Filomat 38:29 (2024), 10239–10252 https://doi.org/10.2298/FIL2429239G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Weakly and weak[∗] *p***-convergent operators**

Saak Gabriyelyan^a

^aDepartment of Mathematics, Ben-Gurion University of the Negev, Israel

Abstract. Let *p* ∈ [1, ∞]. Being motivated by weakly *p*-convergent and weak[∗] *p*-convergent operators between Banach spaces introduced by Fourie and Zeekoei, we introduce and study the classes of weakly *p*-convergent and weak[∗] *p*-convergent operators between arbitrary locally convex spaces. Relationships between these classes of operators are given, and we show that they have ideal properties. Numerous characterizations of weakly *p*-convergent and weak[∗] *p*-convergent operators are given.

1. Introduction

Unifying the notion of unconditionally converging operators and the notion of completely continuous operators, Castillo and Sánchez selected in [3] the class of *p*-convergent operators. An operator $T : X \to Y$ between Banach spaces *X* and *Y* is called *p-convergent* if it transforms weakly *p*-summable sequences into norm null sequences (all relevant definitions are given in Section 2). Using this notion they introduced and study Banach spaces with the Dunford–Pettis property of order *p* (*DPP_p* for short) for every $p \in [1, \infty]$. A Banach space *X* is said to have the *DPP^p* if every weakly compact operator from *X* into a Banach space *Y* is *p*-convergent.

The influential article of Castillo and Sánchez $[3]$ inspired an intensive study of p -versions of numerous geometrical properties of Banach spaces and new classes of operators of *p*-convergent type. The following two classes of operators between Banach spaces were introduced and studied by Fourie and Zeekoei in [6] and [7], respectively, where the Banach dual of a Banach space *X* is denoted by *X* ∗ .

Definition 1.1. Let $p \in [1, \infty]$, and let *X* and *Y* be Banach spaces. An operator $T : X \to Y$ is called

- (i) *weakly p-convergent* if $\lim_{n\to\infty}$ $\langle \eta_n, T(x_n) \rangle = 0$ for every weakly null sequence $\{\eta_n\}_{n\in\omega}$ in Y^* and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *X*;
- (ii) *weak^{*} p-convergent* if $\lim_{n\to\infty}$ $\langle \eta_n, T(x_n) \rangle = 0$ for every weak^{*} null sequence $\{\eta_n\}_{n\in\omega}$ in Y^* and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *X*. \square

It should be mentioned that if *p* = ∞, weakly *p*-convergent operators are known as *weak Dunford–Pettis* operators (see [1, p. 349]) and weak[∗] *p*-convergent operators are known as *weak*[∗] *Dunford–Pettis* operators (see [5]).

²⁰²⁰ *Mathematics Subject Classification*. Primary 46A03; Secondary 46E10

Keywords. Locally convex space, *p*-convergent operator, weakly *p*-convergent operator, weak[∗] *p*-convergent operator, limited set, *p*-(*V* ∗) set of Pełczynski ´

Received: 05 March 2024; Revised: 09 August 2024; Accepted: 10 August 2024

Communicated by Ljubiša D. R. Kočinac *Email address:* saak@bgu.ac.il (Saak Gabriyelyan)

Numerous characterizations and applications of weakly *p*-convergent and weak[∗] *p*-convergent operators between Banach spaces and in particular between Banach lattices were obtained in [6–8]. These results motivate us to consider these classes of operators in the general case of locally convex spaces.

Definition 1.2. Let $p \in [1, \infty]$, and let *E* and *L* be separated topological vector spaces. A linear map $T : E \to L$ is called

- (i) *weakly p-convergent* if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weakly null sequence $\{\eta_n\}_{n\in\omega}$ in L'_n $\frac{\prime}{\beta}$ and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*;
- (ii) *weak*^{*} *p-convergent* if $\lim_{n\to\infty}$ $\langle \eta_n, T(x_n) \rangle = 0$ for every weak^{*} null sequence $\{\eta_n\}_{n\in\omega}$ in *L'* and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in E . \square

Relationships between the classes of *p*-convergent, weakly *p*-convergent and weak[∗] *p*-convergent operators are given in Proposition 3.1, and Proposition 3.2 provides a sufficient condition on the range space *L* under which all these three classes of operators coincide.

In [2] Bourgain and Diestel introduced the class of limited operators between Banach spaces. More general classes of limited completely continuous and limited *p*-convergent operators were defined and studied by Salimi and Moshtaghioun [19] and Fourie and Zeekoei [7], respectively. We generalize these classes by introducing the classes of (*q* ′ , *q*)-limited *p*-convergent and (*q* ′ , *q*)-(*V* ∗) *p*-convergent operators from a locally convex space *E* to a locally convex space *L*, where $p, q, q' \in [1, \infty]$ and $q' \le q$. In Proposition 3.6 we show that these new classes have ideal properties. If the space *L* contains an isomorphic copy of ℓ_{∞} , in Theorems 3.8 and 3.10 we show that all weakly *p*-convergent operators are (*q* ′ , *q*)-limited *p*-convergent (resp., (q', q)-(V^{*}) *p*-convergent) if and only if so are all weak[∗] *p*-convergent operators if and only if so is the identity operator $id_E : E \to E$.

The main results of the article are Theorems 3.12 and 3.14 in which we give numerous characterizations of weak[∗] *p*-convergent and weakly *p*-convergent operators between locally convex spaces.

2. Preliminaries results

We start with some necessary definitions and notations used in the article. Set $\omega := \{0, 1, 2, \dots\}$. All topological spaces are assumed to be Tychonoff (= completely regular and T_1). The closure of a subset *A* of a topological space X is denoted by \overline{A} , \overline{A}^X or cl $_X(A)$. A topological space X is defined to be *selectively sequentially pseudocompact* if for any sequence ${U_n}_{n \in \omega}$ of open sets of *X* there exists a sequence $(x_n)_{n \in \omega} \in \prod_{n \in \omega} U_n$ containing a convergent subsequence. A function $f : X \to Y$ between topological spaces *X* and *Y* is called *sequentially continuous* if for any convergent sequence $\{x_n\}_{n\in\omega} \subseteq X$, the sequence $\{f(x_n)\}_{n\in\omega}$ converges in *Y* and $\lim_{n} f(x_n) = f(\lim_{n} x_n)$. We denote by $C(X)$ the vector space of all continuous F-valued functions on *X*. A subset *A* of a topological space *X* is called

- *relatively compact* if its closure \overline{A} is compact;
- (*relatively*) *sequentially compact* if each sequence in *A* has a subsequence converging to a point of *A* (resp., of *X*);
- *functionally bounded in X* if every $f \in C(X)$ is bounded on *A*.

The space $C(X)$ endowed with the pointwise topology is denoted by $C_p(X)$.

Let *E* be a locally convex space. We assume that *E* is over the field F of real or complex numbers. We denote by $N_0(E)$ (resp., $N_0^c(E)$) the family of all (resp., closed absolutely convex) neighborhoods of zero of *E*. The family of all bounded subsets of *E* is denoted by Bo(*E*). The topological dual space of *E* is denoted by *E'*. The value of $\chi \in E'$ on $x \in E$ is denoted by $\langle \chi, x \rangle$ or $\chi(x)$. A sequence $\{\chi_n\}_{n \in \omega}$ in \overline{E} is said to be *Cauchy* if for every *U* ∈ $N_0(E)$ there is $N \in \omega$ such that $x_n - x_m \in U$ for all $n, m \ge N$. It is easy to see that a sequence ${x_n}_{n \in \omega}$ in *E* is Cauchy if and only if $x_{n_k} - x_{n_{k+1}}$ → 0 for every (strictly) increasing sequence (n_k) in ω . We denote by E_w and E_β the space E endowed with the weak topology $\sigma(E, E')$ and with the strong topology β(*E*, *E* ′), respectively. The topological dual space *E* ′ of *E* endowed with weak[∗] topology σ(*E* ′ , *E*) or with the strong topology $\beta(E', E)$ is denoted by E'_{w^*} or E'_{β} $'_{\beta'}$, respectively. The closure of a subset A in the weak topology

is denoted by \overline{A}^w or $\overline{A}^{\sigma(E,E)}$, and \overline{B}^{w^*} (or $\overline{B}^{\sigma(E',E)}$) denotes the closure of $B \subseteq E'$ in the weak* topology. The *polar* of a subset *A* of *E* is denoted by

$$
A^{\circ} := \{ \chi \in E' : ||\chi||_{A} \le 1 \}, \quad \text{where} \quad ||\chi||_{A} = \sup \{ |\chi(x)| : x \in A \cup \{0\} \}.
$$

A subset *B* of *E*' is *equicontinuous* if $B \subseteq U^{\circ}$ for some $U \in \mathcal{N}_0(E)$. The family of all continuous linear maps (= operators) from an lcs H to an lcs L is denoted by $\mathcal{L}(H, L)$.

Let $p \in [1, \infty]$. Then p^* is defined to be the unique element of $[1, \infty]$ which satisfies $\frac{1}{p} + \frac{1}{p^*} = 1$. For $p \in [1,\infty)$, the space ℓ_{p^*} is the dual space of ℓ_p . We denote by $\{e_n\}_{n\in\omega}$ the canonical basis of ℓ_p , if $1\leq p<\infty$, or the canonical basis of c_0 , if $p = \infty$. The canonical basis of ℓ_{p^*} is denoted by $\{e_n^*\}_{n \in \omega}$. Denote by ℓ_p^0 and c_0^0 the linear span of $\{e_n\}_{n\in\omega}$ in ℓ_p or c_0 endowed with the induced norm topology, respectively.

