X, cX).

It is clear that every retract of a closure space is a weak retract of it.

Theorem 3.8. A weak retract of a CH-space is also a CH-space.

Proof. Let (Z, z0, cZ) be a weak retract of a CH-space (X, x0, cX) and r be the retraction. Let mZ = r ◦ mX ◦ (i×i).
Then mZ is a continuous multiplication of (Z, z0, cZ). Let ς be the homotopy identity of (X, x0, cX) and ς|Z be
the restriction of ς to Z: ς|Z (z) = ς(z) = x0, for all z ∈ Z. Therefore,

mZ ◦ (1Z, ς|Z ) = (r ◦mX ◦ (i × i)) ◦ (1Z, ς|Z ) = r ◦ (mX ◦ (1X, ς)) ◦ i ≃ r ◦ 1X ◦ i = r ◦ i ≃ 1Z.

By the same way, mZ ◦ (ς|Z , 1Z) ≃ 1Z. Consequently, (Z, z0, cZ) is a CH-space.

Definition 3.9. A subspace (Z, z0, cZ) of a closure space (X, x0, cX) is called a deformation retract if there
exists a homotopy such that i ◦ r ≃ 1X for the inclusion map i and the retraction r.

We have the following transitions between these concepts:

Deformation Retract −→ Retract −→Weak Retract

Therefore, we obtain the following corollary:

Corollary 3.10. A retract (deformation retract) of a CH-space is itself a CH-space.

Definition 3.11. Let (X, x0, cX) be a CH-space. The multiplication m is called homotopy abelian and (X, x0, cX)
is called an abelian CH-space if there exists a map

ϕ : X × X→ X × X, ϕ(a, b) = (b, a)

such that m ◦ ϕ ≃ m, that is the following diagram homotopy commutative:

X × X X × X

X
m

ϕ

m
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Theorem 3.12. A weak retract of an abelian CH-space is also an abelian CH-space.

Proof. Let (X, x0, cX) be an abelian CH-space and (Y, y0, cY) be a weak retract of it. Then mX◦ϕ ≃ mX for a map
ϕ : X×X→ X×X, ϕ(a, b) = (b, a). Then (Y, y0, cY) is a CH-space with the multiplication mY = r ◦ mX ◦ (i× i),
by Theorem 3.8. Let ϕ′ = ϕ|Y×Y. Therefore,

mY ◦ ϕ
′ = r ◦mX ◦ (i × i) ◦ ϕ′ = r ◦mX ◦ ϕ ◦ (i × i) ≃ r ◦mX ◦ (i × i) = mY.

So (Y, y0, cY) is an abelian CH-space.

Theorem 3.13. Let (X, x0, cX) be a CH-space and (Z, z0, cZ) be a deformation retract of (X, x0, cX). Then, the inclusion
map i and the retraction r are H-homomorphisms.

Proof. Let mZ = r ◦mX ◦ (i × i). Then

i ◦mZ = i ◦ (r ◦mX ◦ (i × i)) ≃ 1X ◦mX ◦ (i × i) = mX ◦ (i × i).

So the inclusion map i is an H-homomorphism. Also

mZ ◦ (r × r) = r ◦mX ◦ (i × i) ◦ (r × r) ≃ r ◦mX ◦ 1X × 1X = r ◦mX.

Therefore, the retraction r is an H-homomorphism.

Theorem 3.14. Let (X, x0, cX) be a CH-space and (Y, y0, cY) has the same homotopy type with (X, x0, cX). Then
(Y, y0, cY) is a CH-space.

Proof. Let ς be the homotopy identity of (X, x0, cX) and f : X → Y be a homotopy equivalence with a
homotopy inverse 1 : Y→ X. Let mY = f ◦mX ◦ (1 × 1) and ς′(y) = y0 for all y ∈ Y. Then

mY ◦ (1Y, ς
′) = ( f ◦mX ◦ (1 × 1)) ◦ (1Y, ς

′) = f ◦ (mX ◦ (1X, ς)) ◦ 1 ≃ f ◦ 1X ◦ 1 = f ◦ 1 ≃ 1Y,

mY ◦ (ς′, 1Y) = ( f ◦mX ◦ (1 × 1)) ◦ (ς′, 1Y) = f ◦ (mX ◦ (ς, 1X)) ◦ 1 ≃ f ◦ 1X ◦ 1 = f ◦ 1 ≃ 1Y.

