Filomat 38:29 (2024), 10239–10252 https://doi.org/10.2298/FIL2429239G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Weakly and weak* *p*-convergent operators

Saak Gabriyelyan^a

^aDepartment of Mathematics, Ben-Gurion University of the Negev, Israel

Abstract. Let $p \in [1, \infty]$. Being motivated by weakly *p*-convergent and weak* *p*-convergent operators between Banach spaces introduced by Fourie and Zeekoei, we introduce and study the classes of weakly *p*-convergent and weak* *p*-convergent operators between arbitrary locally convex spaces. Relationships between these classes of operators are given, and we show that they have ideal properties. Numerous characterizations of weakly *p*-convergent and weak* *p*-convergent are given.

1. Introduction

Unifying the notion of unconditionally converging operators and the notion of completely continuous operators, Castillo and Sánchez selected in [3] the class of *p*-convergent operators. An operator $T : X \to Y$ between Banach spaces *X* and *Y* is called *p*-convergent if it transforms weakly *p*-summable sequences into norm null sequences (all relevant definitions are given in Section 2). Using this notion they introduced and study Banach spaces with the Dunford–Pettis property of order *p* (*DPP*_{*p*} for short) for every $p \in [1, \infty]$. A Banach space *X* is said to have the *DPP*_{*p*} if every weakly compact operator from *X* into a Banach space *Y* is *p*-convergent.

The influential article of Castillo and Sánchez [3] inspired an intensive study of p-versions of numerous geometrical properties of Banach spaces and new classes of operators of p-convergent type. The following two classes of operators between Banach spaces were introduced and studied by Fourie and Zeekoei in [6] and [7], respectively, where the Banach dual of a Banach space X is denoted by X^* .

Definition 1.1. Let $p \in [1, \infty]$, and let *X* and *Y* be Banach spaces. An operator $T : X \to Y$ is called

- (i) *weakly p-convergent* if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weakly null sequence $\{\eta_n\}_{n\in\omega}$ in Y^* and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *X*;
- (ii) *weak** *p*-convergent if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weak* null sequence $\{\eta_n\}_{n\in\omega}$ in *Y** and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *X*. \Box

It should be mentioned that if $p = \infty$, weakly *p*-convergent operators are known as *weak Dunford–Pettis* operators (see [1, p. 349]) and weak^{*} *p*-convergent operators are known as *weak*^{*} *Dunford–Pettis* operators (see [5]).

²⁰²⁰ Mathematics Subject Classification. Primary 46A03; Secondary 46E10

Keywords. Locally convergent operator, weakly *p*-convergent operator, weakly *p*-convergent operator, limited set, p-(V^{*}) set of Pełczyński

Received: 05 March 2024; Revised: 09 August 2024; Accepted: 10 August 2024

Communicated by Ljubiša D. R. Kočinac

Email address: saak@bgu.ac.il (Saak Gabriyelyan)

Numerous characterizations and applications of weakly *p*-convergent and weak^{*} *p*-convergent operators between Banach spaces and in particular between Banach lattices were obtained in [6–8]. These results motivate us to consider these classes of operators in the general case of locally convex spaces.

Definition 1.2. Let $p \in [1, \infty]$, and let *E* and *L* be separated topological vector spaces. A linear map $T : E \to L$ is called

- (i) *weakly p-convergent* if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weakly null sequence $\{\eta_n\}_{n\in\omega}$ in L'_{β} and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*;
- (ii) *weak** *p*-convergent if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weak* null sequence $\{\eta_n\}_{n\in\omega}$ in *L*' and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*. \Box

Relationships between the classes of *p*-convergent, weakly *p*-convergent and weak* *p*-convergent operators are given in Proposition 3.1, and Proposition 3.2 provides a sufficient condition on the range space *L* under which all these three classes of operators coincide.

In [2] Bourgain and Diestel introduced the class of limited operators between Banach spaces. More general classes of limited completely continuous and limited *p*-convergent operators were defined and studied by Salimi and Moshtaghioun [19] and Fourie and Zeekoei [7], respectively. We generalize these classes by introducing the classes of (q', q)-limited *p*-convergent and $(q', q)-(V^*)$ *p*-convergent operators from a locally convex space *E* to a locally convex space *L*, where $p, q, q' \in [1, \infty]$ and $q' \leq q$. In Proposition 3.6 we show that these new classes have ideal properties. If the space *L* contains an isomorphic copy of ℓ_{∞} , in Theorems 3.8 and 3.10 we show that all weakly *p*-convergent operators are (q', q)-limited *p*-convergent (resp., $(q', q)-(V^*)$ *p*-convergent) if and only if so are all weak* *p*-convergent operators if and only if so is the identity operator id_*E* : $E \rightarrow E$.

The main results of the article are Theorems 3.12 and 3.14 in which we give numerous characterizations of weak* *p*-convergent and weakly *p*-convergent operators between locally convex spaces.

2. Preliminaries results

We start with some necessary definitions and notations used in the article. Set $\omega := \{0, 1, 2, ...\}$. All topological spaces are assumed to be Tychonoff (= completely regular and T_1). The closure of a subset A of a topological space X is denoted by \overline{A} , \overline{A}^X or $cl_X(A)$. A topological space X is defined to be *selectively sequentially pseudocompact* if for any sequence $\{U_n\}_{n\in\omega}$ of open sets of X there exists a sequence $(x_n)_{n\in\omega} \in \prod_{n\in\omega} U_n$ containing a convergent subsequence. A function $f : X \to Y$ between topological spaces X and Y is called *sequentially continuous* if for any convergent sequence $\{x_n\}_{n\in\omega} \subseteq X$, the sequence $\{f(x_n)\}_{n\in\omega}$ converges in Y and $\lim_n f(x_n) = f(\lim_n x_n)$. We denote by C(X) the vector space of all continuous \mathbb{F} -valued functions on X. A subset A of a topological space X is called

- *relatively compact* if its closure \overline{A} is compact;
- (*relatively*) *sequentially compact* if each sequence in *A* has a subsequence converging to a point of *A* (resp., of *X*);
- *functionally bounded in* X if every $f \in C(X)$ is bounded on A.

The space C(X) endowed with the pointwise topology is denoted by $C_{\nu}(X)$.

Let *E* be a locally convex space. We assume that *E* is over the field \mathbb{F} of real or complex numbers. We denote by $\mathcal{N}_0(E)$ (resp., $\mathcal{N}_0^c(E)$) the family of all (resp., closed absolutely convex) neighborhoods of zero of *E*. The family of all bounded subsets of *E* is denoted by $\mathsf{Bo}(E)$. The topological dual space of *E* is denoted by *E'*. The value of $\chi \in E'$ on $x \in E$ is denoted by $\langle \chi, x \rangle$ or $\chi(x)$. A sequence $\{x_n\}_{n \in \omega}$ in *E* is said to be *Cauchy* if for every $U \in \mathcal{N}_0(E)$ there is $N \in \omega$ such that $x_n - x_m \in U$ for all $n, m \ge N$. It is easy to see that a sequence $\{x_n\}_{n \in \omega}$ in *E* is Cauchy if and only if $x_{n_k} - x_{n_{k+1}} \to 0$ for every (strictly) increasing sequence (n_k) in ω . We denote by E_w and E_β the space *E* endowed with the weak topology $\sigma(E, E')$ and with the strong topology $\beta(E', E)$ is denoted by E'_w or E'_β , respectively. The closure of a subset *A* in the weak topology

is denoted by \overline{A}^w or $\overline{A}^{\sigma(E,E')}$, and \overline{B}^{w^*} (or $\overline{B}^{\sigma(E',E)}$) denotes the closure of $B \subseteq E'$ in the weak* topology. The *polar* of a subset *A* of *E* is denoted by

$$A^{\circ} := \{ \chi \in E' : \|\chi\|_A \le 1 \}, \quad \text{where} \quad \|\chi\|_A = \sup \{ |\chi(x)| : x \in A \cup \{0\} \}.$$

A subset *B* of *E*' is *equicontinuous* if $B \subseteq U^{\circ}$ for some $U \in \mathcal{N}_0(E)$. The family of all continuous linear maps (= operators) from an lcs *H* to an lcs *L* is denoted by $\mathcal{L}(H, L)$.

Let $p \in [1, \infty]$. Then p^* is defined to be the unique element of $[1, \infty]$ which satisfies $\frac{1}{p} + \frac{1}{p^*} = 1$. For $p \in [1, \infty)$, the space ℓ_{p^*} is the dual space of ℓ_p . We denote by $\{e_n\}_{n \in \omega}$ the canonical basis of ℓ_p , if $1 \le p < \infty$, or the canonical basis of c_0 , if $p = \infty$. The canonical basis of ℓ_{p^*} is denoted by $\{e_n^*\}_{n \in \omega}$. Denote by ℓ_p^0 and c_0^0 the linear span of $\{e_n\}_{n \in \omega}$ in ℓ_p or c_0 endowed with the induced norm topology, respectively.