A subset *A* of a locally convex space *E* is called

- *precompact* if for every $U \in \mathcal{N}_0(E)$ there is a finite set $F \subseteq E$ such that $A \subseteq F + U$;
- *sequentially precompact* if every sequence in *A* has a Cauchy subsequence;
- *weakly* (*sequentially*) *compact* if *A* is (sequentially) compact in *Ew*;
- *relatively weakly compact* if its weak closure $\overline{A}^{\sigma(\tilde{E},E')}$ is compact in E_w ;
- *relatively weakly sequentially compact* if each sequence in *A* has a subsequence weakly converging to a point of *E*;
- *weakly sequentially precompact* if each sequence in *A* has a weakly Cauchy subsequence.

Note that each sequentially precompact subset of *E* is precompact, but the converse is not true in general, see Lemma 2.2 of [11].

- Let *p* ∈ [1, ∞]. A sequence $\{x_n\}_{n\in\omega}$ in a locally convex space *E* is called
- *weakly p-summable* if for every $\chi \in E'$, it follows

$$
(\langle \chi, x_n \rangle)_{n \in \omega} \in \ell_p \text{ if } p < \infty \text{, and } (\langle \chi, x_n \rangle)_{n \in \omega} \in c_0 \text{ if } p = \infty;
$$

- *weakly p-convergent to* $x \in E$ if $\{x_n x\}_{n \in \omega}$ is weakly *p*-summable;
- *weakly p-Cauchy* if for each pair of strictly increasing sequences (k_n) , $(j_n) \subseteq \omega$, the sequence $(x_{k_n} x_{j_n})_{n \in \omega}$ is weakly *p*-summable.

The family of all weakly *p*-summable sequences of *E* is denoted by $\ell_p^w(E)$ or $c_0^w(E)$ if $p = \infty$.

A sequence $\{\chi_n\}_{n\in\omega}$ in *E'* is called *weak^{*} p-summable* (resp., *weak^{*} p-convergent to* $\chi \in E'$ or *weak* p-Cauchy*) if it is weakly *p*-summable (resp., weakly *p*-convergent to $\chi \in E'$ or weakly *p*-Cauchy) in E'_{w^*} .

Generalizing the classical notions of limited subsets, *p*-limited subsets, *p*-(*V* ∗) subsets and coarse *p*limited subsets of a Banach space *X* and *p*-(*V*) subsets of the Banach dual *X* ∗ introduced in [2], [16], [4], [13] and [17], respectively, we defined in [11, 12] the following notions. Let $1 \le p \le q \le \infty$, and let *E* be a locally convex space *E*. Then:

• a non-empty subset *A* of *E* is a (p, q) - (V^*) *set* (resp., a (p, q) -limited set) if

$$
\left(\sup_{a\in A} |\langle \chi_n, a\rangle|\right) \in \ell_q \text{ if } q < \infty, \text{ or } \left(\sup_{a\in A} |\langle \chi_n, a\rangle|\right) \in c_0 \text{ if } q = \infty,
$$

for every weakly (resp., weak[∗]) *p*-summable sequence {χ*n*}*n*∈^ω in *E* ′ $'_{β}$. (*p*, ∞)-(*V*^{*}) sets and (1, ∞)-(*V*^{*}) sets will be called simply *p-*(*V* ∗) *sets* and (*V* ∗) *sets*, respectively. Analogously, (*p*, *p*)-limited sets and (∞, ∞)-limited sets will be called *p-limited sets* and *limited sets*, respectively.

- a non-empty subset *A* of *E* is a *coarse p-limited set* if for every $T \in \mathcal{L}(E, \ell_p)$ (or $T \in \mathcal{L}(E, \ell_0)$ if $p = \infty$), the set *T*(*A*) is relatively compact.
- a non-empty subset *B* of *E*' is a (p, q) -(*V*) *set* if

$$
\Big(\sup_{\chi\in B}|\langle \chi, x_n\rangle|\Big) \in \ell_q \text{ if } q<\infty, \text{ or } \Big(\sup_{\chi\in B}|\langle \chi, x_n\rangle|\Big) \in c_0 \text{ if } q=\infty,
$$

for every weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*. (*p*, ∞)-(*V*) sets and $(1, \infty)$ -(*V*) sets will be called simply *p-*(*V*) *sets* and (*V*) *sets*, respectively.

Recall that a locally convex space *E*

- is *sequentially complete* if each Cauchy sequence in *E* converges;
- \bullet (*quasi*)*barrelled* if every $\sigma(E', E)$ -bounded (resp., $\beta(E', E)$ -bounded) subset of E' is equicontinuous;
- *c*0*-*(*quasi*)*barrelled* if every σ(*E* ′ , *E*)-null (resp., β(*E* ′ , *E*)-null) sequence is equicontinuous.

The following weak barrelledness conditions introduced and studied in [11] will play a considerable role in the article. Let $p \in [1,\infty]$. A locally convex space *E* is called *p-barrelled* (resp., *p-quasibarrelled*) if every weakly *p*-summable sequence in E'_{w^*} (resp., in E'_{β}) \hat{f}_{β}) is equicontinuous. It is clear that *E* is ∞-barrelled if and only if it is c_0 -barrelled.

We shall consider also the following linear map introduced in [11]

$$
S_p: \mathcal{L}(E, \ell_p) \to \ell_p^w(E'_{w^*}) \quad \left(\text{or } S_\infty: \mathcal{L}(E, c_0) \to c_0^w(E'_{w^*}) \text{ if } p = \infty\right)
$$

defined by $S_p(T) := (T^*(e_n^*))$ *n*∈ω .

The following *p*-versions of weakly compact-type properties are defined in [11] generalizing the corresponding notions in the class of Banach spaces introduced in [3] and [14]. Let $p \in [1, \infty]$. A subset *A* of a locally convex space *E* is called

- (*relatively*) *weakly sequentially p-compact* if every sequence in *A* has a weakly *p*-convergent subsequence with limit in *A* (resp., in *E*);
- *weakly sequentially p-precompact* if every sequence from *A* has a weakly *p*-Cauchy subsequence.

It is clear that each relatively weakly sequentially *p*-compact subset of *E* is weakly sequentially *p*-precompact.

Let *E* and *L* be locally convex spaces. An operator $T \in \mathcal{L}(E, L)$ is called *weakly sequentially compact* (resp., *weakly sequentially p-compact, weakly sequentially p-precompact* or *coarse p-limited*) if there is $U \in \mathcal{N}_0(E)$ such that *T*(*U*) is a relatively weakly sequentially compact (resp., relatively weakly sequentially *p*-compact, weakly sequentially *p*-precompact or coarse *p*-limited) subset of *L*. Generalizing the notion of *p*-convergent operators between Banach spaces and following [11], an operator $T \in \mathcal{L}(E, L)$ is called *p-convergent* if *T* sends weakly *p*-summable sequences of *E* to null sequences of *L*.

3. Main results

The following assertion gives the first relationships between different *p*-convergent types of operators. Recall that a locally convex space *E* is called *Grothendieck* or has the *Grothendieck property* if the identity map $\mathsf{id}_{E'} : E'_{w^*} \to \left(E'_\beta\right)$ $\binom{\prime}{\beta}$ *w* is sequentially continuous.

Proposition 3.1. *Let* $p \in [1, \infty]$ *, E and L be locally convex spaces, and let* $T : E \to L$ *be a linear map. Then:*

- (i) *if T is finite-dimensional and continuous, then T is p-convergent, coarse p-limited and weak*[∗] *p-convergent;*
- (ii) *if T is weak*[∗] *p-convergent, then it is weakly p-convergent; the converse it true if L has the Grothendieck property;*
- (iii) *if L is* ∞*-quasibarrelled and T is p-convergent, then T is weakly p-convergent;*
- (iv) *if L is c*₀-barrelled and T is p-convergent, then T is weak^{*} p-convergent.

Proof. (i) follows from the corresponding definitions and (iv) of Proposition 4.2 of [12] (which states that every finite subset of *E* is coarse *p*-limited).

(ii) follows from the fact that every weakly null sequence in L' β is also weak[∗] null and the definition of the Grothendieck property.

(iii), (iv): Let $\{\eta_n\}_{n\in\omega} \subseteq L'_\rho$ β_{β} be a weakly (resp., weak^{*}) null-sequence, and let $\{x_n\}_{n\in\omega}\subseteq E$ be a weakly *p*-summable sequence. As *L* is ∞ -quasibarrelled (resp., *c*₀-barrelled), the sequence $\{\eta_n\}_{n\in\omega}$ is equicontinuous. Now, fix an arbitrary $\varepsilon > 0$. Choose $U \in \mathcal{N}_0(L)$ such that

$$
|\langle \eta_n, y \rangle| < \varepsilon \quad \text{for every } n \in \omega \text{ and each } y \in U. \tag{1}
$$

Since *T* is *p*-convergent, $T(x_n) \to 0$ in *L*, and hence there is $N_{\epsilon} \in \omega$ such that

 $T(x_n) \in U$ for every $n \ge N_{\varepsilon}$. (2)

Then (1) and (2) imply

 $|\langle \eta_n, T(x_n) \rangle| < \varepsilon$ for every $n \ge N_{\varepsilon}$.

