
Filomat 38:29 (2024), 10239–10252
https://doi.org/10.2298/FIL2429239G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Weakly and weak∗ p-convergent operators
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Abstract. Let p ∈ [1,∞]. Being motivated by weakly p-convergent and weak∗ p-convergent operators
between Banach spaces introduced by Fourie and Zeekoei, we introduce and study the classes of weakly
p-convergent and weak∗ p-convergent operators between arbitrary locally convex spaces. Relationships
between these classes of operators are given, and we show that they have ideal properties. Numerous
characterizations of weakly p-convergent and weak∗ p-convergent operators are given.

1. Introduction

Unifying the notion of unconditionally converging operators and the notion of completely continuous
operators, Castillo and Sánchez selected in [3] the class of p-convergent operators. An operator T : X → Y
between Banach spaces X and Y is called p-convergent if it transforms weakly p-summable sequences into
norm null sequences (all relevant definitions are given in Section 2). Using this notion they introduced and
study Banach spaces with the Dunford–Pettis property of order p (DPPp for short) for every p ∈ [1,∞]. A
Banach space X is said to have the DPPp if every weakly compact operator from X into a Banach space Y is
p-convergent.

The influential article of Castillo and Sánchez [3] inspired an intensive study of p-versions of numerous
geometrical properties of Banach spaces and new classes of operators of p-convergent type. The following
two classes of operators between Banach spaces were introduced and studied by Fourie and Zeekoei in [6]
and [7], respectively, where the Banach dual of a Banach space X is denoted by X∗.

Definition 1.1. Let p ∈ [1,∞], and let X and Y be Banach spaces. An operator T : X→ Y is called

(i) weakly p-convergent if limn→∞⟨ηn,T(xn)⟩ = 0 for every weakly null sequence {ηn}n∈ω in Y∗ and each
weakly p-summable sequence {xn}n∈ω in X;

(ii) weak∗ p-convergent if limn→∞⟨ηn,T(xn)⟩ = 0 for every weak∗ null sequence {ηn}n∈ω in Y∗ and each weakly
p-summable sequence {xn}n∈ω in X.

It should be mentioned that if p = ∞, weakly p-convergent operators are known as weak Dunford–Pettis
operators (see [1, p. 349]) and weak∗ p-convergent operators are known as weak∗ Dunford–Pettis operators
(see [5]).
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Numerous characterizations and applications of weakly p-convergent and weak∗ p-convergent operators
between Banach spaces and in particular between Banach lattices were obtained in [6–8]. These results
motivate us to consider these classes of operators in the general case of locally convex spaces.

Definition 1.2. Let p ∈ [1,∞], and let E and L be separated topological vector spaces. A linear map T : E→ L
is called

(i) weakly p-convergent if limn→∞⟨ηn,T(xn)⟩ = 0 for every weakly null sequence {ηn}n∈ω in L′β and each
weakly p-summable sequence {xn}n∈ω in E;

(ii) weak∗ p-convergent if limn→∞⟨ηn,T(xn)⟩ = 0 for every weak∗ null sequence {ηn}n∈ω in L′ and each weakly
p-summable sequence {xn}n∈ω in E.

Relationships between the classes of p-convergent, weakly p-convergent and weak∗ p-convergent oper-
ators are given in Proposition 3.1, and Proposition 3.2 provides a sufficient condition on the range space L
under which all these three classes of operators coincide.

In [2] Bourgain and Diestel introduced the class of limited operators between Banach spaces. More
general classes of limited completely continuous and limited p-convergent operators were defined and
studied by Salimi and Moshtaghioun [19] and Fourie and Zeekoei [7], respectively. We generalize these
classes by introducing the classes of (q′, q)-limited p-convergent and (q′, q)-(V∗) p-convergent operators from
a locally convex space E to a locally convex space L, where p, q, q′ ∈ [1,∞] and q′ ≤ q. In Proposition 3.6
we show that these new classes have ideal properties. If the space L contains an isomorphic copy of ℓ∞,
in Theorems 3.8 and 3.10 we show that all weakly p-convergent operators are (q′, q)-limited p-convergent
(resp., (q′, q)-(V∗) p-convergent) if and only if so are all weak∗ p-convergent operators if and only if so is the
identity operator idE : E→ E.

The main results of the article are Theorems 3.12 and 3.14 in which we give numerous characterizations
of weak∗ p-convergent and weakly p-convergent operators between locally convex spaces.

2. Preliminaries results

We start with some necessary definitions and notations used in the article. Set ω := {0, 1, 2, . . . }. All
topological spaces are assumed to be Tychonoff (= completely regular and T1). The closure of a subset A of a

topological space X is denoted by A, A
X

or clX(A). A topological space X is defined to be selectively sequentially
pseudocompact if for any sequence {Un}n∈ω of open sets of X there exists a sequence (xn)n∈ω ∈

∏
n∈ωUn

containing a convergent subsequence. A function f : X → Y between topological spaces X and Y is called
sequentially continuous if for any convergent sequence {xn}n∈ω ⊆ X, the sequence { f (xn)}n∈ω converges in Y
and limn f (xn) = f (limn xn). We denote by C(X) the vector space of all continuous F-valued functions on X.
A subset A of a topological space X is called

• relatively compact if its closure Ā is compact;
• (relatively) sequentially compact if each sequence in A has a subsequence converging to a point of A

(resp., of X);
• functionally bounded in X if every f ∈ C(X) is bounded on A.

The space C(X) endowed with the pointwise topology is denoted by Cp(X).
Let E be a locally convex space. We assume that E is over the field F of real or complex numbers. We

denote by N0(E) (resp., N c
0(E)) the family of all (resp., closed absolutely convex) neighborhoods of zero of

E. The family of all bounded subsets of E is denoted by Bo(E). The topological dual space of E is denoted
by E′. The value of χ ∈ E′ on x ∈ E is denoted by ⟨χ, x⟩ or χ(x). A sequence {xn}n∈ω in E is said to be Cauchy
if for every U ∈ N0(E) there is N ∈ ω such that xn − xm ∈ U for all n,m ≥ N. It is easy to see that a sequence
{xn}n∈ω in E is Cauchy if and only if xnk − xnk+1 → 0 for every (strictly) increasing sequence (nk) in ω. We
denote by Ew and Eβ the space E endowed with the weak topology σ(E,E′) and with the strong topology
β(E,E′), respectively. The topological dual space E′ of E endowed with weak∗ topology σ(E′,E) or with the
strong topology β(E′,E) is denoted by E′w∗ or E′β, respectively. The closure of a subset A in the weak topology
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is denoted by A
w

or A
σ(E,E′)

, and B
w∗

(or B
σ(E′,E)

) denotes the closure of B ⊆ E′ in the weak∗ topology. The
polar of a subset A of E is denoted by

A◦ := {χ ∈ E′ : ∥χ∥A ≤ 1}, where ∥χ∥A = sup
{
|χ(x)| : x ∈ A ∪ {0}

}
.

A subset B of E′ is equicontinuous if B ⊆ U◦ for some U ∈ N0(E). The family of all continuous linear maps (=
operators) from an lcs H to an lcs L is denoted by L(H,L).