A subset *A* of a locally convex space *E* is called

- *precompact* if for every $U \in \mathcal{N}_0(E)$ there is a finite set $F \subseteq E$ such that $A \subseteq F + U$;
- sequentially precompact if every sequence in A has a Cauchy subsequence;
- *weakly* (*sequentially*) *compact* if *A* is (sequentially) compact in *E*_w;
- *relatively weakly compact* if its weak closure $\overline{A}^{\sigma(\overline{E},E')}$ is compact in E_w ;
- *relatively weakly sequentially compact* if each sequence in *A* has a subsequence weakly converging to a point of *E*;
- *weakly sequentially precompact* if each sequence in *A* has a weakly Cauchy subsequence.

Note that each sequentially precompact subset of *E* is precompact, but the converse is not true in general, see Lemma 2.2 of [11].

- Let $p \in [1, \infty]$. A sequence $\{x_n\}_{n \in \omega}$ in a locally convex space *E* is called
- *weakly p-summable* if for every $\chi \in E'$, it follows

$$(\langle \chi, x_n \rangle)_{n \in \omega} \in \ell_p \text{ if } p < \infty, \text{ and } (\langle \chi, x_n \rangle)_{n \in \omega} \in c_0 \text{ if } p = \infty;$$

- weakly *p*-convergent to $x \in E$ if $\{x_n x\}_{n \in \omega}$ is weakly *p*-summable;
- *weakly p-Cauchy* if for each pair of strictly increasing sequences $(k_n), (j_n) \subseteq \omega$, the sequence $(x_{k_n} x_{j_n})_{n \in \omega}$ is weakly *p*-summable.

The family of all weakly *p*-summable sequences of *E* is denoted by $\ell_p^w(E)$ or $c_0^w(E)$ if $p = \infty$.

A sequence $\{\chi_n\}_{n \in \omega}$ in E' is called *weak*^{*} *p*-summable (resp., weak^{*} *p*-convergent to $\chi \in E'$ or weak^{*} *p*-Cauchy) if it is weakly *p*-summable (resp., weakly *p*-convergent to $\chi \in E'$ or weakly *p*-Cauchy) in E'_{w^*} .

Generalizing the classical notions of limited subsets, *p*-limited subsets, *p*-(*V*^{*}) subsets and coarse *p*-limited subsets of a Banach space *X* and *p*-(*V*) subsets of the Banach dual *X*^{*} introduced in [2], [16], [4], [13] and [17], respectively, we defined in [11, 12] the following notions. Let $1 \le p \le q \le \infty$, and let *E* be a locally convex space *E*. Then:

• a non-empty subset A of E is a (p,q)- (V^*) set (resp., a (p,q)-limited set) if

$$\left(\sup_{a\in A}|\langle\chi_n,a\rangle|\right)\in\ell_q \text{ if } q<\infty, \text{ or } \left(\sup_{a\in A}|\langle\chi_n,a\rangle|\right)\in c_0 \text{ if } q=\infty,$$

for every weakly (resp., weak*) *p*-summable sequence $\{\chi_n\}_{n \in \omega}$ in E'_{β} . (p, ∞) - (V^*) sets and $(1, \infty)$ - (V^*) sets will be called simply *p*- (V^*) sets and (V^*) sets, respectively. Analogously, (p, p)-limited sets and (∞, ∞) -limited sets will be called *p*-limited sets and limited sets, respectively.

- a non-empty subset *A* of *E* is a *coarse p-limited set* if for every $T \in \mathcal{L}(E, \ell_p)$ (or $T \in \mathcal{L}(E, c_0)$ if $p = \infty$), the set T(A) is relatively compact.
- a non-empty subset *B* of *E*' is a (*p*, *q*)-(*V*) set if

$$\left(\sup_{\chi\in B}|\langle\chi,x_n\rangle|\right)\in\ell_q \text{ if } q<\infty, \text{ or } \left(\sup_{\chi\in B}|\langle\chi,x_n\rangle|\right)\in c_0 \text{ if } q=\infty,$$

for every weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E*. (p, ∞) -(V) sets and $(1, \infty)$ -(V) sets will be called simply *p*-(V) sets and (V) sets, respectively.

Recall that a locally convex space *E*

- is *sequentially complete* if each Cauchy sequence in *E* converges;
- (*quasi*)barrelled if every $\sigma(E', E)$ -bounded (resp., $\beta(E', E)$ -bounded) subset of E' is equicontinuous;
- c_0 -(*quasi*)*barrelled* if every $\sigma(E', E)$ -null (resp., $\beta(E', E)$ -null) sequence is equicontinuous.

The following weak barrelledness conditions introduced and studied in [11] will play a considerable role in the article. Let $p \in [1, \infty]$. A locally convex space *E* is called *p*-barrelled (resp., *p*-quasibarrelled) if every weakly *p*-summable sequence in E'_{w^*} (resp., in E'_{β}) is equicontinuous. It is clear that *E* is ∞ -barrelled if and only if it is c_0 -barrelled.

We shall consider also the following linear map introduced in [11]

$$S_p: \mathcal{L}(E, \ell_p) \to \ell_p^{w}(E'_{w^*}) \quad \left(\text{or } S_{\infty}: \mathcal{L}(E, c_0) \to c_0^{w}(E'_{w^*}) \text{ if } p = \infty \right)$$

defined by $S_p(T) := (T^*(e_n^*))_{n \in \omega}$.

The following *p*-versions of weakly compact-type properties are defined in [11] generalizing the corresponding notions in the class of Banach spaces introduced in [3] and [14]. Let $p \in [1, \infty]$. A subset *A* of a locally convex space *E* is called

- (*relatively*) *weakly sequentially p-compact* if every sequence in *A* has a weakly *p*-convergent subsequence with limit in *A* (resp., in *E*);
- *weakly sequentially p-precompact* if every sequence from *A* has a weakly *p*-Cauchy subsequence.

It is clear that each relatively weakly sequentially *p*-compact subset of *E* is weakly sequentially *p*-precompact.

Let *E* and *L* be locally convex spaces. An operator $T \in \mathcal{L}(E, L)$ is called *weakly sequentially compact* (resp., *weakly sequentially p-compact, weakly sequentially p-precompact* or *coarse p-limited*) if there is $U \in \mathcal{N}_0(E)$ such that T(U) is a relatively weakly sequentially compact (resp., relatively weakly sequentially *p*-compact, weakly sequentially *p*-precompact or coarse *p*-limited) subset of *L*. Generalizing the notion of *p*-convergent operators between Banach spaces and following [11], an operator $T \in \mathcal{L}(E, L)$ is called *p-convergent* if *T* sends weakly *p*-summable sequences of *E* to null sequences of *L*.

3. Main results

The following assertion gives the first relationships between different *p*-convergent types of operators. Recall that a locally convex space *E* is called *Grothendieck* or has the *Grothendieck property* if the identity map $id_{E'}: E'_{w^*} \rightarrow (E'_{\beta})_w$ is sequentially continuous.

Proposition 3.1. Let $p \in [1, \infty]$, *E* and *L* be locally convex spaces, and let $T : E \to L$ be a linear map. Then:

- (i) *if T is finite-dimensional and continuous, then T is p-convergent, coarse p-limited and weak** *p-convergent;*
- (ii) if T is weak* p-convergent, then it is weakly p-convergent; the converse it true if L has the Grothendieck property;
- (iii) if *L* is ∞ -quasibarrelled and *T* is *p*-convergent, then *T* is weakly *p*-convergent;
- (iv) *if L is c*₀*-barrelled and T is p-convergent, then T is weak*^{*} *p-convergent.*

Proof. (i) follows from the corresponding definitions and (iv) of Proposition 4.2 of [12] (which states that every finite subset of *E* is coarse *p*-limited).

(ii) follows from the fact that every weakly null sequence in L'_{β} is also weak^{*} null and the definition of the Grothendieck property.

(iii), (iv): Let $\{\eta_n\}_{n\in\omega} \subseteq L'_{\beta}$ be a weakly (resp., weak*) null-sequence, and let $\{x_n\}_{n\in\omega} \subseteq E$ be a weakly *p*-summable sequence. As *L* is ∞ -quasibarrelled (resp., c_0 -barrelled), the sequence $\{\eta_n\}_{n\in\omega}$ is equicontinuous. Now, fix an arbitrary $\varepsilon > 0$. Choose $U \in \mathcal{N}_0(L)$ such that

$$|\langle \eta_n, y \rangle| < \varepsilon$$
 for every $n \in \omega$ and each $y \in U$.

Since *T* is *p*-convergent, $T(x_n) \rightarrow 0$ in *L*, and hence there is $N_{\varepsilon} \in \omega$ such that

 $T(x_n) \in U$ for every $n \ge N_{\varepsilon}$.

