Filomat 38:30 (2024), 10495–10504 https://doi.org/10.2298/FIL2430495S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Disjoint topologically super-recurrent operators

El Mostafa Sadouk^a , Otmane Benchiheba,[∗] **, Mohamed Amouch^a**

^aChouaib Doukkali University. Department of Mathematics, Faculty of sciences El Jadida, Morocco

Abstract. In this article, we introduce and study the notion of disjoint topologically super-recurrent operators for finitely many operators acting on a complex Banach space. As an application, we characterize the disjoint topological super-recurrence of finitely many different powers of unilateral and bilateral weighted shifts.

1. Introduction and preliminaries

Throughout this paper, we use X to represent a Banach space over the field $\mathbb C$ of complex numbers. An operator is defined as a map that is both linear and continuous on *X*. The collection of all such operators is denoted by $\mathcal{B}(X)$. An operator $T \in \mathcal{B}(X)$ is considered hypercyclic (respectively, supercyclic) if there exists a vector $x \in X$ such that the orbit $Orb(T, x) = {T^n x : n \in \mathbb{N}}$ (respectively, the projective orbit \mathbb{C} Orb $(T, x) = \{ \lambda T^n x : n \in \mathbb{N}, \lambda \in \mathbb{C} \}$) is dense in X. Such a vector *x* is called a hypercyclic vector (respectively, supercyclic vector) for *T*.

An operator *T* on a separable Banach space *X* is hypercyclic if and only if it exhibits topological transitivity in dynamical systems. This implies that for any two non-empty open subsets *U* and *V* of *X*, there is an $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$. The first hypercyclic operator on a Banach space was demonstrated by Rolewicz in 1969 [34], showing that the scaled shift λ*B* of the unweighted unilateral backward shift *B* on $\ell^2(\mathbb{N})$ is hypercyclic if and only if $|\lambda| > 1$.

Salas [35] offered a comprehensive characterization of hypercyclic unilateral weighted backward shifts on $\ell^p(\mathbb{N})$ for $1 \leq p < \infty$ and hypercyclic bilateral weighted shifts on $\ell^p(\mathbb{Z})$ for $1 \leq p < \infty$ based on their weight sequences. Using this characterization, Fernando León-Saavedra and Montes-Rodríguez [28, p. 544] demonstrated that these weighted shifts are hypercyclic if and only if they fulfill the hypercyclicity criterion, which is fundamental in hypercyclic operator theory.

In 1974, Hilden and Wallen [21] showed that any unilateral backward weighted shift is supercyclic. Later, Salas [36] characterized supercyclic bilateral weighted shifts on $\ell^p(\mathbb{Z})$ for $1 \leq p < \infty$ using their weight sequences. In the same work, he introduced a supercyclicity criterion similar to the hypercyclicity criterion, proving that weighted shift operators are supercyclic if and only if they satisfy this supercyclicity criterion.

For recent results in this field, see [5, 7, 22–25].

²⁰²⁰ *Mathematics Subject Classification*. Primary 47A16, 37B20; Secondary 37B02.

Keywords. Hypercyclic operator; Disjoint hypercyclic operator; Super-Recurrent operator.

Received: 23 May 2024; Revised: 29 June 2024; Accepted: 21 September 2024

Communicated by Dragan S. Djordjevic´

^{*} Corresponding author: Otmane Benchiheb

Email addresses: elmostaphasadouk@gmail.com (El Mostafa Sadouk), otmane.benchiheb@gmail.com, benchiheb.o@ucd.ac.ma (Otmane Benchiheb), amouch.m@ucd.ac.ma (Mohamed Amouch)

In [33] Poincaré proposed the concept of recurrence, which has a lengthy history in the linear dynamical system. Furstenberg in [13], Gottschalk and Hedlund [16] later studied it. Recently, recurrent operators have been studied in [11]. If $n \in \mathbb{N}$ exists for each open subset *U* of *X*, such that

$$
T^n(U) \cap U \neq \emptyset
$$

then *T* ∈ $\mathcal{B}(X)$ is recurrent. If there exists an increasing sequence $(n_k) \subset \mathbb{N}$ such that

$$
T^{n_k}x\longrightarrow x,
$$

then $x \in X$ is called a recurrent vector for *T*. We denoted by $Rec(T)$ the set of all recurrent vectors for *T*, and we have that *T* is recurrent if and only if *Rec*(*T*) is dense in *X*. For more information about this classes of operators, see [1–3, 11–13, 26, 27].

Recurrent operators have been extended to a broad class of operators known as super-recurrent operators recently in [4]. We say that $T \in \mathcal{B}(X)$ is super-recurrent if, for each open subset *U* of *X*, there exists $n \in \mathbb{N}$ and $\lambda \in \mathbb{C}$ such that

$$
\lambda T^n(U) \cap U \neq \emptyset.
$$

A vector *x* ∈ *X* is called a super-recurrent vector for *T* if there exists an increasing sequence (n_k) ⊂ N and a sequence $(\lambda_k) \subset \mathbb{C}$ such that

$$
\lambda_k T^{n_k}x\longrightarrow x.
$$

The set of all super-recurrent vectors for *T* is denoted by *SRec*(*T*). *T* is considered super-recurrent if and only if *SRec*(*T*) is dense in *X*.