Now, we construct a Hopf structure on a set with the help of the quotient closure operator.

Theorem 3.15. Let (X, x0, c) be a CH-space with the homotopy identiti ς, (Y, y0) be a pointed space and α be a
surjective mapping from (X, x0, c) to (Y, y0). Then (Y, y0) is a CH-space.

Proof. (Y, y0) is a closure space with the quotient closure operator cα = α ◦ c ◦ α−1.
Define mY = α ◦mX ◦ (α−1

× α−1) and ς′(y) = y0 for all y ∈ Y. We have

mY ◦ (1Y, ς
′) = (α ◦mX ◦ (α−1

× α−1)) ◦ (1Y, ς
′)

= α ◦ (mX ◦ (1X, ς)) ◦ α−1
≃ α ◦ 1X ◦ α

−1

= α ◦ α−1 = 1Y,

mY ◦ (ς′, 1Y) = (α ◦mX ◦ (α−1
× α−1)) ◦ (ς′, 1Y)

= α ◦ (mX ◦ (ς, 1X)) ◦ α−1
≃ α ◦ 1X ◦ α

−1

= α ◦ α−1 = 1Y.

Therefore, (Y, y0, cα) is a CH-space.
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3.2. Closure Hopf group

In closure spaces, it is possible to establish a Hopf group structure, a group-like algebraic structure. This
section presents the concept of a closure Hopf group (a CH-group for shorts).

Definition 3.16. Let (X, x0, c) be a CH-space with the homotopy identity ς.

1. m : X×X→ X is called homotopy associative if m◦ (m×1X) ≃ m◦ (1X ×m), i.e., the following diagram
is homotopy commutative:

X × X × X X × X

X × X X

m×1X

1X×m m

m

2. A continuous function η : X→ X such that m ◦ (η, 1X) ≃ c ≃ m ◦ (1X, η), is called a homotopy inverse.

A CH-group is a CH-space that has a homotopy associative multiplication and a homotopy inverse.

Theorem 3.17. Let (X, x0, cX) be a CH-group and (Y, y0, cY) has the same homotopy type with (X, x0, cX). Then
(Y, y0, cY) is a CH-group.

Proof. Let 1 : X→ Y be a homotopy equivalence with a homotopy inverse h : Y→ X and mY = 1◦mX◦(h×h)
be continuous multiplication of (Y, y0, cY). Then (Y, y0, cY) is a CH-space by Theorem 3.14.
Now let us show that mY is homotopy associative:

mY ◦ (mY × 1Y) =
(
1 ◦mX ◦ (h × h)

)
◦

(
(1 ◦mX ◦ (h × h)) × 1Y

)
= (1 ◦mX) ◦ (h × h) ◦ (1 × 1) ◦ (mX × 1X) ◦ (h × h × h)
≃ (1 ◦mX) ◦ 1X×X ◦ (mX × 1X) ◦ (h × h × h)
= 1 ◦ (mX ◦ (mX × 1X)) ◦ (h × h × h)
≃ 1 ◦ (mX ◦ (1X ×mX)) ◦ (h × h × h)
≃ 1 ◦mX ◦ (h × h) ◦ (1 × 1) ◦ (1X ×mX) ◦ (h × h × h)

=
(
1 ◦mX ◦ (h × h)

)
◦

(
1Y × (1 ◦mX ◦ (h × h))

)
= mY ◦ (1Y ×mY).