Therefore $\langle \eta_n, T(x_n) \rangle \to 0$ as $n \to \infty$. Thus *T* is weakly (resp., weak^{*}) *p*-convergent.

Below we consider the case when the classes of all weakly *p*-convergent, weak[∗] *p*-convergent and *p*convergent operators coincide. Observe that the conditions of the proposition are satisfied if *L* is a separable reflexive Frechet space or a reflexive Banach space. In particular, this proposition generalizes Corollary 2.4 ´ and Proposition 2.5 of [7].

Proposition 3.2. Let $p \in [1,\infty]$, E be a locally convex space, and let L be an ∞ -quasibarrelled Grothendieck space s uch that U $^{\circ}$ is weak * selectively sequentially pseudocompact for every U \in $\mathcal{N}_0(L)$. Then for an operator T $:E\to L$, *the following assertions are equivalent:*

- (i) *T is weakly p-convergent;*
- (ii) *T is weak*[∗] *p-convergent;*
- (iii) *T is p-convergent.*

Proof. The equivalence (i)⇔(ii) follow from (ii) of Proposition 3.1, and the implication (iii)⇒(i) follows from (iii) of Proposition 3.1.

(ii)⇒(iii) Suppose for a contradiction that there is a weakly *p*-summable sequence {*x_n*}_{*n*∈ω} in *E* such that *T*(*x_n*) \rightarrow 0. Without loss of generality we can assume that there is $V \in \mathcal{N}_0^c(L)$ such that $T(x_n) \notin V$ for every $n \in \omega$. By the Hahn–Banach separation theorem, for every $n \in \omega$ there is $\eta_n \in V^\circ$ such that $|\langle \eta_n, T(x_n) \rangle| > 1$. For every $n \in \omega$, set

$$
U_n := \{ \chi \in V^\circ : |\langle \chi, T(x_n) \rangle| > 1 \}.
$$

Then U_n is a weak[∗] open neighborhood of η_n in V° . Since V° is selectively sequentially pseudocompact in the weak[∗] topology, for every $n \in \omega$ there exists $\chi_n \in U_n$ such that the sequence $\{\chi_n\}_{n \in \omega}$ contains a subsequence $\{\chi_{n_k}\}_{k\in\omega}$ which weak* converges to some functional $\chi\in V^\circ$. Taking into account that the subsequence $\{x_{n_k}\}_{k\in\omega}$ is also weakly *p*-summable and the operator *T* is weak^{*} *p*-convergent the inclusion $\chi_{n_k} \in U_{n_k}$ implies

$$
1 < \langle \chi_{n_k}, T(x_{n_k}) \rangle = \langle \chi_{n_k} - \chi, T(x_{n_k}) \rangle + \langle \chi, T(x_{n_k}) \rangle \to 0 \text{ as } k \to \infty,
$$

a contradiction. \Box

In (iv) of Proposition 3.1 the condition of being a c_0 -barrelled space is not necessary in general even for operators, but this condition cannot be completely omitted even for metrizable spaces, and also the condition in (iii) of being ∞ -quasibarrelled is essential as the following example shows.

Example 3.3. Let $p \in [1, \infty]$.

- (i) There are metrizable non- c_0 -barrelled spaces *E* and *L* such that each operator $T : E \to L$ is finitedimensional and hence it is *p*-convergent and weak[∗] *p*-convergent.
- (ii) There is a metrizable non- c_0 -barrelled space *E* such that the identity map id_E is *p*-convergent and weakly *p*-convergent, but it is not weak[∗] *p*-convergent.
- (iii) There are a non-∞-quasibarrelled space *E* and an ∞-convergent operator $T : E \to E$ such that *T* is not weakly ∞-convergent.

Proof. (i) Let $E = (c_0)_p$ be the Banach space c_0 endowed with the topology induced from \mathbb{F}^{ω} , and let $L := c_0^0$. Then *E* and *L* are metrizable and non-barrelled. Since metrizable locally convex spaces are barrelled if and only if they are c_0 -barrelled (see Proposition 12.2.3 of [15]), it remains to note that, by (ii) of Example 5.4 of [11], each $T \in \mathcal{L}(E, L)$ is finite-dimensional.

(ii) Let $E = L = C_p(\mathbf{s})$, where $\mathbf{s} = \{x_n\}_{n \in \omega} \cup \{x_\infty\}$ is a convergent sequence. Then *E* is a metrizable space and hence quasibarrelled. By Proposition 12.2.3 of [15] and the Buchwalter—Schmets theorem, *E* is not *c*₀-barrelled. Since *E* carries its weak topology, id_{*E*} is trivially *p*-convergent for every *p* ∈ [1, ∞]. Therefore, by (iii) of Proposition 3.1, id*^E* is weakly *p*-convergent. To show that id*^E* is not weak[∗] *p*-convergent, for every $n \in \omega$, let $\eta_n := \delta_{x_n} - \delta_{x_\infty}$ and $f_n := 1_{\{x_n\}}$, where δ_x is the Dirac measure at the point *x* and 1_A is the characteristic function of a subset $A \subseteq s$. It is well known that $C_p(s)' = L(s)$ algebraically, where $L(s)$ is the free locally convex space over **s**. Now it is clear that the sequence $\{\eta_n\}_{n\in\omega}$ is weak* null in *L'* and $(f_n) \in \ell_p^w(E)$ (or $\in c_0^w(E)$ if $p = \infty$). However, since $\langle \eta_n, id_E(f_n) \rangle = f_n(x_n) - f_n(x_\infty) = 1 \nrightarrow 0$ we obtain that id_E is not weak^{*} *p*-convergent.

(iii) Let $\mathbf{s} = \{x_n\}_{n \in \omega} \cup \{x_\infty\}$ be a convergent sequence, and let $E = L(\mathbf{s})$ be the free locally convex space over **s**. By Example 5.5 of [11], the space *E* is not 1-quasibarrelled and hence it is not ∞-quasibarrelled. Let $T = id_E : E \to E$ be the identity operator. Since, by Theorem 1.2 of [10], *E* has the Schur property the operator *T* is trivially *p*-convergent. We show that *T* is not weakly ∞ -convergent. To this end, as in the proof of (ii), we consider two sequences $\{\eta_n := \delta_{x_n} - \delta_{x_\infty}\}_{n \in \omega} \subseteq E$ and $\{f_n\}_{n \in \omega} \subseteq E' = C(\mathbf{s})$. It is clear that ${\eta_n}_{n \in \omega}$ is weakly null in *E*. Since, by Proposition 3.4 of [9], the space E'_ℓ $\frac{\prime}{\beta}$ is the Banach space C(**s**), it is easy to see that the sequence ${f_n = 1_{x_n}}_{n \in \omega}$ is weakly null (= weakly ∞-summable). Taking into account that

$$
\langle f_n, T(\eta_n) \rangle = \langle f_n, \delta_{x_n} - \delta_{x_\infty} \rangle = f_n(x_n) - f_n(x_\infty) = 1 \nrightarrow 0,
$$

it follows that *T* is not weakly ∞-convergent. $□$

Below we generalize the classes of limited, limited completely continuous and limited *p*-convergent operators between Banach spaces.

Definition 3.4. Let p , q , $q' \in [1, \infty]$, $q' \leq q$, and let *E* and *L* be locally convex spaces. A linear map $T : E \to L$ is called

- *weakly* (*p*, *q*)-convergent if $\lim_{n\to\infty} \langle \eta_n, T(x_n) \rangle = 0$ for every weakly *q*-summable sequence $\{\eta_n\}_{n\in\omega}$ in L_f β and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*;
- *weak*^{*} (*p*, *q*)-*convergent* if lim_{*n→∞*} $\langle η$ _{*n*}, $T(x_n)$) = 0 for every weak^{*} *q*-summable sequence { $η$ _{*n*}}_{*n*∈ω} in *L*' and each weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E*;
- (*p*, *q*)-limited if $T(U)$ is a (*p*, *q*)-limited subset of *L* for some $U \in N_0(E)$; if $p = q$ or $p = q = \infty$ we shall say that *T* is *p-limited* or *limited*, respectively;
- (p, q) - (V^*) if $T(U)$ is a (p, q) - (V^*) subset of *L* for some $U \in \mathcal{N}_0(E)$; if $q = \infty$ or $p = 1$ and $q = \infty$ we shall say that *T* is $p-(V^*)$ or (V^*) , respectively;
- (*q'*, *q*)-limited *p*-convergent if $T(x_n) \to 0$ for every weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* which is a (q', q) -limited subset of *E*; if $q' = q$ or $q' = q = \infty$ we shall say that *T* is *q*-limited *p*-convergent or limited *p-convergent*, respectively;
- (*q'*, *q*)-(V^*) *p-convergent* if $T(x_n) \to 0$ for every weakly *p*-summable sequence $\{x_n\}_{n \in \omega}$ in *E* which is a (q', q) - (V^*) subset of *E*; if $q = \infty$ or $q' = q = \infty$ we shall say that *T* is q' - (V^*) *p*-convergent or (V^*) *p-convergent*, respectively.

It is clear that weakly *p*-convergent operators are exactly weakly (*p*, ∞)-convergent operators, and weak[∗] *p*-convergent operators are exactly weak[∗] (*p*, ∞)-convergent operators.