Now if given *N* ≥ 2 operators $T_1, T_2, ..., T_N$ ∈ $B(X)$, it has been natural to study whether the hypercyclic (or supercyclic) properties of their direct sum $T_1 \oplus ... \oplus T_N$ may inherit from those of $T_1, T_2, ..., T_N$. In 2007, Bernal [8] and Bès [9] independently looked into the orbits' properties

$$
\{(z, z, ..., z), (T_1z, T_2z, ..., T_Nz), (T_1^2z, T_2^2z, ..., T_N^2z), ... \} (z \in X).
$$

They studied the case when one of these orbits is dense in X^N endowed with the product topology. The operators $T_1, T_2, ..., T_N$ are said to be disjoint hypercyclic (d-hypercyclic) if there exists a vector $z \in X$ that satisfies the above condition. Research on the *d*-hypercyclicity of a finite number of weighted shifts has been conducted in several papers, as noted in [8, 9, 30].

Likewise, if there exists a vector $\hat{z} \in X$ such that the projective orbit

$$
\mathbb{C}\{(z, z, \ldots, z), (T_1 \hat{z}, T_2 \hat{z}, \ldots, T_N \hat{z}), (T_1^2 \hat{z}, T_2^2 \hat{z}, \ldots, T_N^2 \hat{z}), \ldots\} (z \in X).
$$

is dense in the product space X^N , then the operators T_1, T_2, \ldots, T_N are termed disjoint supercyclic (dsupercyclic). Recent literature has examined the d-supercyclicity of finite sets of weighted shifts. Interested readers can explore Section 4 in [9] and Chapter 4 in [31] for further details.

Definition 1.1. *([30, Definition 1.2])* We say the operators $T_1, T_2, ..., T_N \in \mathcal{B}(X)$ are d-topologically transitive for *supercyclicity provided for every non-empty open subsets* V_0 , V_1 , ..., V_N of X, there exist $n \in \mathbb{N}$ and $\lambda \in \mathbb{C}$ such that

$$
V_0 \cap (\lambda T_1^{-n})(V_1) \cap \dots \cap (\lambda T_N^{-n})(V_N) \neq \emptyset.
$$

The following results connect d-topologically transitive supercyclicity with d-supercyclicity.

Proposition 1.2. ([30, Proposition 1.3]) Given $N \ge 2$ and the operators $T_1, T_2, ..., T_N \in \mathcal{B}(X)$, they are d*topologically transitive for supercyclicity if and only if the set of d-supercyclic vectors for* $T_1, T_2, ..., T_N$ *is a dense* G_δ *set.*

The following criterion plays an important role in our main results: This criterion is due to \ddot{O} . Martin and R. Sanders [32].

Definition 1.3. *Let X be a Banach space,* $(n_k)_k$ *be a strictly increasing sequence of positive integers and* $N \ge 2$ *. We say that* $T_1, T_2, ..., T_N$ ∈ $B(X)$ *satisfy the d-Supercyclicity Criterion with respect to* $(n_k)_k$ *provided there exist dense subsets* $X_0, X_1, ..., X_N$ of X and mappings $S_{l,k}: X_l \longrightarrow X(1 \leq l \leq N, k \in \mathbb{N})$ such that for $1 \leq l \leq N$,

- (i) $(T_i^{n_k})$ $\frac{n_k}{l}S_{i,k} - \delta_{i,l}I_{X_i}$ \longrightarrow 0 *pointwise on* $X_i(1 \leq i \leq N)$ *;*
- (iii) lim_{*k→∞*} $||T_l^{n_k}$ $\left\| \sum_{j=1}^{N} S_{j,k} y_j \right\| = 0$ for $x \in X_0$ and $y_j \in Y_j$.

The d-Supercyclicity Criterion is satisfied by operators $T_1, T_2, ..., T_N$ *if there exists a sequence* $(n_k)_{k \in \mathbb{N}}$ *satisfying* (*i*) *and* (*ii*)*.*

Let $N \ge 2$ and the operators $T_1, T_2, ..., T_N \in \mathcal{B}(X)$ satisfy the d-Supercyclicity Criterion. Then $T_1, T_2, ..., T_N$ have a dense set of d-supercylic vectors (see [32, Proposition 1.12]).

We introduce a new concept in this paper, called disjoint topologically super-recurrent operators, in the linear dynamical system by association between d-topologically transitive for supercyclicity and superrecurrent operators.

The article is organized as follows: In Section 2 we provide some basic definitions associated with disjoint topologically super-recurrence. In addition, the related properties are obtained, which play a key role in the theory of disjoint topologically super-recurrent. In Section 3 we characterize the disjoint topologically super-recurrent for distinct powers of weighted bilateral(unilateral) shifts.

2. Disjoint topologically super-recurrent operators

Definition 2.1. *For N* \geq 2*, the operators* $T_1, T_2, ..., T_N$ *in* $\mathcal{B}(X)$ *are disjoint topologically super-recurrent if for every nonempty open subset U of X, there exists m* $\in \mathbb{N}$ *and* $\lambda \in \mathbb{C}$ *such that*

$$
U\cap \big(\lambda T_1^{-m}\big)(U)\cap...\cap \big(\lambda T_N^{-m}\big)(U)\neq \emptyset.
$$

A vector x ∈ *X* \ {0} *is called a disjoint super-recurrent for* $T_1, T_2, ..., T_N$ *if* $(x, ..., x)$ ∈ X^N *is a super-recurrent vector* for the direct sums $\bigoplus_{i=1}^{N} T_i$.