Now let us show that (Y, y0, cY) has a homotopy inverse:
Let ηX be the homotopy inverse of (X, x0, cX) and ηY = 1 ◦ ηX ◦ h. Then

mY ◦ (1Y, ηY) = (1 ◦mX ◦ (h × h)) ◦ (1Y, 1 ◦ ηX ◦ h)
= (1 ◦mX) ◦ (h, h ◦ 1 ◦ ηX ◦ h) ≃ (1 ◦mX) ◦ (h, ηX ◦ h)
= 1 ◦ (mX ◦ (1X, ηX)) ◦ h ≃ 1 ◦ (mX ◦ (ηX, 1X)) ◦ h
= (1 ◦mX) ◦ (ηX ◦ h, h) ≃ (1 ◦mX) ◦ (h ◦ 1 ◦ ηX ◦ h, h)
= (1 ◦mX ◦ (h × h)) ◦ (1 ◦ ηX ◦ h, 1Y) = mY ◦ (ηY, 1Y).

Consequently, (Y, y0, cY) is a CH-group.

Theorem 3.18. Let (X, x0, cX) and (Y, y0, cY) have the same homotopy type. If (X, x0, cX) is an abelian CH-group,
then (Y, y0, cY) also an abelian CH-group.

Proof. Let f : X → Y be a homotopy equivalence with a homotopy inverse 1 : Y → X. By Theorem 3.17,
(Y, y0, cY) is a CH-group with the multiplication mY = f ◦mX ◦ (1 × 1). Since mX is homotopy commutative,
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then there exists a map ϕ : X × X→ X × X, ϕ(a, b) = (b, a) such that mX ◦ ϕ ≃ mX. Let ϕ′ : Y × Y→ Y × Y be
defined as ϕ′(a′, b′) = (b′, a′) for all a′, b′ ∈ Y. Then

mY ◦ ϕ
′ = ( f ◦mX ◦ (1 × 1)) ◦ ϕ′ = f ◦mX ◦ ϕ ◦ (1 × 1) ≃ f ◦mX ◦ (1 × 1) = mY.

So mY is homotopy commutative.

Theorem 3.19. A CH-space (X, x0, cX) is a CH-group if and only if the map

α : X × X→ X × X

defined as α(x, y) = (x,m(x, y)) is a homotopy equivalence, where m : X × X→ X is a continuous multiplication.

Proof. Let (X, x0, cX) be a CH-group with homotopy inverse η. Define β : X × X → X × X such that
β(x, y) = (x,m(η(x), y)), for all x, y ∈ X. Then

(α ◦ β)(x, y) = α(x,m(η(x), y)) = (x,m(x,m(η(x), y)))

implies that α◦β ≃ 1X×X, since m is homotopy associative and η is homotopy inverse. Similarly β◦α ≃ 1X×X.
Therefore, α is homotopy equivalence.
Conversely, let α be a homotopy equivalence and γ : X × X→ X × X be a homotopy inverse of α such that
α ◦ γ ≃ 1X×X ≃ γ ◦ α. Let show that (X, x0, cX) is a CH-group.
Let π1 and π2 be projections and define Φ = π2 ◦ γ ◦ f where f : X→ X×X, f (x) = (x, x0) for all x ∈ X. Then
π1 ◦ α = π1 and π2 ◦ α = m, so we have:

π1 ≃ π1 ◦ α ◦ γ = π1 ◦ γ,

π2 ≃ π2 ◦ α ◦ γ = m ◦ γ.

Since π1 ◦ γ ◦ f ≃ π1 ◦ f = 1X, where c : X→ X, c(x) = x0 is the constant map, we can further show that:

m ◦ (1X,Φ) ≃ m ◦ (π1 ◦ γ ◦ f , π2 ◦ γ ◦ f )
= m ◦ (π1 ◦ π2) ◦ (γ ◦ f )
= m ◦ γ ◦ f ≃ π2 ◦ f = c.

Using the same reasoning, we can also show that m◦(Φ, 1X) ≃ c. Consequently, (X, x0, cX) is a CH-group.

Theorem 3.20. A deformation retract of a CH-group is also a CH-group.

Proof. In Theorem 3.17, take h = i and 1 = r, then the proof is obvious.

Corollary 3.21. A deformation retract of an abelian CH-group is also an abelian CH-group.