Then (1) and (2) imply

 $|\langle \eta_n, T(x_n) \rangle| < \varepsilon$ for every $n \ge N_{\varepsilon}$.

Therefore $\langle \eta_n, T(x_n) \rangle \to 0$ as $n \to \infty$. Thus *T* is weakly (resp., weak*) *p*-convergent. \Box

Below we consider the case when the classes of all weakly *p*-convergent, weak^{*} *p*-convergent and *p*-convergent operators coincide. Observe that the conditions of the proposition are satisfied if *L* is a separable reflexive Fréchet space or a reflexive Banach space. In particular, this proposition generalizes Corollary 2.4 and Proposition 2.5 of [7].

Proposition 3.2. Let $p \in [1, \infty]$, E be a locally convex space, and let L be an ∞ -quasibarrelled Grothendieck space such that U° is weak* selectively sequentially pseudocompact for every $U \in \mathcal{N}_0(L)$. Then for an operator $T : E \to L$, the following assertions are equivalent:

- (i) *T* is weakly *p*-convergent;
- (ii) *T* is weak^{*} *p*-convergent;
- (iii) T is p-convergent.

Proof. The equivalence (i) \Leftrightarrow (ii) follow from (ii) of Proposition 3.1, and the implication (iii) \Rightarrow (i) follows from (iii) of Proposition 3.1.

(ii) \Rightarrow (iii) Suppose for a contradiction that there is a weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* such that $T(x_n) \neq 0$. Without loss of generality we can assume that there is $V \in \mathcal{N}_0^c(L)$ such that $T(x_n) \notin V$ for every $n \in \omega$. By the Hahn–Banach separation theorem, for every $n \in \omega$ there is $\eta_n \in V^\circ$ such that $|\langle \eta_n, T(x_n) \rangle| > 1$. For every $n \in \omega$, set

$$U_n := \{ \chi \in V^\circ : |\langle \chi, T(x_n) \rangle| > 1 \}.$$

Then U_n is a weak* open neighborhood of η_n in V° . Since V° is selectively sequentially pseudocompact in the weak* topology, for every $n \in \omega$ there exists $\chi_n \in U_n$ such that the sequence $\{\chi_n\}_{n \in \omega}$ contains a subsequence $\{\chi_{n_k}\}_{k \in \omega}$ which weak* converges to some functional $\chi \in V^\circ$. Taking into account that the subsequence $\{\chi_{n_k}\}_{k \in \omega}$ is also weakly *p*-summable and the operator *T* is weak* *p*-convergent the inclusion $\chi_{n_k} \in U_n$ implies

$$1 < \langle \chi_{n_k}, T(x_{n_k}) \rangle = \langle \chi_{n_k} - \chi, T(x_{n_k}) \rangle + \langle \chi, T(x_{n_k}) \rangle \to 0 \text{ as } k \to \infty,$$

a contradiction. \Box

In (iv) of Proposition 3.1 the condition of being a c_0 -barrelled space is not necessary in general even for operators, but this condition cannot be completely omitted even for metrizable spaces, and also the condition in (iii) of being ∞ -quasibarrelled is essential as the following example shows.

Example 3.3. Let $p \in [1, \infty]$.

- (i) There are metrizable non- c_0 -barrelled spaces E and L such that each operator $T : E \to L$ is finitedimensional and hence it is *p*-convergent and weak^{*} *p*-convergent.
- (ii) There is a metrizable non- c_0 -barrelled space *E* such that the identity map id_E is *p*-convergent and weakly *p*-convergent, but it is not weak* *p*-convergent.
- (iii) There are a non- ∞ -quasibarrelled space *E* and an ∞ -convergent operator $T : E \to E$ such that *T* is not weakly ∞ -convergent.

10243

(2)

Proof. (i) Let $E = (c_0)_p$ be the Banach space c_0 endowed with the topology induced from \mathbb{F}^{ω} , and let $L := c_0^0$. Then E and L are metrizable and non-barrelled. Since metrizable locally convex spaces are barrelled if and only if they are c_0 -barrelled (see Proposition 12.2.3 of [15]), it remains to note that, by (ii) of Example 5.4 of [11], each $T \in \mathcal{L}(E, L)$ is finite-dimensional.

(ii) Let $E = L = C_p(\mathbf{s})$, where $\mathbf{s} = \{x_n\}_{n \in \omega} \cup \{x_\infty\}$ is a convergent sequence. Then *E* is a metrizable space and hence quasibarrelled. By Proposition 12.2.3 of [15] and the Buchwalter—Schmets theorem, *E* is not c_0 -barrelled. Since *E* carries its weak topology, id_E is trivially *p*-convergent for every $p \in [1, \infty]$. Therefore, by (iii) of Proposition 3.1, id_E is weakly *p*-convergent. To show that id_E is not weak* *p*-convergent, for every $n \in \omega$, let $\eta_n := \delta_{x_n} - \delta_{x_\infty}$ and $f_n := 1_{\{x_n\}}$, where δ_x is the Dirac measure at the point *x* and 1_A is the characteristic function of a subset $A \subseteq \mathbf{s}$. It is well known that $C_p(\mathbf{s})' = L(\mathbf{s})$ algebraically, where $L(\mathbf{s})$ is the free locally convex space over \mathbf{s} . Now it is clear that the sequence $\{\eta_n\}_{n \in \omega}$ is weak* null in *L'* and $(f_n) \in \ell_p^{\omega}(E)$ (or $\in c_0^{\omega}(E)$ if $p = \infty$). However, since $\langle \eta_n, id_E(f_n) \rangle = f_n(x_n) - f_n(x_\infty) = 1 \neq 0$ we obtain that id_E is not weak* *p*-convergent.

(iii) Let $\mathbf{s} = \{x_n\}_{n \in \omega} \cup \{x_\infty\}$ be a convergent sequence, and let $E = L(\mathbf{s})$ be the free locally convex space over \mathbf{s} . By Example 5.5 of [11], the space E is not 1-quasibarrelled and hence it is not ∞ -quasibarrelled. Let $T = \mathrm{id}_E : E \to E$ be the identity operator. Since, by Theorem 1.2 of [10], E has the Schur property the operator T is trivially p-convergent. We show that T is not weakly ∞ -convergent. To this end, as in the proof of (ii), we consider two sequences $\{\eta_n := \delta_{x_n} - \delta_{x_\infty}\}_{n \in \omega} \subseteq E$ and $\{f_n\}_{n \in \omega} \subseteq E' = C(\mathbf{s})$. It is clear that $\{\eta_n\}_{n \in \omega}$ is weakly null in E. Since, by Proposition 3.4 of [9], the space E'_{β} is the Banach space $C(\mathbf{s})$, it is easy to see that the sequence $\{f_n = 1_{\{x_n\}}\}_{n \in \omega}$ is weakly null (= weakly ∞ -summable). Taking into account that

$$\langle f_n, T(\eta_n) \rangle = \langle f_n, \delta_{x_n} - \delta_{x_\infty} \rangle = f_n(x_n) - f_n(x_\infty) = 1 \not\to 0,$$

it follows that *T* is not weakly ∞ -convergent. \Box

Below we generalize the classes of limited, limited completely continuous and limited *p*-convergent operators between Banach spaces.

Definition 3.4. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let *E* and *L* be locally convex spaces. A linear map $T : E \to L$ is called

- *weakly* (p,q)-*convergent* if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weakly *q*-summable sequence $\{\eta_n\}_{n\in\omega}$ in L'_{β} and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*;
- *weak*^{*} (*p*, *q*)-convergent if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weak^{*} *q*-summable sequence $\{\eta_n\}_{n\in\omega}$ in *L*' and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*;
- (p,q)-*limited* if T(U) is a (p,q)-limited subset of L for some $U \in \mathcal{N}_0(E)$; if p = q or $p = q = \infty$ we shall say that T is *p*-*limited* or *limited*, respectively;
- (p,q)- (V^*) if T(U) is a (p,q)- (V^*) subset of L for some $U \in \mathcal{N}_0(E)$; if $q = \infty$ or p = 1 and $q = \infty$ we shall say that T is p- (V^*) or (V^*) , respectively;
- (q', q)-limited *p*-convergent if $T(x_n) \to 0$ for every weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* which is a (q', q)-limited subset of *E*; if q' = q or $q' = q = \infty$ we shall say that *T* is *q*-limited *p*-convergent or limited *p*-convergent, respectively;
- (q',q)- (V^*) *p*-convergent if $T(x_n) \to 0$ for every weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* which is a (q',q)- (V^*) subset of *E*; if $q = \infty$ or $q' = q = \infty$ we shall say that *T* is q'- (V^*) *p*-convergent or (V^*) *p*-convergent, respectively. \Box

It is clear that weakly *p*-convergent operators are exactly weakly (p, ∞) -convergent operators, and weak* *p*-convergent operators are exactly weak* (p, ∞) -convergent operators.