Let p ∈ [1,∞]. Then p∗ is defined to be the unique element of [1,∞] which satisfies 1
p +

1
p∗ = 1. For

p ∈ [1,∞), the space ℓp∗ is the dual space of ℓp. We denote by {en}n∈ω the canonical basis of ℓp, if 1 ≤ p < ∞,
or the canonical basis of c0, if p = ∞. The canonical basis of ℓp∗ is denoted by {e∗n}n∈ω. Denote by ℓ0p and c0

0
the linear span of {en}n∈ω in ℓp or c0 endowed with the induced norm topology, respectively.

A subset A of a locally convex space E is called
• precompact if for every U ∈ N0(E) there is a finite set F ⊆ E such that A ⊆ F +U;
• sequentially precompact if every sequence in A has a Cauchy subsequence;
• weakly (sequentially) compact if A is (sequentially) compact in Ew;

• relatively weakly compact if its weak closure A
σ(E,E′)

is compact in Ew;
• relatively weakly sequentially compact if each sequence in A has a subsequence weakly converging to a

point of E;
• weakly sequentially precompact if each sequence in A has a weakly Cauchy subsequence.

Note that each sequentially precompact subset of E is precompact, but the converse is not true in general,
see Lemma 2.2 of [11].

Let p ∈ [1,∞]. A sequence {xn}n∈ω in a locally convex space E is called
• weakly p-summable if for every χ ∈ E′, it follows

(⟨χ, xn⟩)n∈ω ∈ ℓp if p < ∞, and (⟨χ, xn⟩)n∈ω ∈ c0 if p = ∞;

• weakly p-convergent to x ∈ E if {xn − x}n∈ω is weakly p-summable;
• weakly p-Cauchy if for each pair of strictly increasing sequences (kn), ( jn) ⊆ ω, the sequence (xkn −x jn )n∈ω

is weakly p-summable.

The family of all weakly p-summable sequences of E is denoted by ℓwp (E) or cw
0 (E) if p = ∞.

A sequence {χn}n∈ω in E′ is called weak∗ p-summable (resp., weak∗ p-convergent to χ ∈ E′ or weak∗ p-Cauchy)
if it is weakly p-summable (resp., weakly p-convergent to χ ∈ E′ or weakly p-Cauchy) in E′w∗ .

Generalizing the classical notions of limited subsets, p-limited subsets, p-(V∗) subsets and coarse p-
limited subsets of a Banach space X and p-(V) subsets of the Banach dual X∗ introduced in [2], [16], [4], [13]
and [17], respectively, we defined in [11, 12] the following notions. Let 1 ≤ p ≤ q ≤ ∞, and let E be a locally
convex space E. Then:
• a non-empty subset A of E is a (p, q)-(V∗) set (resp., a (p, q)-limited set) if(

sup
a∈A
|⟨χn, a⟩|

)
∈ ℓq if q < ∞, or

(
sup
a∈A
|⟨χn, a⟩|

)
∈ c0 if q = ∞,

for every weakly (resp., weak∗) p-summable sequence {χn}n∈ω in E′β. (p,∞)-(V∗) sets and (1,∞)-(V∗)
sets will be called simply p-(V∗) sets and (V∗) sets, respectively. Analogously, (p, p)-limited sets and
(∞,∞)-limited sets will be called p-limited sets and limited sets, respectively.

• a non-empty subset A of E is a coarse p-limited set if for every T ∈ L(E, ℓp) (or T ∈ L(E, c0) if p = ∞), the
set T(A) is relatively compact.

• a non-empty subset B of E′ is a (p, q)-(V) set if(
sup
χ∈B
|⟨χ, xn⟩|

)
∈ ℓq if q < ∞, or

(
sup
χ∈B
|⟨χ, xn⟩|

)
∈ c0 if q = ∞,

for every weakly p-summable sequence {xn}n∈ω in E. (p,∞)-(V) sets and (1,∞)-(V) sets will be called
simply p-(V) sets and (V) sets, respectively.



S. Gabriyelyan / Filomat 38:29 (2024), 10239–10252 10242

Recall that a locally convex space E

• is sequentially complete if each Cauchy sequence in E converges;
• (quasi)barrelled if every σ(E′,E)-bounded (resp., β(E′,E)-bounded) subset of E′ is equicontinuous;
• c0-(quasi)barrelled if every σ(E′,E)-null (resp., β(E′,E)-null) sequence is equicontinuous.

The following weak barrelledness conditions introduced and studied in [11] will play a considerable
role in the article. Let p ∈ [1,∞]. A locally convex space E is called p-barrelled (resp., p-quasibarrelled) if
every weakly p-summable sequence in E′w∗ (resp., in E′β) is equicontinuous. It is clear that E is ∞-barrelled
if and only if it is c0-barrelled.

We shall consider also the following linear map introduced in [11]

Sp : L(E, ℓp)→ ℓwp (E′w∗ )
(
or S∞ : L(E, c0)→ cw

0 (E′w∗ ) if p = ∞
)

defined by Sp(T) :=
(
T∗(e∗n)

)
n∈ω

.
The following p-versions of weakly compact-type properties are defined in [11] generalizing the corre-

sponding notions in the class of Banach spaces introduced in [3] and [14]. Let p ∈ [1,∞]. A subset A of a
locally convex space E is called

• (relatively) weakly sequentially p-compact if every sequence in A has a weakly p-convergent subsequence
with limit in A (resp., in E);

• weakly sequentially p-precompact if every sequence from A has a weakly p-Cauchy subsequence.

It is clear that each relatively weakly sequentially p-compact subset of E is weakly sequentially p-precompact.
Let E and L be locally convex spaces. An operator T ∈ L(E,L) is called weakly sequentially compact

(resp., weakly sequentially p-compact, weakly sequentially p-precompact or coarse p-limited) if there is U ∈ N0(E)
such that T(U) is a relatively weakly sequentially compact (resp., relatively weakly sequentially p-compact,
weakly sequentially p-precompact or coarse p-limited) subset of L. Generalizing the notion of p-convergent
operators between Banach spaces and following [11], an operator T ∈ L(E,L) is called p-convergent if T
sends weakly p-summable sequences of E to null sequences of L.

3. Main results

The following assertion gives the first relationships between different p-convergent types of operators.
Recall that a locally convex space E is called Grothendieck or has the Grothendieck property if the identity map
idE′ : E′w∗ →

(
E′β
)

w
is sequentially continuous.

Proposition 3.1. Let p ∈ [1,∞], E and L be locally convex spaces, and let T : E→ L be a linear map. Then:

(i) if T is finite-dimensional and continuous, then T is p-convergent, coarse p-limited and weak∗ p-convergent;
(ii) if T is weak∗ p-convergent, then it is weakly p-convergent; the converse it true if L has the Grothendieck property;

(iii) if L is∞-quasibarrelled and T is p-convergent, then T is weakly p-convergent;
(iv) if L is c0-barrelled and T is p-convergent, then T is weak∗ p-convergent.

Proof. (i) follows from the corresponding definitions and (iv) of Proposition 4.2 of [12] (which states that
every finite subset of E is coarse p-limited).

(ii) follows from the fact that every weakly null sequence in L′β is also weak∗ null and the definition of
the Grothendieck property.