Theorem 3.22. Let (X, x0, cX) be a CH-group. Then for every pointed closure space (Y, y0, cY), the set [(Y, y0, cY); (X, x0, cX)]
is a group of homotopy classes. Also [(Y, y0, cY); (X, x0, cX)] is abelian if mX is abelian.

Proof. Let us define a binary operation M on [(Y, y0, cY); (X, x0, cX)] such that, for all [ f ], [1] ∈ [(Y, y0, cY); (X, x0, cX)],
M([ f ], [1]) = [mX ◦ ( f , 1)].

Let ([ f1], [ f2]) = ([11], [12]). Then f1 ≃ 11 and f2 ≃ 12 for homotopies

F,G : (Y × I, c(Y×I))→ (X, cX).

Let H : (Y × I, c(Y×I))→ (X, cX) be defined as H = mX ◦ (F,G). Then

H(y, 0) =
(
mX ◦ (F,G)

)
(y, 0) = mX(F(y, 0),G(y, 0)) = mX( f1(y), f2(y))
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H(y, 1) =
(
mX ◦ (F,G)

)
(y, 1) = mX(F(y, 1),G(y, 1)) = mX(11(y), 12(y)).

Therefore, mX ◦ ( f1, f2) ≃ mX ◦ (11, 12). So

M([ f1], [ f2]) = [mX ◦ ( f1, f2)] = [mX ◦ (11, 12)] =M([11], [12]).

Then M is well defined. Let e : Y→ X, e(y) = x0, for all y ∈ Y. Then for any [ f ] ∈ [(Y, y0, cY); (X, x0, cX)],

M([ f ], [e]) = [mX ◦ ( f , e)] = [mX ◦ (1X, c) ◦ f ] = [1X ◦ f ] = [ f ].

Similarly, M([e], [ f ]) = [ f ]. So [e] is the unit element of [(Y, y0, cY); (X, x0, cX)] for M.
Let 1[ ] be the unit function of [(Y, y0, cY); (X, x0, cX)]. Let us show M is associative:(

M ◦ (1[ ] ×M)
) (

[ f1], ([ f2], [ f3])
)
= M

(
[ f1],M([ f2], [ f3])

)
=M
(
[ f1],mX ◦ ( f2, f3)]

)
= [mX ◦ ( f1,mX ◦ ( f2, f3)]
= [mX ◦ (1X ×mX) ◦ ( f1, ( f2, f3))]
= [mX ◦ (mX × 1X) ◦ ( f1, ( f2, f3))]
= [mX((mX ◦ ( f1, f2)), f3)]

= M
(
[mX ◦ ( f1, f2)], [ f3]

)
=M
(
M([ f1], [ f2]), [ f3]

)
=
(
M ◦ (M × 1[ ])

)
(([ f1], [ f2]), [ f3]).

Therefore, M is associative.
Let η be the homotopy inverse of (X, x0, cX). For any [ f ] ∈ [(Y, y0, cY); (X, x0, cX)],

M([ f ], [η ◦ f )]) = [mX ◦ (( f , η ◦ f )] = [mX ◦ (1X, η) ◦ f ] = [c ◦ f ] = [e].

Similarly, M([η ◦ f ], [ f ]) = [e]. Therefore, [η ◦ f ] is the homotopy inverse of [ f ].
Now let mX be abelian. Then

M([ f ], [1]) = [mX ◦ ( f , 1)] = [mX ◦ (1, f )] =M([1], [ f ]).

Therefore, [(Y, y0, cY); (X, x0, cX)] is abelian.

4. Homotopy category of closure Hopf spaces

In this section, we introduce the concept of the homotopy category of CH-spaces, wherein the objects are
CH-spaces, and the morphisms are the homotopy classes of the base point preserving continuous functions
on CH-spaces. To provide context, we begin by revisiting the fundamental definition of a mathematical
category.