Remark 2.2. *(a) Obviously, the constant* λ *in Definition 2.1 is nonzero. So, let U be a non-empty open subset of X* and assume first that $0 \notin U$. Suppose that $\lambda \in \mathbb{C}$, $m \in \mathbb{N}$ are such that

$$
U\cap \lambda T_{1}^{-m}\left(U\right) \cap ...\cap\lambda T_{N}^{-m}\left(U\right) \neq\emptyset,
$$

if λ *is* 0*, we must have that*

$$
U\cap \lambda T_1^{-m}\left(U\right)\cap\ldots\cap\lambda T_N^{-m}\left(U\right)=\{0\}.
$$

Thus, U contains 0*, which is a contradiction, so we must have that* $\lambda \neq 0$. *Assume now that* 0 ∈ *U. Then it follows trivially that*

$$
0\in U\cap \alpha T_{1}^{-m}\left(U\right) \cap ...\cap \alpha T_{N}^{-m}\left(U\right)
$$

for all non-zero $\alpha \in \mathbb{C}$ *since* $0 \in (T_i^{-m})(U)$ *because* $0 \in U$ *and* $T_i^m(0) = 0$ *(for all i* $\in \{1, ..., N\}$ *). Therefore, we may without loss of generality assume that* $\lambda \neq 0$ *in Definition 2.1.*

(b) It is easy to see that if $T_1, T_2, ..., T_N$ ($N \geq 2$) are disjoint topologically super-recurrent on X, then $(T_i)_{1 \leq i \leq N}$ *are super-recurrent operators, and every disjoint super-recurrent vector for T*1, *T*2, ..., *T^N is a super-recurrent vector for any operator* T_i , such that $1 \leq i \leq N$.

For $N \geq 2$ operators $T_1, T_2, ..., T_N$, we explain the relationship between the set of disjoint super-recurrent vectors and the disjoint topologically super-recurrent in the following result.

Theorem 2.3. Let $T_1, T_2, ..., T_N$ be $N \geq 2$ operators acting on X. Then, the following are equivalent:

- *(i)* $T_1, T_2, ..., T_N$ *are disjoint topologically super-recurrent operators;*
- *(ii) T*1, *T*2, ..., *T^N admits a dense subset of disjoint super-recurrent vectors.*

Proof. (*ii*) \Rightarrow (*i*). Let *U* be a nonempty open subset of *X*, then there is a disjoint super-recurrent vector *x* for *T*₁, ..., *T*_{*N*} such that *x* ∈ *U*. So, there exist an increasing sequence (n_k) of positive integers and a sequence (λ_k) of complex numbers such that

$$
\lambda_k (T_1 \oplus \ldots \oplus T_N)^{n_k} (x, \ldots, x) \longrightarrow (x, \ldots, x)
$$

as $k \rightarrow +\infty$. Since *U* is nonempty open and $x \in U$, it follows that there exists $m \in \mathbb{N}$ such that $\lambda_m T_i^m x \in U$ for all $1 \le i \le N$. Thus,

$$
x\in U\cap\left(\lambda_m^{-1}T_1^{-m}\right)(U)\cap\ldots\cap\left(\lambda_m^{-1}T_N^{-m}\right)(U)\,.
$$

Then, T_1 , T_2 , ... T_N are disjoint topologically super-recurrent.

(*i*) \Rightarrow (*ii*). For a fixed element $x \in X$ and a fixed strictly positive number $\varepsilon > 0$, let $B := B(x, \varepsilon)$. We need to show that there is a disjoint super-recurrent vector for $T_1, T_2, ..., T_N$ which belongs to *B*. Since $T_1, T_2, ..., T_N$ are disjoint topologically super-recurrent, there exist some positive integer *k*¹ and some complex number λ_1 such that

$$
B \cap \lambda_1 T_1^{-k_1} (B) \cap ... \cap \lambda_1 T_N^{-k_1} (B) \neq \emptyset.
$$

Let $x_1 \in X$ such that $x_1 \in B \cap \lambda_1 T_1^{-k_1}(B) \cap ... \cap \lambda_1 T_N^{-k_1}(B)$. Since $T_1, ..., T_N$ are continuous, there exists $\varepsilon_1 < \frac{1}{2}$ such that

$$
B_2 := B(x_1, \varepsilon_1) \subset B \cap \bigcap_{i=1}^N \lambda_1 T_i^{-k_1} (B).
$$

Again, since $T_1, ..., T_N$ are disjoint topologically super-recurrent, there exist some $k_2 \in \mathbb{N}$ and $\lambda_2 \in \mathbb{C}$ such that

$$
B_2 \cap \lambda_2 T_1^{-k_2} (B_2) \cap ... \cap \lambda_2 T_N^{-k_2} (B_2) \neq \emptyset.
$$

Let $x_2 \in X$ such that $x_2 \in B_2 \cap \lambda_2 T_1^{-k_2} (B_2) \cap ... \cap \lambda_2 T_N^{-k_2} (B_2)$. Since $T_1, T_2, ..., T_N$ are continuous, there exists $\varepsilon_2 < \frac{1}{2^2}$ such that

$$
B_3 := B(x_2, \varepsilon_2) \subset B_2 \cap \bigcap_{i=1}^N \lambda_2 T_i^{-k_2} (B_2).
$$

Continuing inductively, we construct a sequence $(x_n)_{n\in\mathbb{N}}$ of elements of *X*, a sequence $(\lambda_n)_{n\in\mathbb{N}}$ of complex numbers, a strictly increasing sequence of positive integers $(k_n)_{n\in\mathbb{N}}$ and a sequence of positive real numbers $\varepsilon_n < \frac{1}{2^n}$, such that

$$
B(x_n,\varepsilon_n)\subset B(x_{n-1},\varepsilon_{n-1})\quad and\quad \bigcup_{i=1}^N\lambda_n^{-1}T_i^{k_n}(B(x_n,\varepsilon_n))\subset B(x_{n-1},\varepsilon_{n-1}).
$$

Since *X* is a Banach space, we conclude by Cantor's theorem that

$$
\bigcap_{n\in\mathbb{N}}B(x_n,\varepsilon_n)=\{y\},
$$

for some $y \in X$. It readily follows that $\lambda_n T_i^{k_n} y \longrightarrow y$ for all $1 \le i \le N$. Then,

$$
\lambda_n(T_1\oplus\ldots\oplus T_N)^{k_n}(y,\ldots,y)\longrightarrow (y,\ldots,y),
$$

and so *y* is a disjoint topologically super-recurrent vector for $T_1, T_2, ..., T_N$ such that $y \in B$.

