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Abstract. In this paper we analyzed the behaviour of smooth extended regularly varying functions at
infinity. Also, we obtained some new properties and representations of this class of functions.

1. Introduction

This paper is motivated by using regularly varying functions theory to inspecting asymptotical be-
haviour of cosmological parameters, concretely the expansion scale factor a(t) in the standard model of the
universe, known as ΛCDM model. Barrow and Shaw started in papers [3] and [4] studies of the standard
ΛCDM model using asymptotic analysis based on the theory of Hardy fields. This approach is extended
by Mijajlović, Pejović, Marić and others in [16], [15] and [13], using the theory of regular variation and
properties of slowly varying functions.

As our main tool in this paper is the theory of regular variation, we give a brief account without proofs,
collecting together the properties we need. Bingham, Goldie and Teugels in [5] is the definite treatment, it
presents this theory in details there. Seneta in [17] gives a short, but a good account of this subject, as well.
We shall use the standard notation as used in these books. The symbols R and N will denote respectively
the set of real numbers and the set of nonnegative integers. We shall denote the derivative of a function f (x)
over a variable x by ˙f (x). If it is clear from the context which letter denotes the argument of the function
f (x), we shall often write simply ˙f . The theory of regular variation refer to real and positive functions.
Therefore, if not stated otherwise, it is assumed that all mentioned functions are real and positive. Now we
proceed to the definition of regularly varying functions.

Definition 1.1. Let F(t) be a real positive function defined for t > t0. Then

1. F(t) is slowly varying (SV) if

F(λt)
F(t)

→ 1 as t→∞, for each λ > 0. (1)

2020 Mathematics Subject Classification. Primary 26A12.
Keywords. Extended regularly varying functions, regularly varying functions, slowly varying functions, asymptotics.
Received: 26 April 2024; Revised: 03 July 2024; Accepted: 15 July 2024
Communicated by Ljubiša D. R. Kočinac
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2. F(t) is a regularly varying (RV) function of index r if

F(λt)
F(t)

→ λr as t→∞, for each λ > 0. (2)

Examples of slowly varying functions include logarithmic function ln(x) and the iterated logarithmic
functions ln(. . . ln(x) . . .). RV functions are exactly functions which satisfy the generalized power law

F(t) = trL(t), (3)

where L(t) is a slowly varying function and r is a real constant. Many physical phenomena satisfy power
law, so RV functions make an important and useful class of functions in their studies.

Continuing works of Hardy, Littlewood and Landau, Karamata [9] originally defined and studied these
notions for continuous functions. Later this theory was extended to measurable functions.

Theory of regularly varying functions is applied in physics (for example see [16], [15]), hence we
restrict here our attention only to smooth functions, concretely those having at least the continuous second
derivative. Following the notation in [16] and [15], byRα we denote the class of regularly varying functions
of index α. Consequently, the class of slowly varying functions is denoted with R0. WithZ0 is denoted the
class of functions ε(t) that satisfy the condition lim

t→∞
ε(t) = 0, i.e. zero functions at infinity. The following

representation theorem [9] describes the fundamental property of these functions.

Theorem 1.2. (Representation theorem for slowly varying functions): A function L(t) is slowly varying if and
only if there are measurable functions 1(x), ε ∈ Z0 and b ∈ R so that

L(x) = 1(x)e
∫ x

b
ε(t)

t dt, x ≥ b, (4)

and 1(x)→ 10 as x→∞, 10 is a positive constant.

There are various classes of positive measurable functions with similar asymptotic behavior to regularly
varying functions. The class of ERV – extended regularly varying functions (or Matuszewska class of
functions) will have particularly important role in this paper. ERV class of functions is derived from the
results of [12] and [11]. Extensive literature on these functions is available, e.g. [1], [5], [6], [17], [2], [10], [7],
[8]. We review here, following [5], their definitions and very basic notions and properties related to these
functions. As in the case of regular variation, we assume that all mentioned functions are smooth.

The limit in (1) does not exist always for an arbitrary function, but the limit superior and the limit
inferior do exist. So let

f ∗(λ) = lim sup
x→∞

f (λx)
f (x)

, f∗(λ) = lim inf
x→∞

f (λx)
f (x)

. (5)

Note that the difference f ∗(λ) − f∗(λ) measures the oscillation of f (λx)/ f (x) at infinity. It is said that a real
positive measurable function f belongs to the ERV class if and only if there are constants d and c such that

λd
≤ f∗(λ) ≤ f ∗(λ) ≤ λc, λ ≥ 1. (6)

We see at once that RV ⊆ ERV. Note that f is RV if and only if f∗(λ) = f ∗(λ), λ ≥ 1. Therefore, RV
functions are exactly ERV functions which do not oscillate at infinity.

Proposition 1.3. The following statements are equivalent for a real function f :

1. f belongs to the class ERV.
2. f has the representation:

f (x) = exp
(
C + η(x) +

∫ x

1
h(t)dt/t

)
, x ≥ 1, C is a constant,

where η(x)→ 0 as x→∞, h(t) is bounded and h(t), η(t) are both measurable.
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According to this proposition, an ERV function f (x) obviously has the following representation for a function
1(x) and a constant 10 > 0:

f (x) = 1(x)e
∫ x

1
h(t)

t dt, lim
x→∞
1(x)→ 10, h(t) is a bounded function. (7)

An ERV function f (x) is normalized if 1(x) = c0 is a constant function. We shall often take c0 = 1, hence in
this case, by the integral representation theorem, f (1) = 1.