Definition 4.1. ([1]) A category F includes;

C1) a collection of objects
C2) a set hom(U,V) = { f | f : U→ V}) of morphisms, for every object U and V,
C3) composition of morphisms such that the following axioms hold:

i) f ◦ (1 ◦ h) = ( f ◦ 1) ◦ h
ii) for every object A, there exists a unique morphism 1A ∈ hom(A,A) called the identity morphism

for A, such that all morphisms f ∈ hom(B,A), 1 ∈ hom(A,B) satisfy 1A ◦ f = f and 1 ◦ 1A = 1.

We define the homotopy category of CH-spaces, denoted by CH , where the objects in this category
are CH-spaces, and the set of morphisms is the set of homotopy classes of the continuous functions on
CH-spaces

hom((X, x0, cX), (Y, y0, cY)) = [(X, x0, cX), (Y, y0, cY)].

The composition of morphisms in this category is defined as the operation M, as introduced in Theorem
3.22.
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Definition 4.2. ([1]) A contravariant functor C from the category F to the category G is a function, which
maps each object A of F to an object C(A) of G and each morphism f ∈ hom(A,B) of F to a morphism
C( f ) : C(B)→ C(A), such that

i) C(1A) = 1C(A)

ii) C(1 ◦ f ) = C( f ) ◦ C(1).

Theorem 4.3. Let (Y, y0, cY) be a CH-group. Then there exists a contravariant functor from CH to the category of
groups and homomorphisms, denoted by G.

Proof. Let define a map ΓY from CH to the category of sets and functions, denoted byS such that associates
to an object (X, x0, cX) the set

ΓY((X, x0, cX)) = [(X, x0, cX), (Y, y0, cY)]

and to a morphism [1] the function

ΓY([1]) = 1∗ : [(Z, z0, cZ), (Y, y0, cY)]→ [(X, x0, cX), (Y, y0, cY)], 1∗([ f ]) = [ f ◦ 1]

where [1] ∈ [(X, x0, cX), (Z, z0, cZ)]. Let [ f ], [h] ∈ [(Z, z0, cZ), (Y, y0, cY)].

1∗(M([ f ], [h])) = 1∗([mY ◦ ( f , h)])
= [(mY ◦ ( f , h)) ◦ 1]
= [mY ◦ ( f ◦ 1, h ◦ 1)]
= M([ f ◦ 1], [h ◦ 1])
= M(1∗([ f ]), 1∗([h])).

Therefore, 1∗ is a homomorphism. Also ΓY(X, x0, cX) = [(X, x0, cX), (Y, y0, cY)] is a group with the binary
operation M by the Theorem 3.22. Therefore, objects and morphisms of the category that range of the ΓY

are groups and homomorphisms, respectively. Now let us show that ΓY is a contravariant functor.
Let [1X] ∈ [(X, x0, cX), (X, x0, cX)] be the unit morphism of CH . Then

ΓY([1X] = 1∗X : [(X, x0, cX), (Y, y0, cY)]→ [(X, x0, cX), (Y, y0, cY)]

and for any morphism [ f ] ∈ [(X, x0, cX), (Y, y0, cY)], 1∗X([ f ]) = [ f ◦ 1X] = [ f ]. So ΓY([1X]) is the unit morphism
of G.

Let [ f ] ∈ [(X, x0, cX), (Z, z0, cZ)], [1] ∈ [(Z, z0, cZ), (W,w0, cW)]. For any morphism [h] ∈ [(W,w0, cW), (Y, y0, cY)],

ΓY([1 ◦ f ])([h]) = [h ◦ (1 ◦ f )] = [(h ◦ 1) ◦ f ]
= ΓY([ f ])([h ◦ 1])
= ΓY([ f ])(ΓY([1])([h]))
= (ΓY([ f ]) ◦ ΓY([1]))([h]).

Then ΓY([1◦ f ]) = ΓY([ f ])◦ΓY([1]). Therefore, ΓY is a contravariant functor since it preserves the composition
and the identity.

Corollary 4.4. Let (Y, y0, cY) be an abelian CH-group. Then there exists a contravariant functor from CH to the
category of abelian groups and homomorphisms.