(iii), (iv): Let {ηn}n∈ω ⊆ L′β be a weakly (resp., weak∗) null-sequence, and let {xn}n∈ω ⊆ E be a weakly
p-summable sequence. As L is∞-quasibarrelled (resp., c0-barrelled), the sequence {ηn}n∈ω is equicontinuous.
Now, fix an arbitrary ε > 0. Choose U ∈ N0(L) such that

|⟨ηn, y⟩| < ε for every n ∈ ω and each y ∈ U. (1)
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Since T is p-convergent, T(xn)→ 0 in L, and hence there is Nε ∈ ω such that

T(xn) ∈ U for every n ≥ Nε. (2)

Then (1) and (2) imply

|⟨ηn,T(xn)⟩| < ε for every n ≥ Nε.

Therefore ⟨ηn,T(xn)⟩ → 0 as n→∞. Thus T is weakly (resp., weak∗) p-convergent.

Below we consider the case when the classes of all weakly p-convergent, weak∗ p-convergent and p-
convergent operators coincide. Observe that the conditions of the proposition are satisfied if L is a separable
reflexive Fréchet space or a reflexive Banach space. In particular, this proposition generalizes Corollary 2.4
and Proposition 2.5 of [7].

Proposition 3.2. Let p ∈ [1,∞], E be a locally convex space, and let L be an ∞-quasibarrelled Grothendieck space
such that U◦ is weak∗ selectively sequentially pseudocompact for every U ∈ N0(L). Then for an operator T : E→ L,
the following assertions are equivalent:

(i) T is weakly p-convergent;
(ii) T is weak∗ p-convergent;

(iii) T is p-convergent.

Proof. The equivalence (i)⇔(ii) follow from (ii) of Proposition 3.1, and the implication (iii)⇒(i) follows from
(iii) of Proposition 3.1.

(ii)⇒(iii) Suppose for a contradiction that there is a weakly p-summable sequence {xn}n∈ω in E such that
T(xn) ̸→ 0. Without loss of generality we can assume that there is V ∈ N c

0(L) such that T(xn) < V for every
n ∈ ω. By the Hahn–Banach separation theorem, for every n ∈ ω there is ηn ∈ V◦ such that |⟨ηn,T(xn)⟩| > 1.
For every n ∈ ω, set

Un := {χ ∈ V◦ : |⟨χ,T(xn)⟩| > 1}.

Then Un is a weak∗ open neighborhood of ηn in V◦. Since V◦ is selectively sequentially pseudocompact in the
weak∗ topology, for every n ∈ ω there exists χn ∈ Un such that the sequence {χn}n∈ω contains a subsequence
{χnk }k∈ωwhich weak∗ converges to some functional χ ∈ V◦. Taking into account that the subsequence {xnk }k∈ω
is also weakly p-summable and the operator T is weak∗ p-convergent the inclusion χnk ∈ Unk implies

1 < ⟨χnk ,T(xnk )⟩ = ⟨χnk − χ,T(xnk )⟩ + ⟨χ,T(xnk )⟩ → 0 as k→∞,

a contradiction.

In (iv) of Proposition 3.1 the condition of being a c0-barrelled space is not necessary in general even
for operators, but this condition cannot be completely omitted even for metrizable spaces, and also the
condition in (iii) of being∞-quasibarrelled is essential as the following example shows.

Example 3.3. Let p ∈ [1,∞].

(i) There are metrizable non-c0-barrelled spaces E and L such that each operator T : E → L is finite-
dimensional and hence it is p-convergent and weak∗ p-convergent.

(ii) There is a metrizable non-c0-barrelled space E such that the identity map idE is p-convergent and
weakly p-convergent, but it is not weak∗ p-convergent.

(iii) There are a non-∞-quasibarrelled space E and an∞-convergent operator T : E→ E such that T is not
weakly∞-convergent.
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Proof. (i) Let E = (c0)p be the Banach space c0 endowed with the topology induced from Fω, and let L := c0
0.

Then E and L are metrizable and non-barrelled. Since metrizable locally convex spaces are barrelled if and
only if they are c0-barrelled (see Proposition 12.2.3 of [15]), it remains to note that, by (ii) of Example 5.4 of
[11], each T ∈ L(E,L) is finite-dimensional.

(ii) Let E = L = Cp(s), where s = {xn}n∈ω ∪ {x∞} is a convergent sequence. Then E is a metrizable space
and hence quasibarrelled. By Proposition 12.2.3 of [15] and the Buchwalter—Schmets theorem, E is not
c0-barrelled. Since E carries its weak topology, idE is trivially p-convergent for every p ∈ [1,∞]. Therefore,
by (iii) of Proposition 3.1, idE is weakly p-convergent. To show that idE is not weak∗ p-convergent, for
every n ∈ ω, let ηn := δxn − δx∞ and fn := 1{xn}, where δx is the Dirac measure at the point x and 1A is the
characteristic function of a subset A ⊆ s. It is well known that Cp(s)′ = L(s) algebraically, where L(s) is the
free locally convex space over s. Now it is clear that the sequence {ηn}n∈ω is weak∗ null in L′ and ( fn) ∈ ℓwp (E)
(or ∈ cw

0 (E) if p = ∞). However, since ⟨ηn, idE( fn)⟩ = fn(xn) − fn(x∞) = 1 ̸→ 0 we obtain that idE is not weak∗

p-convergent.
(iii) Let s = {xn}n∈ω ∪ {x∞} be a convergent sequence, and let E = L(s) be the free locally convex space

over s. By Example 5.5 of [11], the space E is not 1-quasibarrelled and hence it is not ∞-quasibarrelled.
Let T = idE : E → E be the identity operator. Since, by Theorem 1.2 of [10], E has the Schur property the
operator T is trivially p-convergent. We show that T is not weakly ∞-convergent. To this end, as in the
proof of (ii), we consider two sequences {ηn := δxn − δx∞ }n∈ω ⊆ E and { fn}n∈ω ⊆ E′ = C(s). It is clear that
{ηn}n∈ω is weakly null in E. Since, by Proposition 3.4 of [9], the space E′β is the Banach space C(s), it is easy
to see that the sequence { fn = 1{xn}}n∈ω is weakly null (=weakly∞-summable). Taking into account that

⟨ fn,T(ηn)⟩ = ⟨ fn, δxn − δx∞⟩ = fn(xn) − fn(x∞) = 1 ̸→ 0,

it follows that T is not weakly∞-convergent.

Below we generalize the classes of limited, limited completely continuous and limited p-convergent
operators between Banach spaces.

Definition 3.4. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E and L be locally convex spaces. A linear map T : E→ L
is called

• weakly (p, q)-convergent if limn→∞⟨ηn,T(xn)⟩ = 0 for every weakly q-summable sequence {ηn}n∈ω in L′β
and each weakly p-summable sequence {xn}n∈ω in E;

• weak∗ (p, q)-convergent if limn→∞⟨ηn,T(xn)⟩ = 0 for every weak∗ q-summable sequence {ηn}n∈ω in L′ and
each weakly p-summable sequence {xn}n∈ω in E;

• (p, q)-limited if T(U) is a (p, q)-limited subset of L for some U ∈ N0(E); if p = q or p = q = ∞we shall say
that T is p-limited or limited, respectively;

• (p, q)-(V∗) if T(U) is a (p, q)-(V∗) subset of L for some U ∈ N0(E); if q = ∞ or p = 1 and q = ∞ we shall
say that T is p-(V∗) or (V∗), respectively;

• (q′, q)-limited p-convergent if T(xn)→ 0 for every weakly p-summable sequence {xn}n∈ω in E which is a
(q′, q)-limited subset of E; if q′ = q or q′ = q = ∞ we shall say that T is q-limited p-convergent or limited
p-convergent, respectively;

• (q′, q)-(V∗) p-convergent if T(xn) → 0 for every weakly p-summable sequence {xn}n∈ω in E which is a
(q′, q)-(V∗) subset of E; if q = ∞ or q′ = q = ∞ we shall say that T is q′-(V∗) p-convergent or (V∗)
p-convergent, respectively.