Remark 2.4. By using a proof similar to that of Proposition 1.2, we can also see that if $T_1, T_2, ..., T_N$ are disjoint *topologically super-recurrent, then the set of disjoint super-recurrent vectors for* $T_1, T_2, ..., T_N$ *is a dense* G_δ *set.*

The condition topologically super-recurrent for $N \geq 2$ operators $T_1, T_2, ..., T_N$ implies that $T_1, T_2, ..., T_N$ has disjoint super-recurrent vectors, but the converse is not true in general, as we show in the next example.

Example 2.5. *Let X be a Banach space, and let* $(e_i)_{i \in I}$ *be a basis of X. Let* $i_0 \in I$ *and* $\lambda \in \mathbb{C}$ *be nonzero fixed numbers. We define an operator T on X by:*

$$
Te_{i_0} = \lambda e_{i_0}
$$
 and $Te_i = 0$, for all $i \in I \setminus \{i_0\}$.

We have that (e_{i_0}, e_{i_0}) *is a super-recurrent vector for* $T \oplus T$ *, but* T *is not super-recurrent (see [4]). Then,* $T \oplus T$ *is not super-recurrent. And so T*, *T is not topologically disjoint super-recurrent.*

Remark 2.6. *If* $T_1, T_2, ..., T_N$ are disjoint topologically super-recurrent operators on a Banach space X, then $\lambda T_1, \lambda T_2, ..., \lambda T_N$ *are disjoint topologically super-recurrent operators for all* λ ∈ C ∗ *. Moreover, they share the disjoint super-recurrent vectors.*

Theorem 2.7. Let p be a nonzero positive integer and $T_1, T_2, ..., T_N$ be $N \ge 2$ operators acting on a Banach space *X.* Then, T_1 , T_2 , ..., T_N are disjoint topologically super-recurrent if and only if T_1^p , T_2^p 2 , ..., *T p N are disjoint topologically* super-recurrent. Moreover, T_1 , T_2 , ..., T_N and T_1^p , T_2^p 2 , ..., *T p* $_{N}^{\nu}$ have the same disjoint super-recurrent vectors.

Proof. It is easy to show that if T_1^p T_1^p , T_2^p 2 , ..., *T p* $\frac{w}{N}$ are disjoint topologically super-recurrent operators, then *T*1, *T*2, ..., *T^N* are also disjoint topologically super-recurrent operators. We now prove that every disjoint super-recurrent vector for $T_1, T_2, ..., T_N$ is a disjoint super-recurrent vector for T_1^p $\frac{p}{1}$, T_2^p 2 , ..., *T p* \int_{N}^{ψ} . So, let *x* be a disjoint super-recurrent vector for $T_1, T_2, ..., T_N$. Then there exist a strictly increasing sequence $(k_n)_{n\in\mathbb{N}}$ of positive integers and a sequence $(\lambda_n)_{n\in\mathbb{N}}$ of complex numbers such that

$$
\lambda_n (T_1 \oplus \ldots \oplus T_N)^{k_n} (x, \ldots, x) \longrightarrow (x, \ldots, x)
$$

as $n \rightarrow +\infty$. Without loss of generality we may suppose that $k_n > p$ for all $n \in \mathbb{N}$. Hence, for all *n*, there exist $l_n \in \mathbb{N}$ and $v_n \in \{0, ..., p-1\}$ such that

$$
k_n = pl_n + v_n.
$$

Since $v_n \in \{0, ..., p-1\}$ for all *n*, it is obvious that (v_n) contains a subsequence that consists of a single (repeated) element, so we can call this element *v*. Thus,

$$
\lambda_n (T_1 \oplus \ldots \oplus T_N)^{pl_n+v} (x, \ldots, x) \longrightarrow (x, \ldots, x)
$$

for some subsequence of (l_n) and a subsequence (λ_n) which we call them again (l_n) and (λ_n) . Let *U* be a nonempty open subset of *X* such that $x \in \overline{U}$. Since

$$
\lambda_{n} (T_{1} \oplus ... \oplus T_{N})^{pl_{n}+v} (x, ..., x) \longrightarrow (x, ..., x),
$$

we have $\lambda_n T_i^{pl_n+v}x\longrightarrow x$ for all $1\leq i\leq N$, and there exists a positive integer $m_1:=l_{n_1}$ such that $\lambda_{n_1}T_i^{pm_1+v}$ for all $1 \le i \le N$. Then, \sum_{i} ^{pm₁+v} x ∈ U

$$
\lambda_n \lambda_{n_1} T_i^{p(l_n+m_1)+2v} x = \lambda_{n_1} T_i^{pm_1+v} (\lambda_n T_i^{pl_n+v} x) \longrightarrow \lambda_{n_1} T_i^{pm_1+v} x \in U
$$

for all $1 \le i \le N$. Thus, we can find a positive integer $m_2 := m_1 + l_{n_2} > m_1$ such that $\lambda_{n_1} \lambda_{n_2} T_i^{pm_2+2\zeta}$ $\int_{i}^{pm_{2}+2v} x \in U$ for all 1 ≤ *i* ≤ *N*. Continuing inductively we can find a positive integer $m_p = m_{p-1} + l_{n_p}$ such that

$$
\lambda_{n_1}...\lambda_{n_p}T_i^{pm_p+pv}x\in U
$$

for all $1 \le i \le N$. Put $\lambda = \lambda_{n_1}...\lambda_{n_p}$, then $\lambda\left(T_i^p\right)$ $\int_a^p j^{m_p+v} x \in U$ for all $1 \leq i \leq N$. Hence *x* is a disjoint super-recurrent vector for T_1^p T_1^p , T_2^p 2 , ..., *T p* N_N . Now we just apply Theorem 2.3 to complete the proof.