Lemma 3.5. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E and L be locally convex spaces. If $T \in \mathcal{L}(E, L)$ is finite-dimensional, then T is (p, q)-limited, (p, q)- (V^*) , (q', q)-limited p-convergent and (q', q)- (V^*) p-convergent.

Proof. Since *T* is finite-dimensional, there are a finite subset *F* of *L* and $U \in N_0(E)$ such that $T(U) \subseteq \overline{acx}(F)$. Therefore, by Lemma 3.1 of [12], T(U) is a (p,q)-limited set and hence a (p,q)- (V^*) set. Whence *T* is (p,q)-limited and (p,q)- (V^*) . Since, by (i) of Proposition 3.1, *T* is *p*-convergent it is trivially (q',q)-limited *p*-convergent and (q',q)- (V^*) *p*-convergent. \Box

The next proposition stands ideal properties of the classes of operators introduced in Definition 3.4.

Proposition 3.6. Let $p,q,q' \in [1,\infty]$, $q' \leq q$, $\lambda, \mu \in \mathbb{F}$, the spaces E_0 , E, L_0 and L be locally convex, and let $Q \in \mathcal{L}(E_0, E)$, $T, S \in \mathcal{L}(E, L)$ and $R \in \mathcal{L}(L, L_0)$. Then:

- (i) *if* T and S are weakly (p,q)-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (ii) *if T* and *S* are weak^{*} (*p*, *q*)-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (iii) *if T* and *S* are (p,q)-limited operators, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (iv) *if T* and *S* are (p,q)- (V^*) operators, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (v) *if* T and S are (q', q)-limited p-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (vi) if T and S are (q', q)- (V^*) p-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (vii) *if* T and S are coarse p-limited, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$.

Proof. Since the case $\lambda T + \mu S$ is trivial, we consider the case $R \circ T \circ Q$.

(i) and (ii): Let $\{\eta_n\}_{n\in\omega}$ be a weakly (resp., weak*) *q*-summable sequence in $(L_0)'_{\beta'}$, and let $\{x_n\}_{n\in\omega}$ be a weakly *p*-summable sequence in E_0 . Then, by (iii) of Lemma 4.6 of [11], the sequence $\{Q(x_n)\}_{n\in\omega}$ is weakly *p*-summable in *E*. Since *R** is weak* and strongly continuous by Theorems 8.10.5 and 8.11.3 of [18], respectively, Lemma 4.6 of of [11] implies that the sequence $\{R^*(\eta_n)\}_{n\in\omega}$ is weakly (resp., weak*) *q*-summable in L'_{β} . Now the definition of weakly (resp., weak* (p, q)-convergent operators implies

$$\lim_{n\to\infty} \langle \eta_n, R \circ T \circ Q(x_n) \rangle = \lim_{n\to\infty} \langle R^*(\eta_n), T(Q(x_n)) \rangle = 0.$$

Thus $R \circ T \circ Q$ is weakly (resp., weak*) (*p*, *q*)-convergent, as desired.

- (iii) immediately follows from (iv) of Lemma 3.1 of [12].
- (iv) immediately follows from (iv) of Lemma 7.2 of [11].

(v) and (vi): Let $\{x_n\}_{n\in\omega}$ be a weakly *p*-summable sequence in E_0 which is a (q', q)-limited (resp., (q', q)- (V^*)) subset of *E*. Then, by Lemma 4.6 of of [11] and (iv) of Lemma 3.1 of [12] (resp., (iv) of Lemma 7.2 of [11]), the sequence $\{Q(x_n)\}_{n\in\omega}$ is a weakly *p*-summable sequence in *E* which is a (q', q)-limited (resp., (q', q)- (V^*)) subset of *E*. Since *T* is (q', q)-limited (resp., (q', q)- (V^*)) *p*-convergent, it follows that $T(Q(x_n)) \to 0$ in the space *L*. The continuity of *R* implies that $R \circ T \circ Q(x_n) \to 0$ in L_0 . Thus $R \circ T \circ Q$ is (q', q)-limited (resp., (q', q)- (V^*)) *p*-convergent.

(vii) immediately follows from (iii) of Lemma 4.1 of [12] (which states that continuous images of coarse *p*-limited sets are coarse *p*-limited). \Box

Corollary 3.7. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E and L be locally convex spaces. If the identity operator $id_E : E \rightarrow E$ is weakly (p, q)-convergent (resp., weak* (p, q)-convergent, (q', q)-limited, (q', q)- (V^*) , (q', q)-limited *p*-convergent, (q', q)- (V^*) *p*-convergent or coarse *p*-limited), then so is every $T \in \mathcal{L}(E, L)$.

Proof. The assertion follows from the equality $T = T \circ id_E \circ id_E$ and Proposition 3.6.

Corollary 3.7 motivates the study of locally convex spaces *E* for which the identity operator $id_E : E \to E$ has one of the properties from the corollary. If the space *L* contains an isomorphic copy of ℓ_{∞} we can partially reverse Corollary 3.7 as follows.

Theorem 3.8. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E and L be locally convex spaces. If L contains an isomorphic copy of ℓ_{∞} , then the following assertions are equivalent:

(i) each weakly p-convergent operator from E into L is (q', q)-limited p-convergent;

- (ii) each weak* p-convergent operator from E into L is (q', q)-limited p-convergent;
- (iii) the identity operator $id_E : E \to E$ is (q', q)-limited p-convergent.

Proof. (i) \Rightarrow (ii) follows from (ii) of Proposition 3.1.

(ii) \Rightarrow (iii) Suppose for a contradiction that id_E is not (q', q)-limited *p*-convergent. Then there is a (q', q)-limited weakly *p*-summable sequence $S = \{x_n\}_{n \in \omega}$ in *E* which does not converge to zero in *E*. Without loss of generality we can assume that $S \cap U = \emptyset$ for some closed absolutely convex neighborhood *U* of zero in *E*. Since *S*, being also a weakly null-sequence, is a bounded subset of *E*, there is a > 1 such that $S \subseteq aU$. For every $n \in \omega$, by the Hahn–Banach separation theorem, choose $\chi_n \in U^\circ$ such that $|\langle \chi_n, x_n \rangle| > 1$. Therefore

$$1 < |\langle \chi_n, x_n \rangle| \le a \quad \text{for every } n \in \omega. \tag{3}$$

Since $\{\chi_n\}_{n \in \omega} \subseteq U^\circ$, the sequence $\{\chi_n\}_{n \in \omega}$ is equicontinuous. Therefore, by Lemma 14.13 of [11], the linear map

$$Q: E \to \ell_{\infty}, \quad Q(x) := \left(\langle \chi_n, x \rangle \right)_{n \in \omega'}$$

is continuous.

By assumption, there is an embedding $R : \ell_{\infty} \to L$. Consider the operator $T := R \circ Q : E \to L$. We claim that T is weak^{*} p-convergent. Indeed, let $(y_n)_{n\in\omega} \in \ell_p^{w}(E)$ (or $(y_n)_{n\in\omega} \in c_0^{w}(E)$ if $p = \infty$) and let $\{\eta_n\}_{n\in\omega}$ be a weak^{*} null-sequence in $(\ell_{\infty})'$. Then $\{R^*(\eta_n)\}_{n\in\omega}$ is also a weak^{*} null-sequence in $(\ell_{\infty})'$. Therefore, by the Grothendieck property of $\ell_{\infty}, \{R^*(\eta_n)\}_{n\in\omega}$ is weakly null in the Banach dual space $(\ell_{\infty})'_{\beta}$. Since $\{y_n\}_{n\in\omega}$ is weakly null, it follows that $\{Q(y_n)\}_{n\in\omega} \subseteq \ell_{\infty}$ is also weakly null. Therefore, by the Dunford–Pettis property of ℓ_{∞} , we obtain

$$\lim_{n\to\infty} \langle \eta_n, T(y_n) \rangle = \lim_{n\to\infty} \langle R^*(\eta_n), Q(y_n) \rangle = 0.$$

Thus *T* is a weak* *p*-convergent operator.

To get a desired contradiction it remains to prove that *T* is not (q', q)-limited *p*-convergent by showing that $T(x_k) \neq 0$. To this end, choose $W \in \mathcal{N}_0(L)$ such that $W \cap R(\ell_\infty) \subseteq R(B_{\ell_\infty})$. The inequalities (3) and the bijectivity of *R* imply

$$T(x_k) = R \circ Q(x_k) = R(\langle \chi_n, x_k \rangle) \notin R(B_{\ell_{\infty}}) \text{ for every } k \in \omega.$$

Since the range of *T* is contained in $R(\ell_{\infty})$ and *R* is an embedding the choice of *W* implies that $T(x_k) \notin W$ for all $k \in \omega$. Thus *T* is not (q', q)-limited *p*-convergent.

(iii) \Rightarrow (i) follows from Corollary 3.7. \Box

Corollary 3.7 and Theorem 3.8 immediately imply

Corollary 3.9. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E be a locally convex space. Then the identity operator $id_E : E \to E$ is (q', q)-limited p-convergent if and only if so is any operator $T : E \to \ell_{\infty}$.