It is clear that weakly p-convergent operators are exactly weakly (p,∞)-convergent operators, and weak∗

p-convergent operators are exactly weak∗ (p,∞)-convergent operators.

Lemma 3.5. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E and L be locally convex spaces. If T ∈ L(E,L) is finite-dimensional,
then T is (p, q)-limited, (p, q)-(V∗), (q′, q)-limited p-convergent and (q′, q)-(V∗) p-convergent.
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Proof. Since T is finite-dimensional, there are a finite subset F of L and U ∈ N0(E) such that T(U) ⊆ acx(F).
Therefore, by Lemma 3.1 of [12], T(U) is a (p, q)-limited set and hence a (p, q)-(V∗) set. Whence T is
(p, q)-limited and (p, q)-(V∗). Since, by (i) of Proposition 3.1, T is p-convergent it is trivially (q′, q)-limited
p-convergent and (q′, q)-(V∗) p-convergent.

The next proposition stands ideal properties of the classes of operators introduced in Definition 3.4.

Proposition 3.6. Let p, q, q′ ∈ [1,∞], q′ ≤ q, λ, µ ∈ F, the spaces E0, E, L0 and L be locally convex, and let
Q ∈ L(E0,E), T,S ∈ L(E,L) and R ∈ L(L,L0). Then:

(i) if T and S are weakly (p, q)-convergent, then so are R ◦ T ◦Q and λT + µS;
(ii) if T and S are weak∗ (p, q)-convergent, then so are R ◦ T ◦Q and λT + µS;

(iii) if T and S are (p, q)-limited operators, then so are R ◦ T ◦Q and λT + µS;
(iv) if T and S are (p, q)-(V∗) operators, then so are R ◦ T ◦Q and λT + µS;
(v) if T and S are (q′, q)-limited p-convergent, then so are R ◦ T ◦Q and λT + µS;

(vi) if T and S are (q′, q)-(V∗) p-convergent, then so are R ◦ T ◦Q and λT + µS;
(vii) if T and S are coarse p-limited, then so are R ◦ T ◦Q and λT + µS.

Proof. Since the case λT + µS is trivial, we consider the case R ◦ T ◦Q.
(i) and (ii): Let {ηn}n∈ω be a weakly (resp., weak∗) q-summable sequence in (L0)′β, and let {xn}n∈ω be

a weakly p-summable sequence in E0. Then, by (iii) of Lemma 4.6 of [11], the sequence {Q(xn)}n∈ω is
weakly p-summable in E. Since R∗ is weak∗ and strongly continuous by Theorems 8.10.5 and 8.11.3 of [18],
respectively, Lemma 4.6 of of [11] implies that the sequence {R∗(ηn)}n∈ω is weakly (resp., weak∗) q-summable
in L′β. Now the definition of weakly (resp., weak∗ (p, q)-convergent operators implies

lim
n→∞
⟨ηn,R ◦ T ◦Q(xn)⟩ = lim

n→∞
⟨R∗(ηn),T

(
Q(xn)

)
⟩ = 0.

Thus R ◦ T ◦Q is weakly (resp., weak∗) (p, q)-convergent, as desired.
(iii) immediately follows from (iv) of Lemma 3.1 of [12].
(iv) immediately follows from (iv) of Lemma 7.2 of [11].
(v) and (vi): Let {xn}n∈ω be a weakly p-summable sequence in E0 which is a (q′, q)-limited (resp., (q′, q)-

(V∗)) subset of E. Then, by Lemma 4.6 of of [11] and (iv) of Lemma 3.1 of [12] (resp., (iv) of Lemma 7.2
of [11]), the sequence {Q(xn)}n∈ω is a weakly p-summable sequence in E which is a (q′, q)-limited (resp.,
(q′, q)-(V∗)) subset of E. Since T is (q′, q)-limited (resp., (q′, q)-(V∗)) p-convergent, it follows that T(Q(xn))→ 0
in the space L. The continuity of R implies that R ◦ T ◦ Q(xn) → 0 in L0. Thus R ◦ T ◦ Q is (q′, q)-limited
(resp., (q′, q)-(V∗)) p-convergent.

(vii) immediately follows from (iii) of Lemma 4.1 of [12] (which states that continuous images of coarse
p-limited sets are coarse p-limited).

Corollary 3.7. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E and L be locally convex spaces. If the identity operator
idE : E → E is weakly (p, q)-convergent (resp., weak∗ (p, q)-convergent, (q′, q)-limited, (q′, q)-(V∗), (q′, q)-limited
p-convergent, (q′, q)-(V∗) p-convergent or coarse p-limited), then so is every T ∈ L(E,L).

Proof. The assertion follows from the equality T = T ◦ idE ◦ idE and Proposition 3.6.

Corollary 3.7 motivates the study of locally convex spaces E for which the identity operator idE : E→ E
has one of the properties from the corollary. If the space L contains an isomorphic copy of ℓ∞ we can
partially reverse Corollary 3.7 as follows.

Theorem 3.8. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E and L be locally convex spaces. If L contains an isomorphic copy
of ℓ∞, then the following assertions are equivalent:

(i) each weakly p-convergent operator from E into L is (q′, q)-limited p-convergent;
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(ii) each weak∗ p-convergent operator from E into L is (q′, q)-limited p-convergent;
(iii) the identity operator idE : E→ E is (q′, q)-limited p-convergent.

Proof. (i)⇒(ii) follows from (ii) of Proposition 3.1.
(ii)⇒(iii) Suppose for a contradiction that idE is not (q′, q)-limited p-convergent. Then there is a (q′, q)-

limited weakly p-summable sequence S = {xn}n∈ω in E which does not converge to zero in E. Without loss
of generality we can assume that S ∩ U = ∅ for some closed absolutely convex neighborhood U of zero in
E. Since S, being also a weakly null-sequence, is a bounded subset of E, there is a > 1 such that S ⊆ aU. For
every n ∈ ω, by the Hahn–Banach separation theorem, choose χn ∈ U◦ such that |⟨χn, xn⟩| > 1. Therefore

1 < |⟨χn, xn⟩| ≤ a for every n ∈ ω. (3)

Since {χn}n∈ω ⊆ U◦, the sequence {χn}n∈ω is equicontinuous. Therefore, by Lemma 14.13 of [11], the linear
map

Q : E→ ℓ∞, Q(x) :=
(
⟨χn, x⟩

)
n∈ω
,

is continuous.
By assumption, there is an embedding R : ℓ∞ → L. Consider the operator T := R ◦ Q : E → L. We

claim that T is weak∗ p-convergent. Indeed, let (yn)n∈ω ∈ ℓwp (E) (or (yn)n∈ω ∈ cw
0 (E) if p = ∞) and let {ηn}n∈ω

be a weak∗ null-sequence in (ℓ∞)′. Then {R∗(ηn)}n∈ω is also a weak∗ null-sequence in (ℓ∞)′. Therefore, by
the Grothendieck property of ℓ∞, {R∗(ηn)}n∈ω is weakly null in the Banach dual space (ℓ∞)′β. Since {yn}n∈ω is
weakly null, it follows that {Q(yn)}n∈ω ⊆ ℓ∞ is also weakly null. Therefore, by the Dunford–Pettis property
of ℓ∞, we obtain

lim
n→∞
⟨ηn,T(yn)⟩ = lim

n→∞
⟨R∗(ηn),Q(yn)⟩ = 0.