The following theorem shows that the converse of the Theorem 4.3 is valid.

Theorem 4.5. Let (X, x0, cX) be a pointed closure space and ΓX takes values in G, then (X, x0, cX) is a CH-group.
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Proof. Let m : X × X → X be a map such that [m] = M([π1], [π2]) where M is the binary operation on the
group [X × X, (x0, x0), cΠ), (X, x0, cX)].
For any map h, h′ : (Y, y0, cY)→ (X, x0, cX), for a pointed closure space (Y, y0, cY),
ΓX([h, h′]) = (h, h′)∗ : [(X × X, (x0, x0), cΠ), (X, x0, cX)]→ [(Y, y0, cY), (X, x0, cX)] is a homomorphism.

[m ◦ (h, h′)] = (h, h′)∗([m]) = (h, h′)∗(M([π1], [π2]))
= M((h, h′)∗([π1], [π2]))
= M([π1 ◦ (h, h′)], [π2 ◦ (h, h′)])
= M([h], [h′]).

So it turns out that M is induced by m.
Let [c] be the identity for [(X, x0, cX), (X, x0, cX)] where c : (X, x0, cX)→ (X, x0, cX) is the constant map, defined
as c(x) = x0, for all x ∈ X. Then

[m ◦ (1X, c)] =M([1X], [c]) = [1X].

Similarly [m◦(1X, c)] = [1X]. Therefore, (X, x0, cX) is a CH-space. Let ρ1, ρ2, ρ3 : X×X×X→ X be projections.
Then

[m ◦ (1X ×m)] = (1X ×m)∗([m])
= M((1X ×m)∗([π1]), (1X ×m)∗([π2]))
= M([π1 ◦ (1X ×m)], [π2 ◦ (1X ×m)])
= M([π1 ◦ (1X ×M([π1], [π2]))], [π2 ◦ (1X ×M([π1], [π2]))])
= M([ρ1],M([ρ2], [ρ3]))
= M(M([ρ1], [ρ2]), [ρ3])
= M([π1 ◦ (M([π1], [π2]) × (1X)], [π2 ◦M([π1], [π2]) × (1X)])
= M([π1 ◦ (m × 1X)], [π2 ◦ (m × 1X)])
= (m, 1X)∗([m]) = [m ◦ (m × 1X)].

Therefore, m ◦ (1X ×m) ≃ m ◦ (m × 1X). So m is homotopy associative. Let [η] be the inverse of [1X], for the
map η : X→ X. Then

[m ◦ (1X, η)] =M([1X], [η]) = [c].

Likewise, [m ◦ (η, 1X)] = [c]. Consequently, (X, x0, cX) is a CH-group with the homotopy inverse η.

The following theorem shows that the commutative feature is preserved for the Theorem 4.5.

Theorem 4.6. Let (X, x0, cX) be a pointed closure space and ΓX takes values in the category of abelian groups and
homomorphisms, then (X, x0, cX) is an abelian CH-group.

Proof. (X, x0, cX) is a CH-group with the multiplication m, defined as Theorem 4.5. Let ϕ : X × X →
X × X, ϕ(x, y) = (y, x). Since M is commutative,

[m ◦ ϕ] = ϕ∗([m]) = ϕ∗(M([π1], [π2])) =M([π1 ◦ ϕ], (π2 ◦ ϕ])
= M(π1], [π2]) =M([π2], [π1]) = [m].

Therefore, m is homotopy commutative.

Theorem 4.7. Let (X, x0, cX) and (Y, y0, cY) be CH-spaces and

f : (X, x0, cX)→ (Y, y0, cY)

be an H-homomorphism. Then there exists a homomorphism from [(Z, z0, cZ), (X, x0, cX)] to [(Z, z0, cZ), (Y, y0, cY)] for
any pointed closure space (Z, z0, cZ).
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Proof. Let [h], [h′] ∈ [(Z, z0, cZ), (X, x0, cX)] and define

f∗ : [(Z, z0, cZ), (X, x0, cX)]→ [(Z, z0, cZ), (Y, y0, cY)]

such that f∗([h]) = [ f ◦ h]. Then

f∗(M([h], [h′])) = f∗([mX ◦ (h, h′)]) = [ f ◦mX ◦ (h, h′)].