Remark 2.8. *The d-topologically transitive for supercyclicity implies the disjoint topologically super-recurrent. However, the converse does not hold in general. Indeed, let* α1, ..., α⁴ *be four nonzero complex numbers such that* $|\alpha_1| = ... = |\alpha_4| = R$ for some strictly positive real number R. We define two operators T_1 and T_2 on \mathbb{C}^2 by

$$
T_1: \mathbb{C}^2 \longrightarrow \mathbb{C}^2
$$

$$
(x_1, x_2) \longmapsto (\alpha_1 x_1, \alpha_2 x_2)
$$

and

$$
T_2: \mathbb{C}^2 \longrightarrow \mathbb{C}^2
$$

$$
(x_1, x_2) \longmapsto (\alpha_3 x_1, \alpha_4 x_2).
$$

Let U be a nonempty open subset of \mathbb{C}^2 and $x\in U$. We will prove that x is a disjoint super-recurrent vector for T₁, T₂. $Since$ $\left| R^{-1}\alpha_1 \right| = \dots = \left| R^{-1}\alpha_4 \right| = 1$, it follows that there exists a strictly increasing sequence of positive integers (*k_n*)_{n∈N} $such$ that $\left(R^{-1}\alpha_i\right)^{k_n}\longrightarrow 1$, for all $1\leq i\leq 4$. Let $\lambda_k=R^{-k_n}$, for all k , then

$$
\lambda_k(T_1\oplus T_2)^{k_n}(x,x)\longrightarrow (x,x).
$$

*So x is a disjoint super-recurrent vector for T*1, *T*2*. We now apply Theorem 2.3 to provide that T*1, *T*² *are disjoint topologically super-recurrent, but T*¹ *and T*² *are not supercyclic (see [4]). Then, T*1, *T*² *are not d-topologically transitive for supercyclicity.*

3. Disjoint topologically super-recurrent weighted shifts

In this section, we characterize the disjoint topologically super-recurrent for distinct powers of weighted bilateral (unilateral) shifts in terms of their weight sequences by showing that the disjoint topologically super-recurrence and d-topologically transitive for supercyclicity are equivalent in this case.

3.1. Unilateral shifts

As shown below, $X = c_0(\mathbb{N})$ or $\ell^p(\mathbb{N})$, $(1 \leq p < \infty)$ over the complex scalar field \mathbb{C} . Given a bounded sequence $a = (a_k)_{k \geq 1}$ with nonzero weights, define the unilateral weighted shift $T_a : X \longrightarrow X$ as follows:

$$
T_a(x_0, x_1, \ldots) = (a_1x_1, a_2x_2, \ldots).
$$

Theorem 3.1. Let $X = c_0(N)$ or $\ell^p(N)$, $(1 \le p < \infty)$. For $N \ge 2$ and $1 \le l \le N$, let $a_l = (a_{l,n})_{n=1}^{\infty}$ be a bounded *sequence of nonzero scalars and let T^l be the associated unilateral backward shift on X:*

$$
T_l(x_0, x_1, \ldots) = (a_{l,1}x_1, a_{l,2}x_2, \ldots).
$$

For any integers $1 \le r_1 < r_2 < ... < r_N$ *, the following are equivalent:*

- *a*) $T_1^{r_1}$, $T_2^{r_2}$, ..., $T_N^{r_N}$ are disjoint topologically super-recurrent operators;
- *b*) $T_1^{r_1}$, $T_2^{r_2}$, ..., $T_N^{r_N}$ have a dense set of d-supercyclic vectors;
- *c)* For each $\varepsilon > 0$ and $q \in \mathbb{N}$ there exists $m \in \mathbb{N}$ satisfying, for each $0 \le j \le q$

$$
\frac{|\prod_{i=j+1}^{j+r_l m} a_{l,i}|}{|\prod_{i=j+(r_l-r_s)m+1}^{j+r_l m} a_{l,i}|} > \frac{1}{\varepsilon} \quad (1 \le s < l \le N)
$$
\n(1)

d) $T_1^{r_1}$, $T_2^{r_2}$, ..., $T_N^{r_N}$ satisfy the d-Supercyclicity Criterion.

Proof. Let us first prove that *a*) implies *c*). Fix a positive integer N and let $\varepsilon > 0$. Take also a positive integer *q*. Then consider a positive number δ such that $\frac{\delta}{(1-\delta)} < \varepsilon$ and $\delta < 1$. Consider the open ball $B\left(\sum_{j=0}^q e_j,\delta\right)$. There exists $m \in \mathbb{N}$ ($m > q$) and $\lambda \in \mathbb{C}$ ($\lambda \neq 0$) such that

$$
B\left(\sum_{j=0}^q e_j, \delta\right) \cap \left(\lambda T_1^{-mr_1}\right) \left(B\left(\sum_{j=0}^q e_j, \delta\right)\right) \cap \dots \cap \left(\lambda T_N^{-mr_N}\right) \left(B\left(\sum_{j=0}^q e_j, \delta\right)\right) \neq \emptyset.
$$