Thus T is a weak∗ p-convergent operator.
To get a desired contradiction it remains to prove that T is not (q′, q)-limited p-convergent by showing

that T(xk) ̸→ 0. To this end, choose W ∈ N0(L) such that W ∩ R(ℓ∞) ⊆ R(Bℓ∞ ). The inequalities (3) and the
bijectivity of R imply

T(xk) = R ◦Q(xk) = R
(
⟨χn, xk⟩

)
< R(Bℓ∞ ) for every k ∈ ω.

Since the range of T is contained in R(ℓ∞) and R is an embedding the choice of W implies that T(xk) <W for
all k ∈ ω. Thus T is not (q′, q)-limited p-convergent.

(iii)⇒(i) follows from Corollary 3.7.

Corollary 3.7 and Theorem 3.8 immediately imply

Corollary 3.9. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E be a locally convex space. Then the identity operator idE : E→ E
is (q′, q)-limited p-convergent if and only if so is any operator T : E→ ℓ∞.

Below we obtain an analogous characterization of locally convex spaces E for which the identity map
idE is (q′, q)-(V∗) p-convergent. We omit its proof because it can be obtained from the proof of Theorem 3.8
just replacing “(q′, q)-limited” by “(q′, q)-(V∗)”.

Theorem 3.10. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E and L be locally convex spaces. If L contains an isomorphic
copy of ℓ∞, then the following assertions are equivalent:

(i) each weakly p-convergent operator from E into L is (q′, q)-(V∗) p-convergent;
(ii) each weak∗ p-convergent operator from E into L is (q′, q)-(V∗) p-convergent;

(iii) the identity operator idE : E→ E is (q′, q)-(V∗) p-convergent.

Corollary 3.7 and Theorem 3.10 immediately imply
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Corollary 3.11. Let p, q, q′ ∈ [1,∞], q′ ≤ q, and let E be a locally convex space. Then the identity operator
idE : E→ E is (q′, q)-(V∗) p-convergent if and only if so is any operator T : E→ ℓ∞.

Let p ∈ [1,∞]. We shall say that a locally convex space E is (weakly) sequentially locally p-complete if the
closed absolutely convex hull of a weakly p-summable sequence is weakly sequentially p-compact (resp.,
weakly sequentially p-precompact). It is clear that if p = ∞ and E is weakly angelic (for example, E is a
strict (LF)-space), then E is sequentially locally∞-complete if and only if it is locally complete.

Now we characterize weak∗ p-convergent operators.

Theorem 3.12. Let p ∈ [1,∞], E and L be locally convex spaces, and let T : E → L be an operator. Consider the
following assertions:

(i) T is weak∗ p-convergent;
(ii) T transforms weakly sequentially p-precompact subsets of E to limited subsets of L;

(iii) T transforms (relatively) weakly sequentially p-compact subsets of E to limited subsets of L;
(iv) T transforms weakly p-summable sequence of E to limited subsets of L;
(v) S ◦ T is p-convergent for each S ∈ L(L,Z) and any locally convex (or the same, Banach) space Z such that U◦

is weak∗ selectively sequentially pseudocompact for every U ∈ N0(Z);
(vi) S ◦ T is p-convergent for each S ∈ L(L, c0);

(vii) for any normed space X and each weakly sequentially p-precompact operator R : X → E, the operator T ◦ R is
limited;

(viii) for any normed space X and each weakly sequentially p-precompact operator R : X → E, the adjoint R∗ ◦ T∗ :
L′w∗ → X′β is∞-convergent;

(ix) if R ∈ L(ℓ01,E) is weakly sequentially p-precompact, then T ◦ R is limited;
(x) for every normed space Z and each weakly sequentially p-compact operator S from Z to E, the composition T ◦S

is a limited linear map;
(xi) for any operator S ∈ L(ℓp∗ ,E), the linear map T ◦ S is limited.

Then:

(A) (i)⇔(ii)⇔(iii)⇔(iv);
(B) (i)⇒(v)⇒(vi), and if L is c0-barrelled, then (vi)⇒(i);
(C) (ii)⇒(vii)⇔(viii)⇒(ix), and if E is weakly sequentially locally p-complete, then (ix)⇒(i);
(D) if 1 < p < ∞, then (iii)⇒(x)⇒(xi), and if E is sequentially complete, then (xi)⇒(i).

Proof. (i)⇒(ii) Let A be a weakly sequentially p-precompact subset of E, and suppose for a contradiction
that T(A) is not limited. Therefore there are a weak∗ null sequence {ηn}n∈ω in L′, a sequence {xn}n∈ω in A and
ε > 0 such that |⟨ηn,T(xn)⟩| > ε for every n ∈ ω. Since A is weakly sequentially p-precompact, without loss
of generality we assume that {xn}n∈ω is weakly p-Cauchy.

For n0 = 0, since {ηn}n∈ω is weak∗ null we can choose n1 > n0 such that |⟨ηn1 ,T(xn0 )⟩| < ε2 . Proceeding by
induction on k, we can choose nk+1 > nk such that |⟨ηnk+1 ,T(xnk )⟩| <

ε
2 . Since the sequence {xnk+1 − xnk }k∈ω is

weakly p-summable and T is weak∗ p-convergent, we obtain〈
ηnk+1 ,T

(
xnk+1 − xnk

)〉
→ 0.

On the other hand,∣∣∣〈ηnk+1 ,T
(
xnk+1 − xnk

)〉∣∣∣ ≥ ∣∣∣〈ηnk+1 ,T
(
xnk+1

)〉∣∣∣ − ∣∣∣〈ηnk+1 ,T
(
xnk

)〉∣∣∣ > ε2 ,
a contradiction.

(ii)⇒(iii) and (iii)⇒(iv) are trivial.
(iv)⇒(i) follows from the definition of limited sets.
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(i)⇒(v) Assume that T is weak∗ p-convergent, and suppose for a contradiction that S ◦ T is not p-
convergent for some S ∈ L(L,Z) and some locally convex (resp., Banach) space Z such that U◦ is weak∗

selectively sequentially pseudocompact for every U ∈ N0(Z). Then there are a weakly p-summable sequence
{xn}n∈ω in E and a closed absolutely convex neighborhood V ⊆ Z of zero such that ST(xn) < V for every
n ∈ ω. By the Hahn–Banach separation theorem, for every n ∈ ω there is ηn ∈ V◦ such that |⟨ηn,ST(xn)⟩| > 1.
For every n ∈ ω, set

Un := {χ ∈ V◦ : |⟨χ,ST(xn)⟩| > 1}.