Lemma 3.5. Let p, q, q' ∈ [1, ∞], q' ≤ q, and let E and L be locally convex spaces. If T ∈ $\mathcal{L}(E,L)$ is finite-dimensional, then T is (p, q)-limited, (p, q)-(V*), (q' , q)-limited p-convergent and (q' , q)-(V*) p-convergent.

Proof. Since *T* is finite-dimensional, there are a finite subset *F* of *L* and $U \in N_0(E)$ such that $T(U) \subseteq \overline{a} \overline{c} \overline{x}$ *(F)*. Therefore, by Lemma 3.1 of [12], $T(U)$ is a (p,q) -limited set and hence a (p,q) - (V^*) set. Whence T is (*p*, *q*)-limited and (*p*, *q*)-(*V*^{*}). Since, by (i) of Proposition 3.1, *T* is *p*-convergent it is trivially (*q'*, *q*)-limited *p*-convergent and (*q* ′ , *q*)-(*V* ∗) *p*-convergent.

The next proposition stands ideal properties of the classes of operators introduced in Definition 3.4.

Proposition 3.6. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, $\lambda, \mu \in \mathbb{F}$, the spaces E_0 , E , L_0 and L be locally convex, and let Q ∈ $\mathcal{L}(E_0, E)$, T, S ∈ $\mathcal{L}(E, L)$ *and* R ∈ $\mathcal{L}(L, L_0)$ *. Then:*

- (i) *if* T and S are weakly (p, q) -convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (ii) *if* T and S are weak^{*} (p , q)-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (iii) *if T* and *S* are (*p*, *q*)-limited operators, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (iv) *if T* and *S* are (p, q) -(*V*^{*}) operators, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (v) *if* T and S are (q' , q)-limited p-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (vi) *if T* and *S* are (q', q) -(V^*) *p*-convergent, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$;
- (vii) *if* T and S are coarse p-limited, then so are $R \circ T \circ Q$ and $\lambda T + \mu S$.

Proof. Since the case $\lambda T + \mu S$ is trivial, we consider the case $R \circ T \circ Q$.

(i) and (ii): Let $\{\eta_n\}_{n \in \omega}$ be a weakly (resp., weak^{*}) q-summable sequence in (L_0) ^{*i*} β , and let {*xn*}*n*∈^ω be a weakly *p*-summable sequence in E_0 . Then, by (iii) of Lemma 4.6 of [11], the sequence $\{Q(x_n)\}_{n\in\omega}$ is weakly *p*-summable in *E*. Since *R*^{*} is weak^{*} and strongly continuous by Theorems 8.10.5 and 8.11.3 of [18], respectively, Lemma 4.6 of of [11] implies that the sequence {*R* ∗ (η*n*)}*n*∈^ω is weakly (resp., weak[∗]) *q*-summable in \dot{L}'_ρ β . Now the definition of weakly (resp., weak[∗] (*p*, *q*)-convergent operators implies

$$
\lim_{n\to\infty}\langle \eta_n, R\circ T\circ Q(x_n)\rangle=\lim_{n\to\infty}\langle R^*(\eta_n), T\big(Q(x_n)\big)\rangle=0.
$$

Thus *R* ◦ *T* ◦ *Q* is weakly (resp., weak[∗]) (*p*, *q*)-convergent, as desired.

- (iii) immediately follows from (iv) of Lemma 3.1 of [12].
- (iv) immediately follows from (iv) of Lemma 7.2 of [11].

(v) and (vi): Let $\{x_n\}_{n\in\omega}$ be a weakly *p*-summable sequence in E_0 which is a (q', q) -limited (resp., (q', q) -(*V* ∗)) subset of *E*. Then, by Lemma 4.6 of of [11] and (iv) of Lemma 3.1 of [12] (resp., (iv) of Lemma 7.2 of [11]), the sequence ${Q(x_n)}_{n \in \omega}$ is a weakly *p*-summable sequence in *E* which is a (q', q) -limited (resp., (q', q) - (V^*)) subset of E. Since T is (q', q) -limited (resp., (q', q) - (V^*)) p-convergent, it follows that $T(Q(x_n)) \to 0$ in the space *L*. The continuity of *R* implies that $R \circ T \circ Q(x_n) \to 0$ in L_0 . Thus $R \circ T \circ Q$ is (q', q) -limited $(\text{resp., } (q', q)$ - $(V^*))$ *p*-convergent.

(vii) immediately follows from (iii) of Lemma 4.1 of [12] (which states that continuous images of coarse *p*-limited sets are coarse *p*-limited). \square

Corollary 3.7. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E and L be locally convex spaces. If the identity operator $\mathsf{id}_E : E \to E$ is weakly (p,q) -convergent (resp., weak* (p,q) -convergent, (q',q) -limited, (q',q) -(V*), (q',q) -limited p -convergent, (q', q)-(\check{V}^*) p -convergent or coarse p-limited), then so is every $T \in \mathcal{L}(E,L)$.

Proof. The assertion follows from the equality $T = T \circ id_E \circ id_E$ and Proposition 3.6. \Box

Corollary 3.7 motivates the study of locally convex spaces *E* for which the identity operator $id_E : E \to E$ has one of the properties from the corollary. If the space *L* contains an isomorphic copy of ℓ_{∞} we can partially reverse Corollary 3.7 as follows.

Theorem 3.8. *Let p, q, q'* ∈ [1, ∞], *q'* ≤ *q, and let E and L be locally convex spaces. If L contains an isomorphic copy of* ℓ∞*, then the following assertions are equivalent:*

(i) *each weakly p-convergent operator from E into L is* (*q* ′ , *q*)*-limited p-convergent;*

- (ii) *each weak*[∗] *p-convergent operator from E into L is* (*q* ′ , *q*)*-limited p-convergent;*
- (iii) *the identity operator* $\mathsf{id}_E : E \to E$ *is* (q', q) *-limited p-convergent.*

Proof. (i)⇒(ii) follows from (ii) of Proposition 3.1.

(ii)⇒(iii) Suppose for a contradiction that id_E is not (*q'*, *q*)-limited *p*-convergent. Then there is a (*q'*, *q*)limited weakly *p*-summable sequence $S = \{x_n\}_{n \in \omega}$ in *E* which does not converge to zero in *E*. Without loss of generality we can assume that $S \cap U = \emptyset$ for some closed absolutely convex neighborhood *U* of zero in *E*. Since *S*, being also a weakly null-sequence, is a bounded subset of *E*, there is *a* > 1 such that *S* ⊆ *aU*. For every $n \in \omega$, by the Hahn–Banach separation theorem, choose $\chi_n \in U^{\circ}$ such that $|\langle \chi_n, x_n \rangle| > 1$. Therefore

$$
1 < |\langle \chi_n, x_n \rangle| \le a \quad \text{for every} \quad n \in \omega. \tag{3}
$$

Since $\{\chi_n\}_{n\in\omega} \subseteq U^{\circ}$, the sequence $\{\chi_n\}_{n\in\omega}$ is equicontinuous. Therefore, by Lemma 14.13 of [11], the linear map

$$
Q: E \to \ell_{\infty}, \quad Q(x) := (\langle \chi_n, x \rangle)_{n \in \omega'}
$$

is continuous.

By assumption, there is an embedding $R : \ell_{\infty} \to L$. Consider the operator $T := R \circ Q : E \to L$. We claim that T is weak* p-convergent. Indeed, let $(y_n)_{n \in \omega} \in \ell_p^w(E)$ (or $(y_n)_{n \in \omega} \in c_0^w(E)$ if $p = \infty$) and let $\{\eta_n\}_{n \in \omega}$ be a weak^{*} null-sequence in $(\ell_{\infty})'$. Then $\{R^*(\eta_n)\}_{n\in\omega}$ is also a weak^{*} null-sequence in $(\ell_{\infty})'$. Therefore, by the Grothendieck property of ℓ_{∞} , $\{R^*(\eta_n)\}_{n\in\omega}$ is weakly null in the Banach dual space $(\ell_{\infty})^{\ell}_{\ell}$ \int_{β} . Since $\{y_n\}_{n\in\omega}$ is weakly null, it follows that ${Q(y_n)}_{n \in \omega} \subseteq \ell_\infty$ is also weakly null. Therefore, by the Dunford–Pettis property of ℓ_{∞} , we obtain

$$
\lim_{n\to\infty}\langle \eta_n, T(y_n)\rangle = \lim_{n\to\infty}\langle R^*(\eta_n), Q(y_n)\rangle = 0.
$$

Thus *T* is a weak[∗] *p*-convergent operator.

To get a desired contradiction it remains to prove that *T* is not (*q* ′ , *q*)-limited *p*-convergent by showing that $T(x_k) \nrightarrow 0$. To this end, choose $W \in N_0(L)$ such that $W \cap R(\ell_\infty) \subseteq R(B_{\ell_\infty})$. The inequalities (3) and the bijectivity of *R* imply

$$
T(x_k) = R \circ Q(x_k) = R(\langle \chi_n, x_k \rangle) \notin R(B_{\ell_{\infty}}) \text{ for every } k \in \omega.
$$

Since the range of *T* is contained in $R(\ell_{\infty})$ and *R* is an embedding the choice of *W* implies that $T(x_k) \notin W$ for all $k \in \omega$. Thus *T* is not (q', q) -limited *p*-convergent.