Below we obtain an analogous characterization of locally convex spaces *E* for which the identity map id_E is (q', q)- (V^*) *p*-convergent. We omit its proof because it can be obtained from the proof of Theorem 3.8 just replacing "(q', q)-limited" by "(q', q)- (V^*) ".

Theorem 3.10. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E and L be locally convex spaces. If L contains an isomorphic copy of ℓ_{∞} , then the following assertions are equivalent:

- (i) each weakly p-convergent operator from E into L is (q', q)- (V^*) p-convergent;
- (ii) each weak^{*} p-convergent operator from E into L is (q', q)- (V^*) p-convergent;
- (iii) the identity operator $id_E : E \to E$ is (q', q)- (V^*) p-convergent.

Corollary 3.7 and Theorem 3.10 immediately imply

Corollary 3.11. Let $p,q,q' \in [1,\infty]$, $q' \leq q$, and let E be a locally convex space. Then the identity operator $id_E: E \to E$ is (q',q)- (V^*) p-convergent if and only if so is any operator $T: E \to \ell_{\infty}$.

Let $p \in [1, \infty]$. We shall say that a locally convex space *E* is (*weakly*) sequentially locally *p*-complete if the closed absolutely convex hull of a weakly *p*-summable sequence is weakly sequentially *p*-compact (resp., weakly sequentially *p*-precompact). It is clear that if $p = \infty$ and *E* is weakly angelic (for example, *E* is a strict (*LF*)-space), then *E* is sequentially locally ∞ -complete if and only if it is locally complete.

Now we characterize weak* *p*-convergent operators.

Theorem 3.12. Let $p \in [1, \infty]$, *E* and *L* be locally convex spaces, and let $T : E \to L$ be an operator. Consider the following assertions:

- (i) *T* is weak^{*} *p*-convergent;
- (ii) *T* transforms weakly sequentially *p*-precompact subsets of *E* to limited subsets of *L*;
- (iii) *T* transforms (relatively) weakly sequentially *p*-compact subsets of *E* to limited subsets of *L*;
- (iv) T transforms weakly p-summable sequence of E to limited subsets of L;
- (v) $S \circ T$ is p-convergent for each $S \in \mathcal{L}(L, Z)$ and any locally convex (or the same, Banach) space Z such that U° is weak^{*} selectively sequentially pseudocompact for every $U \in \mathcal{N}_0(Z)$;
- (vi) $S \circ T$ is *p*-convergent for each $S \in \mathcal{L}(L, c_0)$;
- (vii) for any normed space X and each weakly sequentially p-precompact operator $R : X \rightarrow E$, the operator $T \circ R$ is *limited*;
- (viii) for any normed space X and each weakly sequentially p-precompact operator $R : X \to E$, the adjoint $R^* \circ T^* : L'_{w^*} \to X'_{\beta}$ is ∞ -convergent;
- (ix) if $R \in \mathcal{L}(\ell_1^0, E)$ is weakly sequentially *p*-precompact, then $T \circ R$ is limited;
- (x) for every normed space Z and each weakly sequentially p-compact operator S from Z to E, the composition $T \circ S$ is a limited linear map;
- (xi) for any operator $S \in \mathcal{L}(\ell_{p^*}, E)$, the linear map $T \circ S$ is limited.

Then:

- (A) (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv);
- (B) (i) \Rightarrow (v) \Rightarrow (vi), and if L is c₀-barrelled, then (vi) \Rightarrow (i);
- (C) (ii) \Rightarrow (vii) \Rightarrow (ix), and if *E* is weakly sequentially locally *p*-complete, then (ix) \Rightarrow (i);
- (D) *if* 1 ,*then* $(iii)<math>\Rightarrow$ (x) \Rightarrow (xi), *and if E is sequentially complete, then* (xi) \Rightarrow (i).

Proof. (i) \Rightarrow (ii) Let *A* be a weakly sequentially *p*-precompact subset of *E*, and suppose for a contradiction that *T*(*A*) is not limited. Therefore there are a weak^{*} null sequence $\{\eta_n\}_{n\in\omega}$ in *L'*, a sequence $\{x_n\}_{n\in\omega}$ in *A* and $\varepsilon > 0$ such that $|\langle \eta_n, T(x_n) \rangle| > \varepsilon$ for every $n \in \omega$. Since *A* is weakly sequentially *p*-precompact, without loss of generality we assume that $\{x_n\}_{n\in\omega}$ is weakly *p*-Cauchy.

For $n_0 = 0$, since $\{\eta_n\}_{n \in \omega}$ is weak* null we can choose $n_1 > n_0$ such that $|\langle \eta_{n_1}, T(x_{n_0})\rangle| < \frac{\varepsilon}{2}$. Proceeding by induction on k, we can choose $n_{k+1} > n_k$ such that $|\langle \eta_{n_{k+1}}, T(x_{n_k})\rangle| < \frac{\varepsilon}{2}$. Since the sequence $\{x_{n_{k+1}} - x_{n_k}\}_{k \in \omega}$ is weakly p-summable and T is weak* p-convergent, we obtain

$$\langle \eta_{n_{k+1}}, T(x_{n_{k+1}}-x_{n_k}) \rangle \rightarrow 0.$$

On the other hand,

$$\left|\left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}} - x_{n_k})\right\rangle\right| \geq \left|\left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}})\right\rangle\right| - \left|\left\langle \eta_{n_{k+1}}, T(x_{n_k})\right\rangle\right| > \frac{\varepsilon}{2}.$$

a contradiction.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$ are trivial.

 $(iv) \Rightarrow (i)$ follows from the definition of limited sets.

(i)⇒(v) Assume that *T* is weak* *p*-convergent, and suppose for a contradiction that *S* ◦ *T* is not *p*-convergent for some *S* ∈ $\mathcal{L}(L, Z)$ and some locally convex (resp., Banach) space *Z* such that *U*° is weak* selectively sequentially pseudocompact for every $U \in N_0(Z)$. Then there are a weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* and a closed absolutely convex neighborhood $V \subseteq Z$ of zero such that $ST(x_n) \notin V$ for every $n \in \omega$. By the Hahn–Banach separation theorem, for every $n \in \omega$ there is $\eta_n \in V^\circ$ such that $|\langle \eta_n, ST(x_n) \rangle| > 1$. For every $n \in \omega$, set

$$U_n := \{ \chi \in V^\circ : |\langle \chi, ST(x_n) \rangle| > 1 \}.$$

Then U_n is a weak* open neighborhood of η_n in V° . Since V° is selectively sequentially pseudocompact in the weak* topology, for every $n \in \omega$ there exists $\chi_n \in U_n$ such that the sequence $\{\chi_n\}_{n \in \omega}$ contains a subsequence $\{\chi_{n_k}\}_{k \in \omega}$ which weak* converges to some functional $\chi \in V^\circ$. By Theorem 8.10.5 of [18], the adjoint operator S^* is weak* continuous and hence $S^*(\chi_{n_k}) \to S^*(\chi)$ in the weak* topology. Since *T* is weak-weak sequentially continuous, we have $ST(x_{n_k}) \to 0$ in the weak topology. Taking into account that *T* is weak* *p*-convergent, we obtain

$$|\langle \chi_{n_k}, ST(x_{n_k})\rangle| \le |\langle S^*(\chi_{n_k} - \chi), T(x_{n_k})\rangle| + |\langle \chi, ST(x_{n_k})\rangle| \to 0 \text{ as } k \to \infty.$$

Since, by the choice of χ_{n_k} , $|\langle \chi_{n_k}, ST(x_{n_k})\rangle| > 1$ we obtain a desired contradiction.

(v) \Rightarrow (vi) follows from the well known fact that $B_{c_0}^{\circ}$ is even a weak* metrizable compact space.

 $(vi) \Rightarrow (i)$ Assume that *L* is c_0 -barrelled. To show that *T* is weak^{*} *p*-convergent, fix a weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E* and a weak^{*} null sequence $\{\chi_n\}_{n\in\omega}$ in *L'*. Since *L* is c_0 -barrelled, (ii) of Proposition 4.17 of [11] implies that there is $S \in \mathcal{L}(L, c_0)$ such that $S(y) = (\langle \chi_n, y \rangle)_{n\in\omega}$ for every $y \in L$. By assumption *ST* is *p*-convergent. Therefore $ST(x_n) \to 0$ in c_0 . Taking into account that $\{e_n^*\}_{n\in\omega}$ is bounded in the Banach space $(c_0)' = \ell_1$, we obtain

$$\left|\langle \chi_k, T(x_k) \rangle\right| = \left|\langle e_k^*, \langle \chi_n, T(x_k) \rangle\rangle_{n \in \omega} \rangle\right| = \left|\langle e_k^*, ST(x_k) \rangle\right| \le ||e_k^*||_{\ell_1} \cdot ||ST(x_k)||_{\ell_0} = ||ST(x_k)||_{\ell_0} \to 0.$$

This shows that *T* is weak^{*} *p*-convergent.