Also mY ◦ ( f × f ) ≃ f ◦mX, since f is H-homomorphism. Therefore

[ f ◦mX ◦ (h, h′)] = [mY ◦ ( f × f ) ◦ (h, h′)]
= M([ f ◦ h], [ f ◦ h′])
= M( f∗([h]), f∗([h′])).

Consequently, f∗ is a homomorphism.

The following theorem is a result of Theorem 4.3,4.7 and 4.5.

Theorem 4.8. Let σ be a map between CH-groups (Y, y0, cY) and (Y′, y′0, cY′ ). Then there exists a natural transfor-
mation from ΓY to ΓY′ in the category G if and only if σ is an H-homomorphism.

Proof. Define σ∗ : ΓY
→ ΓY′ as a map assigns every object (X, x0, cX) to a morphism

σX
∗ : [(X, x0, cX), (Y, y0, cY)]→ [(X, x0, cX), (Y′, y′0, cY′ )]

such that σX
∗ ([1]) = [σ ◦ 1]. It is easy to see that the following diagram commutes:

[(X, x0, cX), (Y, y0, cY))] [(X′, x′0, cX′ ), (Y, y0, cY)]

[(X, x0, cX), (Y′, y′0, cY′ )] [(X′, x′0, cX′ ), (Y′, y′0, cY′ )]

ΓY([h])

σX
∗ σX′

∗

ΓY′ ([h])

for the map h : (X, x0, cX)→ (X′, x′0, cX′ ). Therefore, σ∗ is a natural transformation between ΓY and ΓY′

5. Subspace of closure Hopf groups

Within the framework of closure spaces, it is reasonable to extend the concept of the sub-H group, as
initially defined in [17]. In this context, this section introduces the notion of a sub-CH group and investigates
the conditions that establish when a subset within a CH group merits classification as a sub-CH group.

Definition 5.1. Let (Y, x0, cX) be a pointed closure subspace of (X, x0, cX) which is a CH-group with homotopy
inverse η and homotopy identity c. If (Y, x0, cX) is a CH-group with the multiplication mY = mX|Y×Y ,
homotopy inverse η′ = η|Y and homotopy identity c′ = c|Y such that the inclusion map i : Y ↪→ X is an
H-homomorphism, then (Y, x0, cX) is called a sub-CH-group of (X, x0, cX).

It is clear that if (Y, x0, cX) is a sub-CH-group of (X, x0, cX), then there exists a continuous function
ϕ : Y→ Y such that i ◦mY ≃ mX ◦ (i × i).

We get the following result from the definition of the sub-CH-group and Theorem 4.8.

Corollary 5.2. Let the pointed closure space (Y, x0, cY) be a subspace of (X, x0, cX). Then (Y, x0, cY) is a sub-CH-group
of (X, x0, cX) if and only if i∗ is a natural transformation, defined as Theorem 4.8, from ΓY to ΓX for the inclusion map
i : Y ↪→ X.
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Theorem 5.3. Let (Y, y0, cY) be a pointed closure subspace of a CH-group (X, x0, cX). If the following conditions are
satisfied:

i) there exists a continuous function mY : Y × Y→ Y such that i ◦mY ≃ mX ◦ (i × i),
ii) for the constant map c′ : Y→ Y, c′(y) = y0, where c is the homotopy identity of (X, x0, cX),

iii) there exists a continuous map ϕ′ : Y→ Y such that i ◦ ϕ′ ≃ ϕ ◦ i,
iv) the inclusion map i : Y ↪→ X is a monomorphism,

then (Y, y0, cY) is a sub-CH-group of (X, x0, cX).

Proof. By i) and ii),

i ◦mY ◦ (1Y, c′) ≃ mX ◦ (i × i) ◦ (1Y, c′) = mX ◦ (i ◦ 1Y, i ◦ c′)
= mX ◦ (1X ◦ i, c ◦ i) = mX ◦ (1X, c) ◦ i
≃ 1X ◦ i = i ◦ 1Y.