(iii) \Rightarrow (i) follows from Corollary 3.7. □

Corollary 3.7 and Theorem 3.8 immediately imply

Corollary 3.9. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E be a locally convex space. Then the identity operator $id_E : E \to E$ *is* (*q'*, *q*)-limited *p*-convergent if and only if so is any operator $T : E \to \ell_{\infty}$.

Below we obtain an analogous characterization of locally convex spaces *E* for which the identity map id_E is (q', q)-(V^*) *p*-convergent. We omit its proof because it can be obtained from the proof of Theorem 3.8 just replacing " (q', q) -limited" by " (q', q) - (V^*) ".

Theorem 3.10. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E and L be locally convex spaces. If L contains an isomorphic *copy of* ℓ∞*, then the following assertions are equivalent:*

- (i) *each weakly p-convergent operator from E into L is* (*q* ′ , *q*)*-*(*V* ∗) *p-convergent;*
- (ii) *each weak*[∗] *p-convergent operator from E into L is* (*q* ′ , *q*)*-*(*V* ∗) *p-convergent;*
- (iii) *the identity operator* $\mathsf{id}_E : E \to E$ *is* (q', q) - (V^*) *p*-convergent.

Corollary 3.7 and Theorem 3.10 immediately imply

Corollary 3.11. Let $p, q, q' \in [1, \infty]$, $q' \leq q$, and let E be a locally convex space. Then the identity operator $id_E : E \to E$ is (q', q) - (V^*) p-convergent if and only if so is any operator $T : E \to \ell_\infty$.

Let $p \in [1, ∞]$. We shall say that a locally convex space *E* is (*weakly*) *sequentially locally p-complete* if the closed absolutely convex hull of a weakly *p*-summable sequence is weakly sequentially *p*-compact (resp., weakly sequentially *p*-precompact). It is clear that if $p = \infty$ and *E* is weakly angelic (for example, *E* is a strict (*LF*)-space), then *E* is sequentially locally ∞-complete if and only if it is locally complete.

Now we characterize weak[∗] *p*-convergent operators.

Theorem 3.12. Let $p \in [1, \infty]$, E and L be locally convex spaces, and let $T : E \to L$ be an operator. Consider the *following assertions:*

- (i) *T is weak*[∗] *p-convergent;*
- (ii) *T transforms weakly sequentially p-precompact subsets of E to limited subsets of L;*
- (iii) *T transforms* (*relatively*) *weakly sequentially p-compact subsets of E to limited subsets of L;*
- (iv) *T transforms weakly p-summable sequence of E to limited subsets of L;*
- (v) $S \circ T$ is p-convergent for each $S \in L(L, Z)$ and any locally convex (or the same, Banach) space Z such that U° i s weak * selectively sequentially pseudocompact for every $U \in \mathcal{N}_0(Z)$;
- (vi) *S* \circ *T is p-convergent for each S* \in *L*(*L*, *c*₀);
- (vii) *for any normed space X and each weakly sequentially p-precompact operator R* : $X \to E$ *, the operator* $T \circ R$ *is limited;*
- (viii) *for any normed space X and each weakly sequentially p-precompact operator R* : *X* → *E, the adjoint R*[∗] *T* ∗ : L'_{w^*} → X'_{β} β *is* ∞*-convergent;*
- (ix) if $R \in \mathcal{L}(\ell_1^0, E)$ is weakly sequentially p-precompact, then $T \circ R$ is limited;
- (x) *for every normed space Z and each weakly sequentially p-compact operator S from Z to E, the composition T S is a limited linear map;*
- (xi) *for any operator* $S \in \mathcal{L}(\ell_{p^*}, E)$, the linear map $T \circ S$ is limited.

Then:

- (A) (i)⇔(ii)⇔(iii)⇔(iv)*;*
- (B) (i) \Rightarrow (v) \Rightarrow (vi)*, and if L is c*₀-barrelled, then (vi) \Rightarrow (i)*;*
- (C) (ii)⇒(vii)⇔(viii)⇒(ix)*, and if E is weakly sequentially locally p-complete, then* (ix)⇒(i)*;*
- (D) *if* $1 < p < ∞$ *, then* (iii) \Rightarrow (x) \Rightarrow (xi)*, and if* E *is sequentially complete, then* (xi) \Rightarrow (i)*.*

Proof. (i)⇒(ii) Let *A* be a weakly sequentially *p*-precompact subset of *E*, and suppose for a contradiction that $T(A)$ is not limited. Therefore there are a weak^{*} null sequence $\{\eta_n\}_{n\in\omega}$ in *L'*, a sequence $\{x_n\}_{n\in\omega}$ in *A* and $\varepsilon > 0$ such that $|\langle \eta_n, T(x_n) \rangle| > \varepsilon$ for every $n \in \omega$. Since *A* is weakly sequentially *p*-precompact, without loss of generality we assume that $\{x_n\}_{n\in\omega}$ is weakly *p*-Cauchy.

For $n_0 = 0$, since $\{\eta_n\}_{n \in \omega}$ is weak* null we can choose $n_1 > n_0$ such that $|\langle \eta_{n_1}, T(x_{n_0}) \rangle| < \frac{\varepsilon}{2}$. Proceeding by induction on k, we can choose $n_{k+1} > n_k$ such that $|\langle \eta_{n_{k+1}} T(x_{n_k}) \rangle| < \frac{\varepsilon}{2}$. Since the sequence $\{x_{n_{k+1}} - x_{n_k}\}_{k \in \omega}$ is weakly *p*-summable and *T* is weak[∗] *p*-convergent, we obtain

$$
\left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}} - x_{n_k}) \right\rangle \to 0.
$$

On the other hand,

$$
\left| \left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}} - x_{n_k}) \right\rangle \right| \geq \left| \left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}}) \right\rangle \right| - \left| \left\langle \eta_{n_{k+1}}, T(x_{n_k}) \right\rangle \right| > \frac{\varepsilon}{2},
$$

a contradiction.

(ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are trivial.

 $(iv) \Rightarrow (i)$ follows from the definition of limited sets.

(i) \Rightarrow (v) Assume that *T* is weak^{*} *p*-convergent, and suppose for a contradiction that *S* ◦ *T* is not *p*convergent for some $S \in \mathcal{L}(L, Z)$ and some locally convex (resp., Banach) space *Z* such that U° is weak^{*} selectively sequentially pseudocompact for every $U \in \mathcal{N}_0(Z)$. Then there are a weakly *p*-summable sequence ${x_n}_{n \in \mathbb{R}}$ in *E* and a closed absolutely convex neighborhood $V \subseteq Z$ of zero such that $ST(x_n) \notin V$ for every $n \in \omega$. By the Hahn–Banach separation theorem, for every $n \in \omega$ there is $\eta_n \in V^{\circ}$ such that $|\langle \eta_n, ST(x_n) \rangle| > 1$. For every $n \in \omega$, set

$$
U_n := \{ \chi \in V^\circ : |\langle \chi, ST(x_n) \rangle| > 1 \}.
$$

Then U_n is a weak[∗] open neighborhood of η_n in V° . Since V° is selectively sequentially pseudocompact in the weak^{*} topology, for every $n \in \omega$ there exists $\chi_n \in U_n$ such that the sequence $\{\chi_n\}_{n \in \omega}$ contains a subsequence $\{\chi_{n_k}\}_{k\in\omega}$ which weak^{*} converges to some functional $\chi \in V^\circ$. By Theorem 8.10.5 of [18], the adjoint operator S^* is weak^{*} continuous and hence $S^*(\chi_{n_k}) \to S^*(\chi)$ in the weak^{*} topology. Since *T* is weak-weak sequentially continuous, we have $ST(x_{n_k}) \to 0$ in the weak topology. Taking into account that *T* is weak^{*} *p*-convergent, we obtain

$$
|\langle \chi_{n_k}, ST(x_{n_k}) \rangle| \leq |\langle S^*(\chi_{n_k} - \chi), T(x_{n_k}) \rangle| + |\langle \chi, ST(x_{n_k}) \rangle| \to 0 \text{ as } k \to \infty.
$$

Since, by the choice of χ_{n_k} , $|\langle \chi_{n_k}$, $ST(\chi_{n_k}) \rangle| > 1$ we obtain a desired contradiction.

(v)⇒(vi) follows from the well known fact that $B_{c_0}^{\circ}$ is even a weak^{*} metrizable compact space.

(vi)⇒(i) Assume that *L* is *c*₀-barrelled. To show that *T* is weak^{*} *p*-convergent, fix a weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E* and a weak^{*} null sequence $\{\chi_n\}_{n\in\omega}$ in *L'*. Since *L* is c_0 -barrelled, (ii) of Proposition 4.17 of [11] implies that there is $S \in \mathcal{L}(L, c_0)$ such that $S(y) = (\langle \chi_n, y \rangle)$ *n*∈ω for every *y* \in *L*. By assumption *ST* is *p*-convergent. Therefore $ST(x_n) \to 0$ in c_0 . Taking into account that $\{e_n^*\}_{n \in \omega}$ is bounded in the Banach space $(c_0)' = c_1$, we obtain

$$
\left|\langle \chi_k, T(x_k)\rangle\right| = \left|\langle e_{k'}^* (\langle \chi_n, T(x_k)\rangle)_{n\in\omega}\rangle\right| = \left|\langle e_{k'}^* ST(x_k)\rangle\right| \leq ||e_k^*||_{\ell_1} \cdot ||ST(x_k)||_{c_0} = ||ST(x_k)||_{c_0} \to 0.
$$

This shows that *T* is weak[∗] *p*-convergent.