(ii) \Rightarrow (vii) Assume that *T* transforms weakly sequentially *p*-precompact subsets of *E* to limited subsets of *L*, and let $R : X \rightarrow E$ be a weakly sequentially *p*-precompact operator. Then the set $R(B_X)$ is weakly sequentially *p*-precompact, and hence $TR(B_X)$ is a limited subset of *L*. Thus the operator $T \circ R$ is limited.

(vii) \Leftrightarrow (viii) follows from the equivalence (i) \Leftrightarrow (ii) of Theorem 5.5 of [12] applied to $T \circ R$ and $p = \infty$.

 $(vii) \Rightarrow (ix)$ is obvious.

(ix)⇒(i) Assume additionally that *E* is weakly sequentially locally *p*-complete. Let *S* = { x_n }_{*n*∈ ω} be a weakly *p*-summable sequence in *E*. Then, by Proposition 14.9 of [11], the linear map *R* : $\ell_1^0 \to E$ defined by

 $R(a_0e_0 + \dots + a_ne_n) := a_0x_0 + \dots + a_nx_n \quad (n \in \omega, a_0, \dots, a_n \in \mathbb{F})$

is continuous. It is clear that $R(B_{\ell_1^0}) \subseteq \overline{acx}(S)$. Since *E* is weakly sequentially locally *p*-complete it follows that $\overline{acx}(S)$ is weakly sequentially *p*-precompact. Therefore *R* is a weakly sequentially *p*-precompact operator and hence, by (ix), *TR* is limited. Whence for every weak^{*} null sequence $\{\eta_n\}_{n\in\omega}$ in *L'* we obtain

$$|\langle \eta_n, T(x_n) \rangle| = |\langle \eta_n, TR(e_n) \rangle| \le \sup_{x \in B_{\ell_1^0}} |\langle \eta_n, TR(x) \rangle| \to 0 \text{ as } n \to \infty.$$

Thus *T* is weak* *p*-convergent.

(iii) \Rightarrow (x) Let *Z* be a normed space, and let $S : Z \rightarrow E$ be a weakly sequentially *p*-compact operator. Then $S(B_Z)$ is a relatively weakly sequentially *p*-compact subset of *E*. By (iii), the set $TS(B_Z)$ is limited. Thus the linear map $T \circ S$ is limited.

(x)⇒(xi) By Proposition 1.4 of [3] (or by (ii) of Corollary 13.11 of [11]), the identity operator $id_{\ell_{p^*}}$ of ℓ_{p^*} is weakly sequentially *p*-compact. Hence each operator $S = S \circ id_{\ell_{p^*}} \in \mathcal{L}(\ell_{p^*}, E)$ is weakly sequentially *p*-compact. Thus, by (x), $T \circ S$ is limited for every $S \in \mathcal{L}(\ell_{p^*}, E)$.

 $(x_i) \Rightarrow (i)$ Assume that *E* is sequentially complete. Let $\{\chi_n\}_{n \in \omega}$ be a weak* null sequence in *L'*, and let $\{x_n\}_{n \in \omega}$ be a weakly *p*-summable sequence in *E*. By Proposition 4.14 of [11], there is $S \in \mathcal{L}(\ell_{p^*}, E)$ such that $S(e_n^*) = x_n$ for every $n \in \omega$ (where $\{e_n^*\}_{n \in \omega}$ is the canonical unit basis of ℓ_{p^*}). By (xi), $T \circ S$ is limited. Therefore

$$|\langle \chi_n, T(x_n) \rangle| = |\langle \chi_n, TS(e_n^*) \rangle| \le \sup_{x \in B_{\ell_{p^*}}} |\langle \chi_n, TS(x) \rangle| \to 0 \quad \text{as } n \to \infty.$$

Thus the linear map *T* is weak^{*} *p*-convergent. \Box

Remark 3.13. The condition on *L* to be c_0 -barrelled in the implication (vi) \Rightarrow (i) in (B) of Theorem 3.12 is essential. Indeed, let $p \in [1, \infty]$, $E = L = C_p(\mathbf{s})$ and let $T = \mathsf{id} : E \rightarrow L$ be the identity map. Then, by (ii) of Example 3.3, *L* is a metrizable non- c_0 -barrelled space and *T* is not weak* *p*-convergent. On the other hand, it is easy to see that each $S \in \mathcal{L}(L, c_0)$ is finite-dimensional (see Lemma 17.18 of [11]), and therefore $S \circ T$ is also finite-dimensional and hence *p*-convergent (see (i) of Proposition 3.1). Thus the implication (vi) \Rightarrow (i) in (B) of Theorem 3.12 does not hold. \Box

Below we characterize weakly *p*-convergent operators (for the definition of the map S_{∞} see Section 2).

Theorem 3.14. Let $p \in [1, \infty]$, *E* and *L* be locally convex spaces, and let $T : E \to L$ be an operator. Consider the following assertions:

- (i) *T* is weakly *p*-convergent;
- (ii) *T* transforms weakly sequentially *p*-precompact subsets of *E* to ∞ -(*V*^{*}) subsets of *L*;
- (iii) *T* transforms weakly sequentially *p*-compact subsets of *E* to ∞ -(*V*^{*}) subsets of *L*;
- (iv) *T* transforms weakly *p*-summable sequences of *E* to ∞ -(*V*^{*}) subsets of *L*;
- (v) $R \circ T$ is p-convergent for any Banach space Z and each $R \in \mathcal{L}(L, Z)$ with weakly sequentially precompact adjoint $R^* : Z'_{\beta} \to L'_{\beta}$;
- (vi) $R \circ T$ is p-convergent for each $R \in \mathcal{L}(L, c_0)$ with weakly sequentially precompact adjoint $R^* : \ell_1 \to L'_{\beta}$;
- (vii) $R \circ T$ is p-convergent for each operator $R \in \mathcal{L}(L, c_0)$ such that $S_{\infty}(R) = (\chi_n)$ is weakly null in L'_{β} ;
- (viii) for any normed space X and each weakly sequentially p-precompact operator $R : X \to E$, the operator $T \circ R$ is ∞ - (V^*) ;
- (ix) for every normed space X and each weakly sequentially p-precompact operator S from X to E, the map $S^* \circ T^*$ is ∞ -convergent;
- (x) if $R \in \mathcal{L}(\ell_1^0, E)$ is weakly sequentially p-precompact, then $T \circ R$ is ∞ - (V^*) ;
- (xi) for every normed space Z and each weakly sequentially p-compact operator S from Z to E, the composition $T \circ S$ is a ∞ -(V^*) linear map;
- (xii) for any operator $S \in \mathcal{L}(\ell_{p^*}, E)$, the linear map $T \circ S$ is ∞ -(V^*).

Then:

- (A) (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv);
- (B) (i) \Rightarrow (v) \Rightarrow (vi), and if L is c₀-barrelled and L'_{β} is weakly sequentially locally ∞ -complete, then (vi) \Rightarrow (i);
- (C) (i) \Rightarrow (vii), and if L is c₀-barrelled, then (vii) \Rightarrow (i);
- (D) (ii) \Rightarrow (viii) \Leftrightarrow (ix) \Rightarrow (x), and if *E* is weakly sequentially locally *p*-complete, then (x) \Rightarrow (i);
- (E) if $1 , then (i)<math>\Rightarrow$ (viii) \Rightarrow (xi) \Rightarrow (xii), and if *E* is sequentially complete, then (xii) \Rightarrow (i).

Proof. (i) \Rightarrow (ii) Let *A* be a weakly sequentially *p*-precompact subset of *E*, and suppose for a contradiction that *T*(*A*) is not an ∞ -(*V*^{*}) set. Therefore there is a weakly null sequence $\{\eta_n\}_{n\in\omega}$ in $L'_{\beta'}$, a sequence $\{x_n\}_{n\in\omega}$ in *A* and $\varepsilon > 0$ such that $|\langle \eta_n, T(x_n) \rangle| > \varepsilon$ for every $n \in \omega$. Since *A* is weakly sequentially *p*-precompact, without loss of generality we assume that $\{x_n\}_{n\in\omega}$ is weakly *p*-Cauchy.

For $n_0 = 0$, since $\{\eta_n\}_{n \in \omega}$ is also weak^{*} null we can choose $n_1 > n_0$ such that $|\langle \eta_{n_1}, T(x_{n_0}) \rangle| < \frac{\varepsilon}{2}$. Proceeding by induction on k, we can choose $n_{k+1} > n_k$ such that $|\langle \eta_{n_{k+1}}, T(x_{n_k}) \rangle| < \frac{\varepsilon}{2}$. Since the sequence $\{x_{n_{k+1}} - x_{n_k}\}_{k \in \omega}$ is weakly p-summable and T is weakly p-convergent, we obtain

 $\langle \eta_{n_{k+1}}, T(x_{n_{k+1}}-x_{n_k}) \rangle \rightarrow 0.$

On the other hand, for every $k \in \omega$, we have

$$\left|\left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}} - x_{n_k})\right\rangle\right| \geq \left|\left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}})\right\rangle\right| - \left|\left\langle \eta_{n_{k+1}}, T(x_{n_k})\right\rangle\right| > \frac{\varepsilon}{2}.$$

a contradiction.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$ are trivial.