Then Un is a weak∗ open neighborhood of ηn in V◦. Since V◦ is selectively sequentially pseudocompact in the
weak∗ topology, for every n ∈ ω there exists χn ∈ Un such that the sequence {χn}n∈ω contains a subsequence
{χnk }k∈ω which weak∗ converges to some functional χ ∈ V◦. By Theorem 8.10.5 of [18], the adjoint operator
S∗ is weak∗ continuous and hence S∗(χnk )→ S∗(χ) in the weak∗ topology. Since T is weak-weak sequentially
continuous, we have ST(xnk ) → 0 in the weak topology. Taking into account that T is weak∗ p-convergent,
we obtain

|⟨χnk ,ST(xnk )⟩| ≤ |⟨S
∗(χnk − χ),T(xnk )⟩| + |⟨χ,ST(xnk )⟩| → 0 as k→∞.

Since, by the choice of χnk , |⟨χnk ,ST(xnk )⟩| > 1 we obtain a desired contradiction.
(v)⇒(vi) follows from the well known fact that B◦c0

is even a weak∗ metrizable compact space.
(vi)⇒(i) Assume that L is c0-barrelled. To show that T is weak∗ p-convergent, fix a weakly p-summable

sequence {xn}n∈ω in E and a weak∗ null sequence {χn}n∈ω in L′. Since L is c0-barrelled, (ii) of Proposition 4.17
of [11] implies that there is S ∈ L(L, c0) such that S(y) =

(
⟨χn, y⟩

)
n∈ω

for every y ∈ L. By assumption ST is
p-convergent. Therefore ST(xn)→ 0 in c0. Taking into account that {e∗n}n∈ω is bounded in the Banach space
(c0)′ = ℓ1, we obtain∣∣∣⟨χk,T(xk)⟩

∣∣∣ = ∣∣∣⟨e∗k, (⟨χn,T(xk)⟩)n∈ω⟩
∣∣∣ = ∣∣∣⟨e∗k,ST(xk)⟩

∣∣∣ ≤ ∥e∗k∥ℓ1 · ∥ST(xk)∥c0 = ∥ST(xk)∥c0 → 0.

This shows that T is weak∗ p-convergent.
(ii)⇒(vii) Assume that T transforms weakly sequentially p-precompact subsets of E to limited subsets

of L, and let R : X → E be a weakly sequentially p-precompact operator. Then the set R(BX) is weakly
sequentially p-precompact, and hence TR(BX) is a limited subset of L. Thus the operator T ◦ R is limited.

(vii)⇔(viii) follows from the equivalence (i)⇔(ii) of Theorem 5.5 of [12] applied to T ◦ R and p = ∞.
(vii)⇒(ix) is obvious.
(ix)⇒(i) Assume additionally that E is weakly sequentially locally p-complete. Let S = {xn}n∈ω be a

weakly p-summable sequence in E. Then, by Proposition 14.9 of [11], the linear map R : ℓ01 → E defined by

R(a0e0 + · · · + anen) := a0x0 + · · · + anxn (n ∈ ω, a0, . . . , an ∈ F)

is continuous. It is clear that R
(
Bℓ01
)
⊆ acx(S). Since E is weakly sequentially locally p-complete it follows that

acx(S) is weakly sequentially p-precompact. Therefore R is a weakly sequentially p-precompact operator
and hence, by (ix), TR is limited. Whence for every weak∗ null sequence {ηn}n∈ω in L′ we obtain

|⟨ηn,T(xn)⟩| = |⟨ηn,TR(en)⟩| ≤ sup
x∈B

ℓ01

|⟨ηn,TR(x)⟩| → 0 as n→∞.

Thus T is weak∗ p-convergent.
(iii)⇒(x) Let Z be a normed space, and let S : Z→ E be a weakly sequentially p-compact operator. Then

S(BZ) is a relatively weakly sequentially p-compact subset of E. By (iii), the set TS(BZ) is limited. Thus the
linear map T ◦ S is limited.

(x)⇒(xi) By Proposition 1.4 of [3] (or by (ii) of Corollary 13.11 of [11]), the identity operator idℓp∗ of
ℓp∗ is weakly sequentially p-compact. Hence each operator S = S ◦ idℓp∗ ∈ L(ℓp∗ ,E) is weakly sequentially
p-compact. Thus, by (x), T ◦ S is limited for every S ∈ L(ℓp∗ ,E).
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(xi)⇒(i) Assume that E is sequentially complete. Let {χn}n∈ω be a weak∗ null sequence in L′, and let
{xn}n∈ω be a weakly p-summable sequence in E. By Proposition 4.14 of [11], there is S ∈ L(ℓp∗ ,E) such that
S(e∗n) = xn for every n ∈ ω (where {e∗n}n∈ω is the canonical unit basis of ℓp∗ ). By (xi), T ◦ S is limited. Therefore∣∣∣⟨χn,T(xn)⟩

∣∣∣ = ∣∣∣⟨χn,TS(e∗n)⟩
∣∣∣ ≤ sup

x∈Bℓp∗
|⟨χn,TS(x)⟩| → 0 as n→∞.

Thus the linear map T is weak∗ p-convergent.

Remark 3.13. The condition on L to be c0-barrelled in the implication (vi)⇒(i) in (B) of Theorem 3.12 is
essential. Indeed, let p ∈ [1,∞], E = L = Cp(s) and let T = id : E → L be the identity map. Then, by (ii) of
Example 3.3, L is a metrizable non-c0-barrelled space and T is not weak∗ p-convergent. On the other hand,
it is easy to see that each S ∈ L(L, c0) is finite-dimensional (see Lemma 17.18 of [11]), and therefore S ◦ T is
also finite-dimensional and hence p-convergent (see (i) of Proposition 3.1). Thus the implication (vi)⇒(i) in
(B) of Theorem 3.12 does not hold.

Below we characterize weakly p-convergent operators (for the definition of the map S∞ see Section 2).

Theorem 3.14. Let p ∈ [1,∞], E and L be locally convex spaces, and let T : E → L be an operator. Consider the
following assertions:

(i) T is weakly p-convergent;
(ii) T transforms weakly sequentially p-precompact subsets of E to∞-(V∗) subsets of L;

(iii) T transforms weakly sequentially p-compact subsets of E to∞-(V∗) subsets of L;
(iv) T transforms weakly p-summable sequences of E to∞-(V∗) subsets of L;
(v) R◦T is p-convergent for any Banach space Z and each R ∈ L(L,Z) with weakly sequentially precompact adjoint

R∗ : Z′β → L′β;
(vi) R ◦ T is p-convergent for each R ∈ L(L, c0) with weakly sequentially precompact adjoint R∗ : ℓ1 → L′β;

(vii) R ◦ T is p-convergent for each operator R ∈ L(L, c0) such that S∞(R) = (χn) is weakly null in L′β;
(viii) for any normed space X and each weakly sequentially p-precompact operator R : X → E, the operator T ◦ R is

∞-(V∗);
(ix) for every normed space X and each weakly sequentially p-precompact operator S from X to E, the map S∗ ◦ T∗

is∞-convergent;
(x) if R ∈ L(ℓ01,E) is weakly sequentially p-precompact, then T ◦ R is∞-(V∗);

(xi) for every normed space Z and each weakly sequentially p-compact operator S from Z to E, the composition T ◦S
is a∞-(V∗) linear map;

(xii) for any operator S ∈ L(ℓp∗ ,E), the linear map T ◦ S is∞-(V∗).