(ii)⇒(vii) Assume that *T* transforms weakly sequentially *p*-precompact subsets of *E* to limited subsets of *L*, and let $R : X \to E$ be a weakly sequentially *p*-precompact operator. Then the set $R(B_X)$ is weakly sequentially *p*-precompact, and hence $TR(B_X)$ is a limited subset of *L*. Thus the operator $T \circ R$ is limited.

(vii) \Leftrightarrow (viii) follows from the equivalence (i) \Leftrightarrow (ii) of Theorem 5.5 of [12] applied to *T* ◦ *R* and *p* = ∞.

 $(vii) \Rightarrow (ix)$ is obvious.

(ix)⇒(i) Assume additionally that *E* is weakly sequentially locally *p*-complete. Let *S* = {*x*_{*n*}}_{*n*∈ω} be a weakly *p*-summable sequence in *E*. Then, by Proposition 14.9 of [11], the linear map $R: \ell_1^0 \to E$ defined by

 $R(a_0e_0 + \cdots + a_ne_n) := a_0x_0 + \cdots + a_nx_n \quad (n \in \omega, a_0, \ldots, a_n \in \mathbb{F})$

is continuous. It is clear that $R\big(B_{\ell_1^0}\big)\subseteq\overline{acx}(S).$ Since E is weakly sequentially locally p -complete it follows that 1 acx(*S*) is weakly sequentially *p*-precompact. Therefore *R* is a weakly sequentially *p*-precompact operator and hence, by (ix), *TR* is limited. Whence for every weak[∗] null sequence {η*n*}*n*∈^ω in *L* ′ we obtain

$$
|\langle \eta_n, T(x_n)\rangle| = |\langle \eta_n, TR(e_n)\rangle| \leq \sup_{x \in B_{\ell_1^0}} |\langle \eta_n, TR(x)\rangle| \to 0 \text{ as } n \to \infty.
$$

Thus *T* is weak[∗] *p*-convergent.

(iii)⇒(x) Let *Z* be a normed space, and let *S* : *Z* → *E* be a weakly sequentially *p*-compact operator. Then *S*(*BZ*) is a relatively weakly sequentially *p*-compact subset of *E*. By (iii), the set *TS*(*BZ*) is limited. Thus the linear map $T \circ S$ is limited.

(x)⇒(xi) By Proposition 1.4 of [3] (or by (ii) of Corollary 13.11 of [11]), the identity operator $id_{\ell_{p^*}}$ of ℓ_{p^*} is weakly sequentially *p*-compact. Hence each operator $S = S \circ id_{\ell_{p^*}} ∈ \mathcal{L}(\ell_{p^*}, E)$ is weakly sequentially *p*-compact. Thus, by (x), $T \circ S$ is limited for every $S \in \mathcal{L}(\ell_{p^*}, E)$.

(xi)⇒(i) Assume that *E* is sequentially complete. Let $\{\chi_n\}_{n\in\omega}$ be a weak^{*} null sequence in *L'*, and let ${x_n}_{n \in \omega}$ be a weakly *p*-summable sequence in *E*. By Proposition 4.14 of [11], there is $S \in \mathcal{L}(\ell_{p^*}, E)$ such that $S(e_n^*) = x_n$ for every $n \in \omega$ (where $\{e_n^*\}_{n \in \omega}$ is the canonical unit basis of ℓ_p). By (xi), *T* ◦ *S* is limited. Therefore

$$
\left|\langle \chi_n, T(x_n)\rangle\right| = \left|\langle \chi_n, TS(e_n^*)\rangle\right| \le \sup_{x \in B_{\ell_{p^*}}} |\langle \chi_n, TS(x)\rangle| \to 0 \quad \text{ as } n \to \infty.
$$

Thus the linear map *T* is weak^{*} *p*-convergent. \square

Remark 3.13. The condition on *L* to be *c*₀-barrelled in the implication (vi)⇒(i) in (B) of Theorem 3.12 is essential. Indeed, let $p \in [1, \infty]$, $E = L = C_p(s)$ and let $T = id : E \to L$ be the identity map. Then, by (ii) of Example 3.3, *L* is a metrizable non-*c*0-barrelled space and *T* is not weak[∗] *p*-convergent. On the other hand, it is easy to see that each $S \in \mathcal{L}(L, c_0)$ is finite-dimensional (see Lemma 17.18 of [11]), and therefore $S \circ T$ is also finite-dimensional and hence *p*-convergent (see (i) of Proposition 3.1). Thus the implication (vi)⇒(i) in (B) of Theorem 3.12 does not hold. \square

Below we characterize weakly *p*-convergent operators (for the definition of the map S_{∞} see Section 2).

Theorem 3.14. Let $p \in [1, \infty]$, E and L be locally convex spaces, and let $T : E \to L$ be an operator. Consider the *following assertions:*

- (i) *T is weakly p-convergent;*
- (ii) *T transforms weakly sequentially p-precompact subsets of E to* ∞*-*(*V* ∗) *subsets of L;*
- (iii) *T transforms weakly sequentially p-compact subsets of E to* ∞*-*(*V* ∗) *subsets of L;*
- (iv) *T transforms weakly p-summable sequences of E to* ∞*-*(*V* ∗) *subsets of L;*
- (v) *R*◦*T is p-convergent for any Banach space Z and each R* ∈ L(*L*,*Z*) *with weakly sequentially precompact adjoint* $R^*: Z'_\beta \to L'_\beta$ β *;*
- (vi) $R \circ T$ is p-convergent for each $R \in \mathcal{L}(L,c_0)$ with weakly sequentially precompact adjoint $R^*: \ell_1 \to L'_\ell$ β *;*
- (vii) $R \circ T$ *is p-convergent for each operator* $R \in \mathcal{L}(L, c_0)$ *such that* $S_\infty(R) = (\chi_n)$ *is weakly null in* $L'_{\beta'}$
- (viii) *for any normed space X and each weakly sequentially p-precompact operator* $R: X \to E$ *, the operator* $T \circ R$ *is* ∞*-*(*V* ∗)*;*
- (ix) *for every normed space X and each weakly sequentially p-precompact operator S from X to E, the map S[∗] ∘ ^T^{*} is* ∞*-convergent;*
- (x) *if* $R \in \mathcal{L}(\ell_1^0, E)$ *is weakly sequentially p-precompact, then* $T \circ R$ *is* ∞ -(*V*^{*})*;*
- (xi) *for every normed space Z and each weakly sequentially p-compact operator S from Z to E, the composition T S is a* ∞*-*(*V* ∗) *linear map;*
- (xii) *for any operator* $S \in \mathcal{L}(\ell_{p^*}, E)$ *, the linear map* $T \circ S$ *is* ∞ *-*(V^* *)*.

Then:

- (A) (i)⇔(ii)⇔(iii)⇔(iv)*;*
- (B) (i)⇒(v)⇒(vi), and if L is c₀-barrelled and L'_β is weakly sequentially locally ∞-complete, then (vi)⇒(i);
- (C) (i)⇒(vii)*, and if L is c*₀-barrelled, then (vii)⇒(i)*;*
- (D) (ii)⇒(viii)⇔(ix)⇒(x)*, and if E is weakly sequentially locally p-complete, then* (x)⇒(i)*;*
- (E) *if* $1 < p < \infty$ *, then* (i)⇒(viii)⇒(xi)⇒(xii)*, and if E is sequentially complete, then* (xii)⇒(i).

Proof. (i)⇒(ii) Let *A* be a weakly sequentially *p*-precompact subset of *E*, and suppose for a contradiction that *T*(*A*) is not an ∞-(*V*^{*}) set. Therefore there is a weakly null sequence $\{\eta_n\}_{n\in\omega}$ in L'_ρ \mathbf{g}'_{β} , a sequence $\{x_n\}_{n\in\omega}$ in *A* and $\varepsilon > 0$ such that $|\langle \eta_n, T(x_n) \rangle| > \varepsilon$ for every $n \in \omega$. Since *A* is weakly sequentially *p*-precompact, without loss of generality we assume that $\{x_n\}_{n\in\omega}$ is weakly *p*-Cauchy.

For $n_0 = 0$, since $\{\eta_n\}_{n \in \omega}$ is also weak* null we can choose $n_1 > n_0$ such that $|\langle \eta_{n_1}, T(x_{n_0}) \rangle| < \frac{\varepsilon}{2}$. Proceeding by induction on k, we can choose $n_{k+1} > n_k$ such that $|\langle \eta_{n_{k+1}}, T(x_{n_k}) \rangle| < \frac{\varepsilon}{2}$. Since the sequence $\{x_{n_{k+1}} - x_{n_k}\}_{k \in \omega}$ is weakly *p*-summable and *T* is weakly *p*-convergent, we obtain

 $\left\langle \eta_{n_{k+1}}, T(x_{n_{k+1}} - x_{n_k}) \right\rangle \to 0.$

On the other hand, for every $k \in \omega$, we have

$$
|\langle \eta_{n_{k+1}}, T(x_{n_{k+1}} - x_{n_k}) \rangle| \ge |\langle \eta_{n_{k+1}}, T(x_{n_{k+1}}) \rangle| - |\langle \eta_{n_{k+1}}, T(x_{n_k}) \rangle| > \frac{\varepsilon}{2},
$$

a contradiction.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$ are trivial.