(iv)⇒(i) follows from the definition of ∞ -(*V*^{*}).

(i) \Rightarrow (v) Assume that *T* is weakly *p*-convergent, and suppose for a contradiction that $R \circ T$ is not *p*-convergent for some Banach space *Z* and $R \in \mathcal{L}(L, Z)$ with weakly sequentially precompact adjoint $R^* : Z'_{\beta} \rightarrow L'_{\beta}$. Then there are a weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E* and $\delta > 0$ such that $||RT(x_n)|| > \delta$ for every $n \in \omega$. By the Hahn–Banach separation theorem, for every $n \in \omega$ there is $\eta_n \in (\delta B_Z)^\circ$ such that $|\langle R^*(\eta_n), T(x_n) \rangle| = |\langle \eta_n, RT(x_n) \rangle| > 1$. Since R^* is weakly sequentially precompact, passing to subsequences if needed we can assume that the sequence $\{R^*(\eta_n)\}_{n\in\omega} \subseteq L'_{\beta}$ is weakly Cauchy.

For $n_0 = 0$, choose $n_1 > n_0$ such that $|\langle R^*(\eta_{n_0}), T(x_{n_1}) \rangle| < \frac{1}{2}$ (this is possible since $\{x_n\}_{n \in \omega}$ and hence also $\{T(x_n)\}_{n \in \omega}$ are weakly null). By induction on $k \in \omega$, for every k > 0 choose $n_{k+1} > n_k$ such that $|\langle R^*(\eta_{n_k}), T(x_{n_{k+1}}) \rangle| < \frac{1}{2}$. As $\{R^*(\eta_n)\}_{n \in \omega} \subseteq L'_{\beta}$ is weakly Cauchy, the sequence $\{R^*(\eta_{n_k}) - R^*(\eta_{n_{k+1}})\}_{k \in \omega}$ is weakly null in L'_{β} . Taking into account that $\{x_{n_k}\}_{n \in \omega}$ is also weakly *p*-summable and *T* is weakly *p*-convergent we obtain

$$0 \leftarrow |\langle R^*(\eta_{n_k} - \eta_{n_{k+1}}), T(x_{n_{k+1}}) \rangle| \ge |\langle R^*(\eta_{n_{k+1}}), T(x_{n_{k+1}}) \rangle| - |\langle R^*(\eta_{n_k}), T(x_{n_{k+1}}) \rangle| > \frac{1}{2},$$

a contradiction.

 $(v) \Rightarrow (vi)$ is trivial.

(vi)⇒(i) Assume that *L* is *c*₀-barrelled and L'_{β} is weakly sequentially locally ∞-complete. To show that *T* is weakly *p*-convergent, fix a weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E* and a weakly null sequence $\{\chi_n\}_{n\in\omega}$ in L'_{β} . Since *L* is *c*₀-barrelled, (ii) of Proposition 4.17 of [11] implies that there is $R \in \mathcal{L}(L, c_0)$ such that $R(y) = (\langle \chi_n, y \rangle)_{n\in\omega}$ for every $y \in L$. Since $\{\chi_n\}_{n\in\omega}$ is weakly null in L'_{β} and L'_{β} is weakly sequentially locally ∞-complete, it follows that $\overline{acx}(\{\chi_n\}_{n\in\omega})$ is weakly sequentially precompact. Taking into account that $R^*(e_n^*) = \chi_n$ for every $n \in \omega$ (where as usual $\{e_n^*\}_{n\in\omega}$ is the canonical unit basis of ℓ_1), we obtain $R^*(B_{\ell_1}) \subseteq \overline{acx}(\{\chi_n\}_{n\in\omega})$. Therefore R^* is weakly sequentially precompact, and hence, by (vi), *RT* is *p*-convergent. Hence $RT(x_n) \to 0$ in c_0 . Therefore

$$\left|\langle \chi_k, T(x_k) \rangle\right| = \left|\langle e_k^*, (\langle \chi_n, T(x_k) \rangle)_{n \in \omega} \rangle\right| = \left|\langle e_k^*, RT(x_k) \rangle\right| \le ||e_k^*||_{\ell_1} \cdot ||RT(x_k)||_{c_0} = ||RT(x_k)||_{c_0} \to 0.$$

Thus *T* is weakly *p*-convergent.

(i) \Rightarrow (vii) Assume that *T* is weakly *p*-convergent, and suppose for a contradiction that $R \circ T$ is not *p*-convergent for some operator $R \in \mathcal{L}(L, c_0)$ such that the sequence $S_{\infty}(R) = (\chi_n)$ is weakly null in L'_{β} . Then there are a weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* and $\varepsilon > 0$ such that $||RT(x_n)||_{c_0} \ge \varepsilon$ for every $n \in \omega$. Recall that $R(y) = (\langle \chi_n, y \rangle)_n \in c_0$ for every $y \in L$. Then for every $n \in \omega$, we have (where as usual $\{e_i^*\}_{i \in \omega}$ is the canonical unit basis of $\ell_1 = (c_0)'$)

$$\varepsilon \le \|RT(x_n)\|_{c_0} = \sup_{i \in \omega} |\langle e_i^*, RT(x_n) \rangle| = \sup_{i \in \omega} |\langle R^*(e_i^*), T(x_n) \rangle| = \sup_{i \in \omega} |\langle \chi_i, T(x_n) \rangle|.$$
(4)

For $n_0 = 0$, choose $i_0 \in \omega$ such that $|\langle \chi_{i_0}, T(x_{n_0}) \rangle| \ge \frac{\varepsilon}{2}$. Since *T* is weak-weak sequentially continuous and because the sequence $\{x_n\}_{n \in \omega}$ is also weakly null, it follows that $T(x_n) \to 0$ in the weak topology of *L*. Therefore we can choose $n_1 > n_0$ such that

$$|\langle \chi_i, T(x_{n_1}) \rangle| < \frac{\varepsilon}{2} \quad \text{for every } i \le i_0. \tag{5}$$

10250

By (4), there is $i_1 \in \omega$ such that $|\langle \chi_{i_1}, T(x_{n_1}) \rangle| \ge \frac{\varepsilon}{2}$. Taking into account (5) we obtain that $i_1 > i_0$. Since $T(x_n) \to 0$ in the weak topology of *L*, there exists $n_2 > n_1$ such that

$$|\langle \chi_i, T(x_{n_2}) \rangle| < \frac{\varepsilon}{2} \quad \text{for every } i \le i_1. \tag{6}$$

By (4), there is $i_2 \in \omega$ such that $|\langle \chi_{i_2}, T(x_{n_2}) \rangle| \ge \frac{\varepsilon}{2}$. By (6), we obtain that $i_2 > i_1$. Continuing this process we find two sequences $\{\chi_{i_k}\}_{k\in\omega}$ and $\{T(x_{n_k})\}_{n\in\omega}$ such that $\{i_k\}_{k\in\omega}$ and $\{n_k\}_{k\in\omega}$ are strictly increasing and $|\langle \chi_{i_k}, T(x_{n_k}) \rangle| \ge \frac{\varepsilon}{2}$ for every $k \in \omega$. Clearly, the sequence $\{\chi_{i_k}\}_{k\in\omega}$ is weakly null in L'_{β} and the sequence $\{x_{n_k}\}_{n\in\omega}$ is weakly *p*-summable in *E*. Then the weak *p*-convergence of *T* and the choice of these two sequences imply

$$\frac{\varepsilon}{2} \leq \lim_{k \to \infty} |\langle \chi_{i_k}, T(x_{n_k}) \rangle| = 0$$

which is impossible.

 $(\text{vii}) \Rightarrow (\text{i})$ To show that *T* is weakly *p*-convergent, fix a weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* and a weakly null sequence $\{\chi_n\}_{n \in \omega}$ in L'_{β} . Since *L* is c_0 -barrelled, (ii) of Proposition 4.17 of [11] implies that there is $R \in \mathcal{L}(L, c_0)$ such that $R(y) = (\langle \chi_n, y \rangle)_{n \in \omega}$ for every $y \in L$. Since $\{\chi_n\}_{n \in \omega}$ is weakly null in L'_{β} and $S_{\infty}(R) = (\chi_n)$, (vii) implies that *RT* is *p*-convergent. Hence $RT(x_n) \to 0$ in c_0 . If $\{e_n^*\}_{n \in \omega}$ is the canonical unit basis of $(c_0)' = \ell_1$, we obtain

$$\left|\langle \chi_k, T(x_k) \rangle\right| = \left|\langle e_k^*, (\langle \chi_n, T(x_k) \rangle)_{n \in \omega} \rangle\right| = \left|\langle e_k^*, RT(x_k) \rangle\right| \le ||e_k^*||_{\ell_1} \cdot ||RT(x_k)||_{c_0} = ||RT(x_k)||_{c_0} \to 0.$$

Thus *T* is weakly *p*-convergent.