Hence there exists $x = \sum_{k=0}^{\infty} x_k e_k \in X$ such that for every $l = 1, ..., N$, in particular,

$$
\left|\lambda\left(\prod_{i=j+1}^{j+r_im}a_{l,i}\right)x_{j+r_im}-1\right| < \delta \quad \text{if} \quad (0 \le j \le q),\tag{2}
$$

and

$$
\left|\lambda\left(\prod_{i=k+1}^{k+r_1m}a_{l,i}\right)x_{k+r_1m}\right| < \delta \quad \text{if} \quad (k > q). \tag{3}
$$

Having at our hands the above inequalities we argue as in the proof of [29, Theorem 3.2] and we conclude that for all $0 \le j \le q$ we have:

$$
if \quad 1 \leq s < l \leq N \quad \frac{|\prod_{i=j+1}^{j+r_im}a_{l,i}|}{|\prod_{i=j+(r_l-r_s)m+1}^{j+r_im}a_{l,i}|} \quad > \quad \frac{1}{\varepsilon}.
$$

Hence we proved that *a*) implies *c*). Condition *b*), *c*) and *d*) are known to be equivalent from [29, Theorem 3.2]. Finally the implication b) \Rightarrow *a*) hold trivially and this completes the proof of the equivalence of statements *a*) − *d*) of the theorem. $□$

In the following, we obtain special cases of Theorem 3.1.

Corollary 3.2. Let $X = c_0(N)$ or $\ell^p(N)$, $(1 \leq p < \infty)$. For $N \geq 2$, let $r_l \in \mathbb{N}$ and $\lambda_l \in \mathbb{C}$ $(1 \leq l \leq N)$ with $1 \leq r_1 < r_2 < ... < r_N$. Let $B: X \longrightarrow X$ be the backward shift defined as follows:

$$
B(x_0, x_1, \ldots) = (x_1, x_2, \ldots).
$$

The following statements are equivalent:

- a) $\lambda_1 B^{r_1}$, $\lambda_2 B^{r_2}$, ..., $\lambda_N B^{r_N}$ are disjoint topologically super-recurrent operators;
- *b*) $\lambda_1 B^{r_1}$, $\lambda_2 B^{r_2}$, ..., $\lambda_N B^{r_N}$ have a dense set of d-supercyclic vectors;

c) For each $\varepsilon > 0$ there exists $m \in \mathbb{N}$ satisfying,

$$
\left|\frac{\lambda_s}{\lambda_l}\right|^m < \varepsilon \quad (1 \le s < l \le N);
$$

d) $\lambda_1 B^{r_1}$, $\lambda_2 B^{r_2}$, ..., $\lambda_N B^{r_N}$ satisfy the d-Supercyclicity Criterion.

Proof. For each $0 \le l \le N$, let λ_l^{1/r_l} I^{1/r_1}_{l} denote a fixed root of $z^{r_l} - \lambda_l$, and let T_l denote the unilateral backward shift with constant weight sequence $a_l = (a_{l,n})_{n=1}^{\infty} = (\lambda_l^{1/r_l})_{n=1}^{\infty}$ $\binom{1}{n}$ $\binom{1}{n}$ $\sum_{n=1}^{\infty}$. Then $T_l^{r_l}$ $\lambda_l^{n_l} = \lambda_l B^{n_l}$. It is clear that the result follows from Theorem 3.1. \square

3.2. Bilateral shifts

Recall that $1 \leq p < \infty$, the space $\ell^p(\mathbb{Z})$ denotes the Banach space of bilateral sequences that are psummable. Let $X = c_0(\mathbb{Z})$ or $\ell^p(\mathbb{Z})$, and let $(e_k)_{k \in \mathbb{Z}}$ be the canonical basis of X. If $a = (a_k)_{k \in \mathbb{Z}}$ is a bounded weight sequence of nonzero scalars in C, then the bilateral backward weighted shift *B^a* : *X* −→ *X* is the bounded operator defined by

$$
B_a e_n = a_n e_{n-1} \quad (n \in \mathbb{Z}).
$$

Theorem 3.3. Let $X = c_0(\mathbb{Z})$ or $\ell^p(\mathbb{Z})$, $(1 \leq p < \infty)$. For $N \geq 2$ and $l = 1, ..., N$, let $a_l = (a_{l,j})$ *j*∈Z *be a bounded bilateral sequence of nonzero scalars, and let* B_l *<i>be the associated backward shift on* X *given by* $B_l e_k = a_{l,k}e_{k-1}$ ($k \in \mathbb{Z}$). *For any integers* $1 \le r_1 < r_2 < ... < r_N$ *, the following are equivalent:*

- a) $B_1^{r_1}, B_2^{r_2}, ..., B_N^{r_N}$ are disjoint topologically super-recurrent operators;
- *b*) $B_1^{r_1}, B_2^{r_2}, ..., B_N^{r_N}$ have a dense set of d-supercyclic vectors;
- *c*) For each $\varepsilon > 0$ and $q \in \mathbb{N}$ there exists $m \in \mathbb{N}$ ($m > 2q$), such that, for each |j|, |k| $\leq q$ and $1 \leq l$, $s \leq N$, we have *that*

$$
\left| \prod_{i=j-r_1m+1}^j a_{l,i} \right| < \varepsilon \left| \prod_{i=k+1}^{k+r_s m} a_{s,i} \right| \quad (1 \le l, s \le N), \tag{4}
$$

and for $1 \leq s < l \leq N$

$$
\begin{cases} \left| \prod_{i=j+(r_l-r_s)m+1}^{j+r_l m} a_{s,i} \right| < \varepsilon \left| \prod_{i=j+1}^{j+r_l m} a_{l,i} \right| \\ \left| \prod_{i=j-(r_l-r_s)m+1}^{j+r_s m} a_{l,i} \right| < \varepsilon \left| \prod_{i=j+1}^{j+r_s m} a_{s,i} \right| \end{cases} \tag{5}
$$

d) $B_1^{r_1}, B_2^{r_2}, ..., B_N^{r_N}$ satisfy the d-Supercyclicity Criterion.