Then:

(A) (i)⇔(ii)⇔(iii)⇔(iv);
(B) (i)⇒(v)⇒(vi), and if L is c0-barrelled and L′β is weakly sequentially locally∞-complete, then (vi)⇒(i);
(C) (i)⇒(vii), and if L is c0-barrelled, then (vii)⇒(i);
(D) (ii)⇒(viii)⇔(ix)⇒(x), and if E is weakly sequentially locally p-complete, then (x)⇒(i);
(E) if 1 < p < ∞, then (i)⇒(viii)⇒(xi)⇒(xii), and if E is sequentially complete, then (xii)⇒(i).

Proof. (i)⇒(ii) Let A be a weakly sequentially p-precompact subset of E, and suppose for a contradiction
that T(A) is not an∞-(V∗) set. Therefore there is a weakly null sequence {ηn}n∈ω in L′β, a sequence {xn}n∈ω in
A and ε > 0 such that |⟨ηn,T(xn)⟩| > ε for every n ∈ ω. Since A is weakly sequentially p-precompact, without
loss of generality we assume that {xn}n∈ω is weakly p-Cauchy.

For n0 = 0, since {ηn}n∈ω is also weak∗ null we can choose n1 > n0 such that |⟨ηn1 ,T(xn0 )⟩| < ε2 . Proceeding
by induction on k, we can choose nk+1 > nk such that |⟨ηnk+1 ,T(xnk )⟩| <

ε
2 . Since the sequence {xnk+1 − xnk }k∈ω

is weakly p-summable and T is weakly p-convergent, we obtain〈
ηnk+1 ,T

(
xnk+1 − xnk

)〉
→ 0.
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On the other hand, for every k ∈ ω, we have∣∣∣〈ηnk+1 ,T
(
xnk+1 − xnk

)〉∣∣∣ ≥ ∣∣∣〈ηnk+1 ,T
(
xnk+1

)〉∣∣∣ − ∣∣∣〈ηnk+1 ,T
(
xnk

)〉∣∣∣ > ε2 ,
a contradiction.

(ii)⇒(iii) and (iii)⇒(iv) are trivial.
(iv)⇒(i) follows from the definition of∞-(V∗).
(i)⇒(v) Assume that T is weakly p-convergent, and suppose for a contradiction that R ◦ T is not

p-convergent for some Banach space Z and R ∈ L(L,Z) with weakly sequentially precompact adjoint
R∗ : Z′β → L′β. Then there are a weakly p-summable sequence {xn}n∈ω in E and δ > 0 such that ∥RT(xn)∥ > δ
for every n ∈ ω. By the Hahn–Banach separation theorem, for every n ∈ ω there is ηn ∈ (δBZ)◦ such that
|⟨R∗(ηn),T(xn)⟩| = |⟨ηn,RT(xn)⟩| > 1. Since R∗ is weakly sequentially precompact, passing to subsequences if
needed we can assume that the sequence {R∗(ηn)}n∈ω ⊆ L′β is weakly Cauchy.

For n0 = 0, choose n1 > n0 such that |⟨R∗(ηn0 ),T(xn1 )⟩| < 1
2 (this is possible since {xn}n∈ω and hence

also {T(xn)}n∈ω are weakly null). By induction on k ∈ ω, for every k > 0 choose nk+1 > nk such that
|⟨R∗(ηnk ),T(xnk+1 )⟩| < 1

2 . As {R∗(ηn)}n∈ω ⊆ L′β is weakly Cauchy, the sequence {R∗(ηnk ) − R∗(ηnk+1 )}k∈ω is weakly
null in L′β. Taking into account that {xnk }n∈ω is also weakly p-summable and T is weakly p-convergent we
obtain

0←
∣∣∣〈R∗(ηnk − ηnk+1 ),T(xnk+1 )

〉∣∣∣ ≥ ∣∣∣〈R∗(ηnk+1 ),T(xnk+1 )
〉∣∣∣ − ∣∣∣〈R∗(ηnk ),T(xnk+1 )

〉∣∣∣ > 1
2 ,

a contradiction.

(v)⇒(vi) is trivial.

(vi)⇒(i) Assume that L is c0-barrelled and L′β is weakly sequentially locally∞-complete. To show that T
is weakly p-convergent, fix a weakly p-summable sequence {xn}n∈ω in E and a weakly null sequence {χn}n∈ω
in L′β. Since L is c0-barrelled, (ii) of Proposition 4.17 of [11] implies that there is R ∈ L(L, c0) such that

R(y) =
(
⟨χn, y⟩

)
n∈ω

for every y ∈ L. Since {χn}n∈ω is weakly null in L′β and L′β is weakly sequentially locally∞-

complete, it follows that acx
(
{χn}n∈ω

)
is weakly sequentially precompact. Taking into account that R∗(e∗n) = χn

for every n ∈ ω (where as usual {e∗n}n∈ω is the canonical unit basis of ℓ1), we obtain R∗(Bℓ1 ) ⊆ acx
(
{χn}n∈ω

)
.

Therefore R∗ is weakly sequentially precompact, and hence, by (vi), RT is p-convergent. Hence RT(xn)→ 0
in c0. Therefore∣∣∣⟨χk,T(xk)⟩

∣∣∣ = ∣∣∣⟨e∗k, (⟨χn,T(xk)⟩)n∈ω⟩
∣∣∣ = ∣∣∣⟨e∗k,RT(xk)⟩

∣∣∣ ≤ ∥e∗k∥ℓ1 · ∥RT(xk)∥c0 = ∥RT(xk)∥c0 → 0.

Thus T is weakly p-convergent.

(i)⇒(vii) Assume that T is weakly p-convergent, and suppose for a contradiction that R ◦ T is not p-
convergent for some operator R ∈ L(L, c0) such that the sequence S∞(R) = (χn) is weakly null in L′β. Then
there are a weakly p-summable sequence {xn}n∈ω in E and ε > 0 such that ∥RT(xn)∥c0 ≥ ε for every n ∈ ω.
Recall that R(y) =

(
⟨χn, y⟩

)
n
∈ c0 for every y ∈ L. Then for every n ∈ ω, we have (where as usual {e∗i }i∈ω is the

canonical unit basis of ℓ1 = (c0)′)

ε ≤ ∥RT(xn)∥c0 = sup
i∈ω
|⟨e∗i ,RT(xn)⟩| = sup

i∈ω
|⟨R∗(e∗i ),T(xn)⟩| = sup

i∈ω
|⟨χi,T(xn)⟩|. (4)

For n0 = 0, choose i0 ∈ ω such that |⟨χi0 ,T(xn0 )⟩| ≥ ε
2 . Since T is weak-weak sequentially continuous and

because the sequence {xn}n∈ω is also weakly null, it follows that T(xn) → 0 in the weak topology of L.
Therefore we can choose n1 > n0 such that

|⟨χi,T(xn1 )⟩| < ε2 for every i ≤ i0. (5)
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By (4), there is i1 ∈ ω such that |⟨χi1 ,T(xn1 )⟩| ≥ ε
2 . Taking into account (5) we obtain that i1 > i0. Since