So i ◦ mY ◦ (1Y, c′) ≃ i ◦ 1Y. Then mY ◦ (1Y, c′) ≃ 1Y, since i is monomorphism. Similarly mY ◦ (c′, 1Y) ≃ 1Y.
Hence, c′ is a homotopy identity for mY.
Following i),

i ◦mY ◦ (mY × 1Y) ≃ mX ◦ (i × i) ◦ (mY × 1Y) = mX ◦ [(i ◦mY) × (i ◦ 1Y)]
≃ mX ◦ [(mX ◦ (i × i)) × (1X ◦ i)] = mX ◦ (mX × 1X) ◦ (i × i × i)
≃ mX ◦ (1X ×mX) ◦ (i × i × i)
= mX ◦ [(1X ◦ i) × (mX ◦ (mX ◦ (i × i))]
= mX ◦ (i × i) ◦ (1Y ×mY) ≃ i ◦mY ◦ (1Y ×mY).

Therefore, mY ◦ (mY × 1Y) ≃ mY ◦ (1Y ×mY), since i is monomorphism. So

i ◦ c′ = c ◦ i ≃ mX ◦ (1X, ϕ) ◦ i
= mX ◦ (1X ◦ i, ϕ ◦ i) ≃ mX ◦ (i ◦ 1Y, i ◦ ϕ′)
≃ i ◦mY ◦ (1Y, ϕ

′).

Since mY is homotopy associative,
c′ ≃ mY ◦ (1Y, ϕ

′)

and by the same way c′ ≃ mY ◦ (ϕ′, 1Y).Hence ϕ′ is a homotopy inverse for mY. So (Y, y0, cY) is a CH-group.
By ii), (i ◦ c′)(y0) = x0 = (c ◦ i)(y0), and by i), i is an H-homomorphism. Consequently, (Y, y0, cY) is a
sub-CH-group of (X, x0, cX).

The following theorem provides a characterization for the deformation retract of a CH-group.

Theorem 5.4. A deformation retract with the same base point of a CH-group is a sub-CH-group.

Proof. Let (X, x0, cX) be a CH-group with the homotopy identity cX and homotopy inverse ηX and (Y, x0, cY)
be a subspace of (X, x0, cX).
Define mY = r ◦mX ◦ (i × i), cY = r ◦ cX ◦ i and ηY = r ◦ ηX ◦ i, for the inclusion i and retraction r. Then

i) i ◦mY = i ◦ (r ◦mX ◦ (i × i) ≃1 X ◦ (mX ◦ (i × i),
ii) i ◦ cY = i ◦ r ◦ cX ◦ i ≃ 1X ◦ cX ◦ i = cX ◦ i and since the base point of Y is x0, i ◦ cY = cX ◦ i,

iii) i ◦ ηY = i ◦ r ◦ ηX ◦ i ≃ 1X ◦ ηX ◦ i = ηX ◦ i.

Therefore, (Y, x0, cY) is a sub-CH-group of (X, x0, cX) .
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6. Conclusion

In conclusion, this study explored the concept of Hopf structures in closure spaces, extending the
algebraic perspective to non-topological closure spaces. We defined closure Hopf spaces and closure
Hopf groups and investigated their properties. Additionally, we delved into the homotopy theory within
this framework and demonstrated the relationships between structures, such as retracts and deformation
retracts. Furthermore, the study established the existence of contravariant functors between the category
of closure Hopf groups and the category of groups. It also introduced the homotopy category of closure
Hopf spaces and demonstrated the existence of contravariant functors from this category to the category of
groups and, under certain conditions, to the category of abelian groups.

Moreover, we introduced the concept of sub-CH groups, providing a framework for analyzing subsets
of CH groups that exhibit similar algebraic properties. Overall, this study contributed to the understanding
of algebraic structures within closure spaces, broadening the scope of mathematical research in this area.
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