Proof. Let us first prove that *a*) implies *c*). Fix a positive integer *N* and let ε > 0. Take also a positive integer *q*. Then consider a positive number δ such that $\frac{\delta}{(1-\delta)} < \varepsilon$ and $0 < \delta < \frac{1}{2}$. Consider the open ball $B\left(\sum_{|j| \leq q} e_j, \delta\right)$. There exists $m \in \mathbb{N}$ ($m > 2q$) and $0 \neq \lambda \in \mathbb{C}$ such that

$$
B\left(\sum_{\vert j\vert \leq q}e_j,\delta\right)\cap \left(\lambda B^{-mr_1}_1\right)\left(B\left(\sum_{\vert j\vert \leq q}e_j,\delta\right)\right)\cap\ldots\cap \left(\lambda B^{-mr_N}_N\right)\left(B\left(\sum_{\vert j\vert \leq q}e_j,\delta\right)\right)\neq \emptyset.
$$

Hence there exists $x = \sum_{k \in \mathbb{Z}} x_k e_k \in X$ such that

$$
\left\|x - \sum_{|j| \le q} e_j\right\| < \delta
$$

$$
\left\|\lambda B_l^{r_l m} x - \sum_{|j| \le q} e_j\right\| < \delta \quad (1 \le l \le N).
$$
 (6)

It follows that

$$
\left| x_j - 1 \right| < \delta \quad \text{if} \quad \left| j \right| \le q,\tag{7}
$$

$$
|x_j| < \delta \quad \text{if} \quad |j| > q. \tag{8}
$$

By (6) , so

$$
\left| \lambda \left(\prod_{i=j+1}^{j+r_{i}m} a_{l,i} \right) x_{j+r_{i}m} - 1 \right| < \delta \quad if \quad |j| \le q,
$$
\n
$$
\left| \lambda \left(\prod_{i=k+1}^{k+r_{i}m} a_{l,i} \right) x_{k+r_{i}m} \right| < \delta \quad if \quad |k| > q.
$$
\n
$$
(10)
$$

Having at our hands the above inequalities we argue as in the proof of [29, Theorem 4.1] and we conclude that for all $|j| \leq q$ we have:

$$
if \quad 1 \le l, s \le N, \quad |\prod_{i=j-r_1m+1}^{j} a_{l,i}| \quad < \quad \varepsilon |\prod_{i=k+1}^{k+r_s m} a_{s,i}|,
$$

and

$$
if \quad 1 \le s < l \le N, \quad \begin{cases} |\prod_{i=j+(r_l-r_s)m+1}^{j+r_l m} a_{s,i}| < \varepsilon |\prod_{i=j+1}^{j+r_l m} a_{l,i}| \\ |\prod_{i=j-(r_l-r_s)m+1}^{j+r_s m} a_{l,i}| < \varepsilon |\prod_{i=j+1}^{j+r_s m} a_{s,i}| \end{cases}.
$$

Hence we proved that *a*) implies *c*). Condition *b*), *c*) and *d*) are known to be equivalent from [29, Theorem 4.1]. Finally the implication *b*) \Rightarrow *a*) hold trivially and this completes the proof of the equivalence of statements *a*) − *d*) of the theorem. $□$

When the shifts in Theorem 3.3 are invertible, we have

Corollary 3.4. Let $X = c_0(\mathbb{Z})$ or $\ell^p(\mathbb{Z})$, $(1 \le p < \infty)$. For $N \ge 2$ and $l = 1, ..., N$, let $B_l e_k = a_{l,k} e_k$ such that $(k \in \mathbb{Z})$ *be an invertible bilateral backward shift on X, with weight sequence* $(a_{l,j})_{j\in\mathbb{Z}}$. Let $1 \leq r_1 < r_2 < ... < r_N$ be a positive *integers. Then the following are equivalent:*

- *a*) $B_1^{r_1}, B_2^{r_2}, ..., B_N^{r_N}$ are disjoint topologically super-recurrent operators;
- *b*) $B_1^{\bar{r}_1}, B_2^{\bar{r}_2}, ..., B_N^{\bar{r}_N}$ have a dense set of d-supercyclic vectors;
- *c*) There exists integers $1 \le n_1 < n_2 < ...$ so that for $1 \le s < l \le N$ and $j \in \mathbb{N}$

$$
\lim_{q \to \infty} \frac{\left| \prod_{i=j+1}^{j+r_in_q} a_{l,i} \right|}{\left| \prod_{i=j+(r_1-r_s)n_q+1}^{j+r_in_q} a_{s,i} \right|} = \infty
$$
\n
$$
\lim_{q \to \infty} \frac{\left| \prod_{i=j-(r_1-r_s)n_q+1}^{j+r_s n_q} a_{l,i} \right|}{\left| \prod_{i=j+1}^{j+r_s n_q} a_{s,i} \right|} = 0,
$$
\n(11)

and such that

$$
\lim_{q \to \infty} \max \left\{ \frac{\left| \prod_{i=-r_{l}n_{q}}^{1} a_{l,i} \right|}{\left| \prod_{i=1}^{r_{s}n_{q}} a_{s,i} \right|} : 1 \leq l, s \leq N \right\} = 0;
$$
\n(12)

d) $B_1^{r_1}, B_2^{r_2}, ..., B_N^{r_N}$ satisfy the *d*-Supercyclicity Criterion.