(iv)⇒(i) follows from the definition of ∞ -(*V*^{*}).

(i)⇒(v) Assume that *T* is weakly *p*-convergent, and suppose for a contradiction that $R \circ T$ is not *p*-convergent for some Banach space *Z* and $R \in \mathcal{L}(L, Z)$ with weakly sequentially precompact adjoint $R^* : Z'_\beta \to L'_\beta$ β . Then there are a weakly *p*-summable sequence {*xn*}*n*∈^ω in *E* and δ > 0 such that ∥*RT*(*xn*)∥ > δ for every $n \in \omega$. By the Hahn–Banach separation theorem, for every $n \in \omega$ there is $\eta_n \in (\delta B_Z)^\circ$ such that $|\langle R^*(\eta_n), T(x_n)\rangle| = |\langle \eta_n, RT(x_n)\rangle| > 1$. Since \overline{R}^* is weakly sequentially precompact, passing to subsequences if needed we can assume that the sequence ${R^*(\eta_n)}_{n \in \omega} \subseteq L'_p$ $_{\beta}^{\prime}$ is weakly Cauchy.

For $n_0 = 0$, choose $n_1 > n_0$ such that $|\langle R^*(\eta_{n_0}), T(x_{n_1}) \rangle| < \frac{1}{2}$ (this is possible since $\{x_n\}_{n \in \omega}$ and hence also ${T(x_n)}_{n \in \omega}$ are weakly null). By induction on $k \in \omega$, for every $k > 0$ choose $n_{k+1} > n_k$ such that $|\langle R^*(\eta_{n_k}), T(x_{n_{k+1}}) \rangle| < \frac{1}{2}$. As $\{R^*(\eta_n)\}_{n \in \omega} \subseteq L_{\beta}$ β is weakly Cauchy, the sequence {*R* ∗ (η*ⁿ^k*) − *R* ∗ (η*ⁿk*+¹)}*k*∈^ω is weakly null in *L* ′ β . Taking into account that $\{x_{n_k}\}_{n \in \omega}$ is also weakly *p*-summable and *T* is weakly *p*-convergent we obtain

$$
0 \leftarrow |\langle R^*(\eta_{n_k} - \eta_{n_{k+1}}), T(x_{n_{k+1}}) \rangle| \ge |\langle R^*(\eta_{n_{k+1}}), T(x_{n_{k+1}}) \rangle| - |\langle R^*(\eta_{n_k}), T(x_{n_{k+1}}) \rangle| > \frac{1}{2},
$$

a contradiction.

 $(v) \Rightarrow (vi)$ is trivial.

(vi)⇒(i) Assume that *L* is *c*₀-barrelled and *L*^{*'*}_{*l*} β is weakly sequentially locally ∞-complete. To show that *T* is weakly *p*-convergent, fix a weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E* and a weakly null sequence $\{\chi_n\}_{n\in\omega}$ in L_ρ' β . Since *L* is *c*₀-barrelled, (ii) of Proposition 4.17 of [11] implies that there is $R \in \mathcal{L}(L, c_0)$ such that $R(y) = (\langle \chi_n, y \rangle)$ *n*∈ω for every *y* ∈ *L*. Since {χ*n*}*n*∈^ω is weakly null in *L* ′ $\frac{1}{\beta}$ and L_f' $\frac{\prime}{\beta}$ is weakly sequentially locally ∞ complete, it follows that $\overline{acx}(\{\chi_n\}_{n\in\omega})$ is weakly sequentially precompact. Taking into account that $R^*(e_n^*)=\chi_n$ for every $n \in \omega$ (where as usual $\{e_n^*\}_{n \in \omega}$ is the canonical unit basis of ℓ_1), we obtain $R^*(B_{\ell_1}) \subseteq \overline{\mathrm{acx}}\big(\{\chi_n\}_{n \in \omega}\big)$. Therefore R^* is weakly sequentially precompact, and hence, by (vi), *RT* is *p*-convergent. Hence $R\hat{T}(x_n) \to 0$ in c_0 . Therefore

$$
\left|\langle \chi_k, T(x_k)\rangle\right| = \left|\langle e^*_{k}, (\langle \chi_n, T(x_k)\rangle)_{n\in\omega}\rangle\right| = \left|\langle e^*_{k}, RT(x_k)\rangle\right| \leq \|e^*_k\|_{\ell_1}\cdot \|RT(x_k)\|_{c_0} = \|RT(x_k)\|_{c_0} \to 0.
$$

Thus *T* is weakly *p*-convergent.

(i) \Rightarrow (vii) Assume that *T* is weakly *p*-convergent, and suppose for a contradiction that *R* ◦ *T* is not *p*convergent for some operator $R \in \mathcal{L}(L, c_0)$ such that the sequence $S_\infty(R) = (\chi_n)$ is weakly null in L'_R ζ_β' . Then there are a weakly *p*-summable sequence $\{x_n\}_{n\in\omega}$ in *E* and $\varepsilon > 0$ such that $\|RT(x_n)\|_{c_0} \geq \varepsilon$ for every $n \in \omega$. Recall that $R(y) = (\langle \chi_n, y \rangle)$ $n \in c_0$ for every *y* $\in L$. Then for every *n* $\in \omega$, we have (where as usual {*e_i*</sup>} $\{e_i^*\}_{i\in\omega}$ is the canonical unit basis of $\ell_1 = (c_0)$ ')

$$
\varepsilon \leq ||RT(x_n)||_{c_0} = \sup_{i \in \omega} |\langle e_i^*, RT(x_n) \rangle| = \sup_{i \in \omega} |\langle R^*(e_i^*), T(x_n) \rangle| = \sup_{i \in \omega} |\langle \chi_i, T(x_n) \rangle|.
$$
 (4)

For $n_0 = 0$, choose $i_0 \in \omega$ such that $|\langle \chi_{i_0}, T(\chi_{n_0}) \rangle| \geq \frac{\varepsilon}{2}$. Since *T* is weak-weak sequentially continuous and because the sequence $\{x_n\}_{n\in\omega}$ is also weakly null, it follows that $T(x_n) \to 0$ in the weak topology of *L*. Therefore we can choose $n_1 > n_0$ such that

$$
|\langle \chi_i, T(x_{n_1}) \rangle| < \frac{\varepsilon}{2} \quad \text{for every } i \leq i_0. \tag{5}
$$

By (4), there is $i_1 \in \omega$ such that $|\langle \chi_{i_1}, T(\chi_{i_1}) \rangle| \geq \frac{\varepsilon}{2}$. Taking into account (5) we obtain that $i_1 > i_0$. Since $T(x_n) \to 0$ in the weak topology of *L*, there exists $n_2 > n_1$ such that

$$
|\langle \chi_i, T(\chi_{n_2}) \rangle| < \frac{\varepsilon}{2} \quad \text{for every } i \leq i_1. \tag{6}
$$

By (4), there is $i_2 \in \omega$ such that $|\langle \chi_{i_2}, T(\chi_{i_2}) \rangle| \geq \frac{\varepsilon}{2}$. By (6), we obtain that $i_2 > i_1$. Continuing this process we find two sequences $\{\chi_{i_k}\}_{k\in\omega}$ and $\{T(\chi_{n_k})\}_{n\in\omega}$ such that $\{i_k\}_{k\in\omega}$ and $\{n_k\}_{k\in\omega}$ are strictly increasing and $|\langle \chi_{i_k}, T(x_{n_k}) \rangle| \geq \frac{\varepsilon}{2}$ for every $k \in \omega$. Clearly, the sequence $\{\chi_{i_k}\}_{k \in \omega}$ is weakly null in L'_k \mathbf{F}_{β} and the sequence $\{\mathbf{x}_{n_k}\}_{n \in \omega}$ is weakly *p*-summable in *E*. Then the weak *p*-convergence of *T* and the choice of these two sequences imply

$$
\frac{\varepsilon}{2} \leq \lim_{k \to \infty} |\langle \chi_{i_k}, T(x_{n_k}) \rangle| = 0
$$

which is impossible.

(vii)⇒(i) To show that *T* is weakly *p*-convergent, fix a weakly *p*-summable sequence {*xn*}*n*∈^ω in *E* and a weakly null sequence $\{\chi_n\}_{n\in\omega}$ in L'_ρ β_{β} . Since *L* is c_0 -barrelled, (ii) of Proposition 4.17 of [11] implies that there is $R \in \mathcal{L}(L, c_0)$ such that $R(y) = (\langle \chi_n, y \rangle)$ *n*∈ω for every *y* ∈ *L*. Since $\{\chi_n\}_{n \in \omega}$ is weakly null in *L*^{*t*}</sup>_{*f*} $_{\beta}^{\prime}$ and $S_{\infty}(R) = (\chi_n)$, (vii) implies that *RT* is *p*-convergent. Hence *RT*(x_n) $\to 0$ in c_0 . If $\{e_n^*\}_{n \in \omega}$ is the canonical unit basis of $(c_0)' = \ell_1$, we obtain

$$
\left|\langle \chi_k, T(x_k)\rangle\right| = \left|\langle e^*_k, (\langle \chi_n, T(x_k)\rangle)_{n\in\omega}\rangle\right| = \left|\langle e^*_k, RT(x_k)\rangle\right| \leq ||e^*_k||_{\ell_1} \cdot ||RT(x_k)||_{c_0} = ||RT(x_k)||_{c_0} \rightarrow 0.
$$

Thus *T* is weakly *p*-convergent.