T(xn)→ 0 in the weak topology of L, there exists n2 > n1 such that

|⟨χi,T(xn2 )⟩| < ε2 for every i ≤ i1. (6)

By (4), there is i2 ∈ ω such that |⟨χi2 ,T(xn2 )⟩| ≥ ε
2 . By (6), we obtain that i2 > i1. Continuing this process

we find two sequences {χik }k∈ω and {T(xnk )}n∈ω such that {ik}k∈ω and {nk}k∈ω are strictly increasing and
|⟨χik ,T(xnk )⟩| ≥

ε
2 for every k ∈ ω. Clearly, the sequence {χik }k∈ω is weakly null in L′β and the sequence {xnk }n∈ω

is weakly p-summable in E. Then the weak p-convergence of T and the choice of these two sequences imply

ε
2 ≤ lim

k→∞
|⟨χik ,T(xnk )⟩| = 0

which is impossible.
(vii)⇒(i) To show that T is weakly p-convergent, fix a weakly p-summable sequence {xn}n∈ω in E and

a weakly null sequence {χn}n∈ω in L′β. Since L is c0-barrelled, (ii) of Proposition 4.17 of [11] implies that

there is R ∈ L(L, c0) such that R(y) =
(
⟨χn, y⟩

)
n∈ω

for every y ∈ L. Since {χn}n∈ω is weakly null in L′β and
S∞(R) = (χn), (vii) implies that RT is p-convergent. Hence RT(xn) → 0 in c0. If {e∗n}n∈ω is the canonical unit
basis of (c0)′ = ℓ1, we obtain∣∣∣⟨χk,T(xk)⟩

∣∣∣ = ∣∣∣⟨e∗k, (⟨χn,T(xk)⟩)n∈ω⟩
∣∣∣ = ∣∣∣⟨e∗k,RT(xk)⟩

∣∣∣ ≤ ∥e∗k∥ℓ1 · ∥RT(xk)∥c0 = ∥RT(xk)∥c0 → 0.

Thus T is weakly p-convergent.
(ii)⇒(viii) Assume that T transforms weakly sequentially p-precompact subsets of E to ∞-(V∗) subsets

of L, and let R : X → E be a weakly sequentially p-precompact operator. Then the set R(BX) is weakly
sequentially p-precompact, and hence TR(BX) is an∞-(V∗) subset of L. Thus the operator T ◦ R is∞-(V∗).

(viii)⇔(ix) follows from the equivalence (i)⇔(ii) in Theorem 14.1 of [11] applied to T ◦ R and p = ∞.
(viii)⇒(x) is obvious.
(x)⇒(ii) Assume that E is weakly sequentially locally p-complete. Let S = {xn}n∈ω be a weakly p-

summable sequence in E. Then, by Proposition 14.9 of [11], the linear map R : ℓ01 → E defined by

R(a0e0 + · · · + anen) := a0x0 + · · · + anxn (n ∈ ω, a0, . . . , an ∈ F)

is continuous. It is clear that R
(
Bℓ01
)
⊆ acx(S). Since E is weakly sequentially locally p-complete it follows that

acx(S) is weakly sequentially p-precompact. Therefore R is a weakly sequentially p-precompact operator
and hence, by (x), TR is∞-(V∗). Whence for every weakly null sequence {ηn}n∈ω in L′β we obtain

|⟨ηn,T(xn)⟩| = |⟨ηn,TR(en)⟩| ≤ sup
x∈B

ℓ01

|⟨ηn,TR(x)⟩| → 0 as n→∞.

Thus T is weakly p-convergent.
(viii)⇒(xi) is trivial.
(xi)⇒(xii) Let 1 < p < ∞.the identity operator idℓp∗ of ℓp∗ is weakly sequentially p-compact. Hence, each

operator S = S ◦ idℓp∗ ∈ L(ℓp∗ ,E) is weakly sequentially p-compact. Thus, by (xi), T ◦ S is an∞-(V∗) operator
for every S ∈ L(ℓp∗ ,E).

(xii)⇒(i) Let 1 < p < ∞ and assume that E is sequentially complete. Let {χn}n∈ω be a weakly null
sequence in L′β, and let {xn}n∈ω be a weakly p-summable sequence in E. By Proposition 4.14 of [11], there is
S ∈ L(ℓp∗ ,E) such that S(e∗n) = xn for every n ∈ ω (where {e∗n}n∈ω is the canonical unit basis of ℓp∗ ). By (xii),
T ◦ S is a∞-(V∗) map. Therefore∣∣∣⟨χn,T(xn)⟩

∣∣∣ = ∣∣∣⟨χn,TS(e∗n)⟩
∣∣∣ ≤ sup

x∈Bℓp∗
|⟨χn,TS(x)⟩| → 0 as n→∞.

Thus the linear map T is weakly p-convergent.
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Remark 3.15. The condition on E to be sequentially complete in (D) of Theorem 3.12 and in (E) of Theorem
3.14 is essential. Indeed, let 1 < p < ∞, E = ℓ0p∗ , L = ℓq with p∗ ≤ q < ∞, and let T = id : E → L be the
identity inclusion. Then every S ∈ L(ℓp∗ ,E) is finite-dimensional (indeed, since E =

⋃
n∈ω F

n it follows that
ℓp∗ =

⋃
n∈ω S−1(Fn) and hence, by the Baire property of ℓp∗ , S−1(Fm) is an open linear subspace of ℓp∗ for some

m ∈ ω that is possible only if S−1(Fm) = ℓp∗ ; so S is finite-dimensional). Therefore, by Lemma 3.5, T ◦ S is
limited for each S ∈ L(ℓp∗ ,E). However, T is not weakly p-convergent and hence, by (ii) of Proposition 3.1,
T is not weak∗ p-convergent. Indeed, for every n ∈ ω, let xn = e∗n ∈ E and ηn = e∗n ∈ L′. Then the sequence
{xn}n∈ω is weakly p-summable in E (for every χ = (an) ∈ ℓp = E′, we have

∑
n∈ω |⟨χ, xn⟩|

p =
∑

n∈ω |an|
p < ∞)

and the sequence {ηn}n∈ω is even weakly q-summable in ℓq∗ = L′β (for every x = (bn) ∈ ℓq = (L′β)
′, we have∑

n∈ω |⟨x, ηn⟩|
q =
∑

n∈ω |bn|
q < ∞). Since for every n ∈ ω, ⟨ηn,T(xn)⟩ = 1 it follows that T is not weakly

p-convergent.
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[11] S. Gabriyelyan, Pełczyński’s type sets and Pełczyński’s geometrical properties of locally convex spaces, submitted
(arxiv.org/abs/2402.08860).

[12] S. Gabriyelyan, Limited type subsets of locally convex spaces, AIMS Mathematics, 9 (11) (2024), 31414–31443.
[13] P. Galindo, V. C. C. Miranda, A class of sets in a Banach space coarser than limited sets, Bull. Braz. Math. Soc., New series 53 (2022),

941–955.
[14] I. Ghenciu, The p-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets, Acta Math. Hungar. 155:2 (2018),

439–457.
[15] H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
[16] A. K. Karn, D. P. Sinha, An operator summability in Banach spaces Glasgow Math. J. 56 (2014), 427–437.
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