Acknowledgment. The authors are sincerely grateful to the anonymous referee for her/his careful reading, critical comments and valuable suggestions that contribute significantly to improving the manuscript during the revision.

References

- [1] E. Akin, Recurrence in topological dynamics, The University Series in Mathematics. Plenum Press, New York, 1997. Furstenberg families and Ellis actions.
- [2] M. Amouch, A. Bachir, O. Benchiheb, S. Mecheri, Weakly Sequentially Recurrent Shifts Operators, Mathematical Notes. **114** (5) (2023), 668-674.
- [3] M. Amouch, A. Bachir, O. Benchiheb, S. Mecheri, Weakly recurrent operators, Mediterranean Journal of Mathematics. **20** (3) (2023), 169.
- [4] M. Amouch, O. Benchiheb, On a class of super-recurrent operators, Filomat. **36** (11) (2022), 3701-3708.
- [5] M. Amouch, O. Benchiheb, Some versions of supercyclicity for a set of operators, Filomat. **35** (5) (2021), 1619-1627.
- [6] F. Bayart, E. Matheron, Dynamics of Linear Operators, No.179. Cambridge university Press, 2009.
- [7] O. Benchiheb, M. Amouch, Subspace-super recurrence of operators, Filomat. **38** (9) (2024), 3093-3103.
- [8] L. Bernal-Gonzalez, Disjoint hypercyclic operators, Studia Math. ´ **2** (2007), 113-131.
- [9] J. Bes, A.Peris, Disjointness in hypercyclicity, J Math Anal Appl. ` **336** (2007), 297-315.
- [10] A. Bonilla, K.-G. Grosse-Erdmann, A. López-Martínez, A. Peris, Frequently recurrent operators, Journal of Functional Analysis. **283** (12) (2022), Article 109713.
- [11] G. Costakis, A. Manoussos, I. Parissis, Recurrent linear operators, Complex Analysis and Operator Theory. **8** (2014), 1601–1643.
- [12] G. Costakis, I. Parissis, Szemeredi's theorem, frequent hypercyclicity and multiple recurrence, Mathematica Scandinavica. ´ **110** (2012), 251-272.
- [13] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory. Princeton: Princeton University Press, M. B. Porter Lectures. (1981), 303-328.
- [14] V. J. Galán, F. Martlínez-Gimenez, P. Oprocha, A. Peris, Product recurrence for weighted backward shifts, Applied Mathematics and Information Sciences. **9** (2015), 2361-2365.
- [15] G. Godefroy, J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. **98** (1991), 229-269.
- [16] W. H. Gottschalk, G. H. Hedlund, Topological dynamics, American Mathematical Society, Providence, R. I. 1955.
- [17] S. Grivaux, Hypercyclic operators, mixing operators and the bounded steps problem, J. Operator Theory. **54** (2005), 147-168.
- [18] S. Grivaux, E. Matheron, Q. Menet, Linear dynamical systems on Hilbert spaces, Typical properties and explicit examples, Vol. ´ **269**. No. 1315. American Mathematical Society, 2021.
- [19] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Universitext. Springer, London, (2011).
- [20] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bulletin of the American Mathematical Society. **36** (1999), 345–381.
- [21] H. M. Hilden, L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana University Mathematics Journal. **23** (1994), 557-565.
- [22] S. Ivković, Hypercyclic operators on Hilbert C^{*}-modules, Filomat. 38 (2024), 1901−1913.
- [23] S. Ivković, S. Öztop, S. M. Tabatabaie, Dynamical Properties and Some Classes of Non-porous ¨ Subsets of Lebesgue Spaces, Taiwanese Journal of Mathematics. **28** (2) (2024), 313-328.
- [24] S. Ivković, S. M. Tabatabaie, Disjoint Linear Dynamical Properties of Elementary Operators, Bull. Iran. Math. Soc. 49 (2023), art. n. 63.
- [25] S. Ivković, S. M. Tabatabaie, Hypercyclic Generalized Shift Operators, Complex Analysis and Operator Theory. 17 (5) (2023), 60.
- [26] N. Karim, M. Amouch, Sums of Weakly Sequentially Recurrent Operators, Mathematical Notes. **114** (5) (2023), 818-824. [27] N. Karim, O. Benchiheb, M. Amouch, Recurrence of multiples of composition operators on weighted Dirichlet spaces, Advances in Operator Theory. **7** (2) (2022), 23.
- [28] F. León-Saavedra, A. Montes-Rodríguez, Linear structure of hypercyclic vectors. J. Funct. Anal. 148 (1997), 524-545.
- [29] Y.X. Liang, Z.H. Zhou, Disjoint supercyclic powers of weighted shifts on weighted sequence spaces, Turkish J. Math. **38** (2014), 1007-1022.
- [30] Y.X. Liang, Z.H. Zhou, Disjoint supercyclic weighted composition operators, Bull. Korean Math. Soc. **55** (4) (2018), 1137-1147.
- [31] Ö. Martin, Disjoint hypercyclic and supercyclic composition operators. PhD, Bowling Green State University, Bowling Green, OH, USA, 2011.
- [32] Ö. Martin and R. Sanders, Disjoint supercyclic weighted shifts, Integr. Equ. Oper. Theory. 85 (2016), 191-220.
- [33] H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica. 13 (1890), 3-270.
- [34] S. Rolewicz, On orbits of elements, Studia Mathematica. **32** (1969), 17-22.
- [35] H. Salas, Hypercyclic weighted shifts, Trans. Am. Math. Soc. **347** (3) (1995), 993- 1004.
- [36] H. Salas, Supercyclicity and weighted shifts, Studia Math. **135** (1) (1999), 55- 74.