(ii)⇒(viii) Assume that *T* transforms weakly sequentially *p*-precompact subsets of *E* to ∞-(*V* ∗) subsets of *L*, and let $R : X \to E$ be a weakly sequentially *p*-precompact operator. Then the set $R(B_X)$ is weakly sequentially *p*-precompact, and hence $TR(B_X)$ is an ∞ -(*V*^{*}) subset of *L*. Thus the operator $T \circ R$ is ∞ -(*V*^{*}).

(viii) \Leftrightarrow (ix) follows from the equivalence (i) \Leftrightarrow (ii) in Theorem 14.1 of [11] applied to *T* ◦ *R* and *p* = ∞.

 $(viii) \Rightarrow (x)$ is obvious.

(x)⇒(ii) Assume that *E* is weakly sequentially locally *p*-complete. Let *S* = { x_n }_{*n*∈ω} be a weakly *p*summable sequence in *E*. Then, by Proposition 14.9 of [11], the linear map $R: \ell_1^0 \to E$ defined by

$$
R(a_0e_0+\cdots+a_ne_n):=a_0x_0+\cdots+a_nx_n \quad (n\in\omega,\ a_0,\ldots,a_n\in\mathbb{F})
$$

is continuous. It is clear that $R\big(B_{\ell_1^0}\big)\subseteq\overline{\rm acx}(S).$ Since E is weakly sequentially locally p -complete it follows that acx(*S*) is weakly sequentially *p*-precompact. Therefore *R* is a weakly sequentially *p*-precompact operator and hence, by (x), TR is ∞ -(\hat{V} *). Whence for every weakly null sequence $\{\eta_n\}_{n\in\omega}$ in L'_β we obtain

$$
|\langle \eta_n, T(x_n)\rangle| = |\langle \eta_n, TR(e_n)\rangle| \leq \sup_{x \in B_{\ell_1^0}} |\langle \eta_n, TR(x)\rangle| \to 0 \text{ as } n \to \infty.
$$

Thus *T* is weakly *p*-convergent.

 $(viii) \Rightarrow (xi)$ is trivial.

(xi)⇒(xii) Let $1 < p < \infty$.the identity operator $id_{\ell_{p^*}}$ of ℓ_{p^*} is weakly sequentially *p*-compact. Hence, each operator $S = S \circ id_{\ell_{p^*}} \in \mathcal{L}(\ell_{p^*}, E)$ is weakly sequentially *p*-compact. Thus, by (xi), $T \circ S$ is an ∞-(*V**) operator for every $S \in \mathcal{L}(\ell_{p^*}, E)$.

(xii)⇒(i) Let $1 < p < ∞$ and assume that *E* is sequentially complete. Let $\{\chi_n\}_{n\in\omega}$ be a weakly null sequence in *L* ′ β , and let $\{x_n\}_{n\in\omega}$ be a weakly *p*-summable sequence in *E*. By Proposition 4.14 of [11], there is $S \in \mathcal{L}(\ell_{p^*}, E)$ such that $S(e_n^*) = x_n$ for every $n \in \omega$ (where $\{e_n^*\}_{n \in \omega}$ is the canonical unit basis of ℓ_{p^*}). By (xii), $T \circ S$ is a ∞ -(V^*) map. Therefore

$$
\left|\langle \chi_n, T(x_n)\rangle\right| = \left|\langle \chi_n, TS(e_n^*)\rangle\right| \le \sup_{x \in B_{\ell_{p^*}}}\left|\langle \chi_n, TS(x)\rangle\right| \to 0 \quad \text{ as } n \to \infty.
$$

Thus the linear map *T* is weakly *p*-convergent. \Box

Remark 3.15. The condition on *E* to be sequentially complete in (D) of Theorem 3.12 and in (E) of Theorem 3.14 is essential. Indeed, let $1 < p < \infty$, $\dot{E} = \ell_{p'}^0$, $\dot{L} = \ell_q$ with $p^* \le q < \infty$, and let $T = \text{id} : E \to L$ be the identity inclusion. Then every $S \in \mathcal{L}(\ell_{p^*}, E)$ is finite-dimensional (indeed, since $E = \bigcup_{n \in \omega} \mathbb{F}^n$ it follows that $\ell_{p^*} = \bigcup_{n \in \omega}^{\infty} S^{-1}(\mathbb{F}^n)$ and hence, by the Baire property of ℓ_{p^*} , $S^{-1}(\mathbb{F}^m)$ is an open linear subspace of ℓ_{p^*} for some $m \in \omega$ that is possible only if $S^{-1}(\mathbb{F}^m) = \ell_{p^*}$; so *S* is finite-dimensional). Therefore, by Lemma 3.5, *T* ◦ *S* is limited for each $S \in \mathcal{L}(\ell_{p^*}, E)$. However, *T* is not weakly *p*-convergent and hence, by (ii) of Proposition 3.1, *T* is not weak* *p*-convergent. Indeed, for every $n \in \omega$, let $x_n = e_n^* \in E$ and $\eta_n = e_n^* \in L'$. Then the sequence $\{x_n\}_{n\in\omega}$ is weakly p-summable in E (for every $\chi = (a_n) \in \ell_p = E'$, we have $\sum_{n\in\omega} \hat{K}\chi$, x_n) $|p| = \sum_{n\in\omega} |a_n|^p < \infty$) and the sequence $\{\eta_n\}_{n\in\omega}$ is even weakly *q*-summable in $\ell_{q^*} = L_p'$ ℓ_{β} (for every $x = (b_n) \in \ell_q = (L'_\beta)$ $\binom{1}{\beta}$, we have $\sum_{n\in\omega} |\langle x,\eta_n\rangle|^q = \sum_{n\in\omega} |b_n|^q < \infty$). Since for every $n \in \omega$, $\langle \eta_n, T(x_n) \rangle = 1$ it follows that *T* is not weakly *p*-convergent.

References

- [1] C. D. Aliprantis, O. Burkinshaw, *Positive Operators*, Springer, Dordrecht, 2006.
- [2] J. Bourgain, J. Diestel, *Limited operators and strict cosingularity*, Math. Nachr. **119** (1984), 55–58.
- [3] J. M. F. Castillo, F. Sanchez, *Dunford–Pettis-like properties of continuous vector function spaces*, Revista Mat. Complut. **6**:1 (1993), 43–59.
- [4] D. Chen, J. A. Chávez-Domínguez, L. Li, *p-Converging operators and Dunford–Pettis property of order p* J. Math. Anal. Appl. 461 (2018), 1053–1066.
- [5] A. El Kaddouri, J. H'michane, K. Bouras, M. Moussa, *On the class of weak*[∗] *Dunford–Pettis operators* Rend. Circ. Mat. Palermo **62**:2 (2013), 261–265.
- [6] J. H. Fourie, E. D. Zeekoei, *On p-convergent operators on Banach spaces and Banach lattices* FABWI-N-WSK-2015-461, North-West University, Potchefstroom, 2015, 27 pp.
- [7] J. H. Fourie, E. D. Zeekoei, *On weak-star p-convergent operators*, Quest. Math. **40** (2017), 563–579.
- [8] J. H. Fourie, E. D. Zeekoei, *On p-convergent operators on Banach lattices*, Acta Math. Sinica **34**:5 (2018), 873–890.
- [9] S. Gabriyelyan, *Locally convex properties of free locally convex spaces* J. Math. Anal. Appl. 480 (2019) 123453.
- [10] S. Gabriyelyan, *Maximally almost periodic groups and respecting properties*, Descriptive Topology and Functional Analysis II, J.C. Ferrando (ed.), Springer Proceedings in Mathematics & Statistics, **286** (2019), 103–136.
- [11] S. Gabriyelyan, *Pełczy´nski's type sets and Pełczy´nski's geometrical properties of locally convex spaces*, submitted (arxiv.org/abs/2402.08860).
- [12] S. Gabriyelyan, *Limited type subsets of locally convex spaces*, AIMS Mathematics, **9** (11) (2024), 31414–31443.
- [13] P. Galindo, V. C. C. Miranda, *A class of sets in a Banach space coarser than limited sets*, Bull. Braz. Math. Soc., New series **53** (2022), 941–955.
- [14] I. Ghenciu, *The p-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets*, Acta Math. Hungar. **155**:2 (2018), 439–457.
- [15] H. Jarchow, *Locally Convex Spaces*, B.G. Teubner, Stuttgart, 1981.
- [16] A. K. Karn, D. P. Sinha, *An operator summability in Banach spaces* Glasgow Math. J. **56** (2014), 427–437.
- [17] L. Li, D. Chen, J. A. Chavez-Dom ´ ´ınguez, *Pełczy´nski's property* (*V* ∗) *of order p and its quantification*, Math. Nachrichten **291** (2018), 420–442.
- [18] L. Narici, E. Beckenstein, *Topological Vector Spaces*, Second Edition, CRC Press, New York, 2011.
- [19] M. Salimi, S. M. Moshtaghioun, *The Gelfand–Phillips property in closed subspaces of some operator spaces*. Banach J. Math. Anal. **5** (2011), 84–92.