(ii) \Rightarrow (viii) Assume that *T* transforms weakly sequentially *p*-precompact subsets of *E* to ∞ -(*V*^{*}) subsets of *L*, and let *R* : *X* \rightarrow *E* be a weakly sequentially *p*-precompact operator. Then the set *R*(*B*_{*X*}) is weakly sequentially *p*-precompact, and hence *TR*(*B*_{*X*}) is an ∞ -(*V*^{*}) subset of *L*. Thus the operator *T* \circ *R* is ∞ -(*V*^{*}).

(viii) \Leftrightarrow (ix) follows from the equivalence (i) \Leftrightarrow (ii) in Theorem 14.1 of [11] applied to $T \circ R$ and $p = \infty$.

 $(viii) \Rightarrow (x)$ is obvious.

(x)⇒(ii) Assume that *E* is weakly sequentially locally *p*-complete. Let *S* = { x_n }_{*n*∈ ω} be a weakly *p*-summable sequence in *E*. Then, by Proposition 14.9 of [11], the linear map *R* : $\ell_1^0 \to E$ defined by

$$R(a_0e_0 + \dots + a_ne_n) := a_0x_0 + \dots + a_nx_n \quad (n \in \omega, a_0, \dots, a_n \in \mathbb{F})$$

is continuous. It is clear that $R(B_{\ell_1^0}) \subseteq \overline{acx}(S)$. Since *E* is weakly sequentially locally *p*-complete it follows that $\overline{acx}(S)$ is weakly sequentially *p*-precompact. Therefore *R* is a weakly sequentially *p*-precompact operator and hence, by (x), *TR* is ∞ -(*V*^{*}). Whence for every weakly null sequence $\{\eta_n\}_{n\in\omega}$ in L'_{β} we obtain

$$|\langle \eta_n, T(x_n) \rangle| = |\langle \eta_n, TR(e_n) \rangle| \le \sup_{x \in B_{\ell_1^0}} |\langle \eta_n, TR(x) \rangle| \to 0 \text{ as } n \to \infty.$$

Thus *T* is weakly *p*-convergent.

 $(viii) \Rightarrow (xi)$ is trivial.

(xi)⇒(xii) Let $1 .the identity operator <math>id_{\ell_{p^*}}$ of ℓ_{p^*} is weakly sequentially *p*-compact. Hence, each operator $S = S \circ id_{\ell_{p^*}} \in \mathcal{L}(\ell_{p^*}, E)$ is weakly sequentially *p*-compact. Thus, by (xi), $T \circ S$ is an ∞-(V^*) operator for every $S \in \mathcal{L}(\ell_{p^*}, E)$.

(xii) \Rightarrow (i) Let 1 and assume that*E* $is sequentially complete. Let <math>\{\chi_n\}_{n \in \omega}$ be a weakly null sequence in $L'_{\beta'}$, and let $\{x_n\}_{n \in \omega}$ be a weakly *p*-summable sequence in *E*. By Proposition 4.14 of [11], there is $S \in \mathcal{L}(\ell_{p^*}, E)$ such that $S(e^*_n) = x_n$ for every $n \in \omega$ (where $\{e^*_n\}_{n \in \omega}$ is the canonical unit basis of ℓ_{p^*}). By (xii), $T \circ S$ is a ∞ -(V^*) map. Therefore

$$|\langle \chi_n, T(x_n) \rangle| = |\langle \chi_n, TS(e_n^*) \rangle| \le \sup_{x \in B_{\ell_{p^*}}} |\langle \chi_n, TS(x) \rangle| \to 0 \quad \text{as } n \to \infty.$$

Thus the linear map *T* is weakly *p*-convergent. \Box

Remark 3.15. The condition on *E* to be sequentially complete in (D) of Theorem 3.12 and in (E) of Theorem 3.14 is essential. Indeed, let $1 , <math>E = \ell_{p^*}^0$, $L = \ell_q$ with $p^* \le q < \infty$, and let $T = \mathsf{id} : E \to L$ be the identity inclusion. Then every $S \in \mathcal{L}(\ell_{p^*}, E)$ is finite-dimensional (indeed, since $E = \bigcup_{n \in \omega} \mathbb{F}^n$ it follows that $\ell_{p^*} = \bigcup_{n \in \omega} S^{-1}(\mathbb{F}^n)$ and hence, by the Baire property of ℓ_{p^*} , $S^{-1}(\mathbb{F}^m)$ is an open linear subspace of ℓ_{p^*} for some $m \in \omega$ that is possible only if $S^{-1}(\mathbb{F}^m) = \ell_{p^*}$; so *S* is finite-dimensional). Therefore, by Lemma 3.5, $T \circ S$ is limited for each $S \in \mathcal{L}(\ell_{p^*}, E)$. However, *T* is not weakly *p*-convergent and hence, by (ii) of Proposition 3.1, *T* is not weak' *p*-convergent. Indeed, for every $n \in \omega$, let $x_n = e_n^* \in E$ and $\eta_n = e_n^* \in L'$. Then the sequence $\{x_n\}_{n \in \omega}$ is weakly *p*-summable in *E* (for every $\chi = (a_n) \in \ell_p = E'$, we have $\sum_{n \in \omega} |\langle \chi, x_n \rangle|^p = \sum_{n \in \omega} |a_n|^p < \infty$) and the sequence $\{\eta_n\}_{n \in \omega}$ is even weakly *q*-summable in $\ell_{q^*} = L'_{\beta}$ (for every $x = (b_n) \in \ell_q = (L'_{\beta})'$, we have $\sum_{n \in \omega} |b_n|^q < \infty$). Since for every $n \in \omega$, $\langle \eta_n, T(x_n) \rangle = 1$ it follows that *T* is not weakly *p*-convergent. \Box

References

- [1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
- [2] J. Bourgain, J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58.
- [3] J. M. F. Castillo, F. Sanchez, Dunford-Pettis-like properties of continuous vector function spaces, Revista Mat. Complut. 6:1 (1993), 43–59.
- [4] D. Chen, J. A. Chávez-Domínguez, L. Li, p-Converging operators and Dunford-Pettis property of order p J. Math. Anal. Appl. 461 (2018), 1053–1066.
- [5] A. El Kaddouri, J. H'michane, K. Bouras, M. Moussa, On the class of weak* Dunford–Pettis operators Rend. Circ. Mat. Palermo 62:2 (2013), 261–265.
- [6] J. H. Fourie, E. D. Zeekoei, On p-convergent operators on Banach spaces and Banach lattices FABWI-N-WSK-2015-461, North-West University, Potchefstroom, 2015, 27 pp.
- [7] J. H. Fourie, E. D. Zeekoei, On weak-star p-convergent operators, Quest. Math. 40 (2017), 563–579.
- [8] J. H. Fourie, E. D. Zeekoei, On p-convergent operators on Banach lattices, Acta Math. Sinica 34:5 (2018), 873–890.
- [9] S. Gabriyelyan, Locally convex properties of free locally convex spaces J. Math. Anal. Appl. 480 (2019) 123453.
- [10] S. Gabriyelyan, Maximally almost periodic groups and respecting properties, Descriptive Topology and Functional Analysis II, J.C. Ferrando (ed.), Springer Proceedings in Mathematics & Statistics, 286 (2019), 103–136.
- [11] S. Gabriyelyan, Pełczyński's type sets and Pełczyński's geometrical properties of locally convex spaces, submitted (arxiv.org/abs/2402.08860).
- [12] S. Gabriyelyan, Limited type subsets of locally convex spaces, AIMS Mathematics, 9 (11) (2024), 31414–31443.
- [13] P. Galindo, V. C. C. Miranda, A class of sets in a Banach space coarser than limited sets, Bull. Braz. Math. Soc., New series 53 (2022), 941–955.
- [14] I. Ghenciu, The p-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets, Acta Math. Hungar. 155:2 (2018), 439–457.
- [15] H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
- [16] A. K. Karn, D. P. Sinha, An operator summability in Banach spaces Glasgow Math. J. 56 (2014), 427-437.
- [17] L. Li, D. Chen, J. A. Chávez-Domínguez, Pełczyński's property (V*) of order p and its quantification, Math. Nachrichten 291 (2018), 420–442.
- [18] L. Narici, E. Beckenstein, Topological Vector Spaces, Second Edition, CRC Press, New York, 2011.
- [19] M. Salimi, S. M. Moshtaghioun, The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), 84–92.