2. ERV functions

In this section we develop further properties of smooth ERV functions.
If f (x) is from above bounded function, then there is b = lim sup

x→∞
f (x). It means:

1. For any ε > 0 there is x0 such that for all x > x0, f (x) < b + ε.
2. For any ε > 0 and every y there is x > y so that f (x) > b − ε.

The next statement uniformizes the above properties of bounded functions.

Lemma 2.1. Suppose f(x) is a real, from above bounded function and let b = lim sup
x→∞

f (x). Then there is a smooth,

decreasing zero function ε(x) and a real number p, such that:

1. For all x > p, f (x) < b + ε(x).
2. For every y > p there is x > y so that b − ε(x) < f (x).

Proof. Let ηn, n ∈ N, be an arbitrary decreasing zero sequence. Observe that from these assumptions it
follows ηn > 0. By the first property of b = lim supx→∞ f (x), there is a monotonously increasing sequence
xn of real numbers such that xn → ∞ as n → ∞ and for all n ∈ N and all x > xn we have f (x) < b + ηn. Let
x′n be a sequence of real numbers such that xn < x′n < xn+1. We define in a piecewise manner a zero function
η(x) in the following way.

Figure 1: Zero function η(x).

For x ≤ x1 we take η(x) = η0.
If xn ≤ x ≤ x′n, n = 1, 2, 3, . . ., we take for η(x) to be the line segment connecting points (xn, ηn−1) and

(x′n, ηn), i.e.

η(x) = ηn−1 +
ηn − ηn−1

x′n − xn
(x − xn). (8)

If x′n ≤ x ≤ xn+1, n = 1, 2, 3, . . ., then η(x) = ηn.
Then it is easy to see that η(x) fulfills the first required condition; it is a decreasing zero function and

f (x) < b + η(x) for all x > x0.

Now we define a function ξ(x) which will satisfy the second part of the Lemma. It is constructed in a
similar way as it was η(x), in a piecewise manner. Let ξn be an arbitrary decreasing zero sequence. Then by
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the second property of b = lim sup
x→∞

f (x), there is a monotonously increasing sequence yn, n ∈ N, such that

limn→∞ yn = ∞ and f (yn) > b − ξn. Let un and vn be two sequences such that

yn < un < vn < yn+1, n ∈ N. (9)

Then ξ(x) is defined by cases as follows.
If y0 ≤ x ≤ u0 then ξ(x) = ξ0.
If un ≤ x ≤ vn, n ∈ N, then

ξ(x) = ξn +
ξn+1 − ξn

vn − un
(x − un). (10)

If vn ≤ x ≤ un+1, then ξ(x) = ξn+1.
Then it is easy to see that ξ(x) fulfills the second required condition; it is a decreasing zero function and

for every y ≥ y0, there is x > y so that b − ξ(x) < f (x).

Finally, we take ε(x) = η(x)+ ξ(x). Then it is easy to see that for p = max{x0, y0}, ε(x) is a decreasing zero
function which satisfies conditions (1) and (2) of the Lemma.

We can make a smooth variant of ε(x) if we replace the line (8) (and similarly the line (10)) connecting
consecutive segments in the construction of ε(x) by a segment of a four degree polynomial 1(x). The
polynomial 1n(x) which connects smoothly points (xn, ηn−1) and (x′n, ηn) is defined by the set of equations:

1n(xn) = ηn−1, 1̇n(xn) = 0 and 1n(x′n) = ηn, 1̇n(x′n) = 0. (11)

In definition of ε(x) we take the restriction of 1n(x) on the real interval (xn, x′n).

Note that ε(x) and all its derivatives as well are bounded on each finite interval. In a similar manner
one can prove the next statement.

Lemma 2.2. Suppose f(x) is a real, from bellow bounded function and let a = lim inf
x→∞

f (x). Then there is a smooth,
decreasing zero function ξ(x) and a real number q, such that:

1. For all x > q, a − ξ(x) < f (x).
2. For every y > q there is x > y so that f (x) < a + ξ(x).

If ε(x) = η(x) + ξ(x), where η(x) and ξ(x) are functions constructed in the previous lemmas and taking
x0 = max{p, q}, we see that the function ε(x) for x > x0 still satisfies the inequalities in these lemmas replacing
η(x) and ξ(x) by ε(x). Hence, we got the following statement.

Corollary 2.3. Let f (x) be a real bounded function and a = lim inf
x→∞

f (x) and b = lim sup
x→∞

f (x). Then there is a

smooth, decreasing zero function ε(x) and a real number x0, such that

1. If x > x0 then a − ε(x) < f (x) < b + ε(x).
2. For every y > x0 there is x > y such that f (x) > b − ε(x).
3. For every y > x0 there is x > y such that f (x) < a + ε(x).

Now we proceed to the proof that for each proper ERV function, i.e. ERV function which is not regularly
varying, there are two narrow and disjoint strips defined by two pairs of regularly varying functions, which
f (x) visits infinitely many times at infinity. First we make precise definitions of these notions.

If u and v are real functions and for some x0 for every x > x0 we have u(x) < v(x), then the domain S ⊆ R2

defined by

S = {(x, y) ∈ R2 : x > x0,u(x) ≤ y ≤ v(x)} (12)

is a strip defined by the pair (u, v). We identify the strip S with its defining pair (u, v) and we shall often
write S = (u, v).
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Figure 2: Strip defined by functions u and v.

In next definitions it is convenient to think of a function f (x) as of the path of a point moving through
the plain. We say that f (x) visits a strip S at a point a, if u(a) ≤ f (a) ≤ v(a). If f (x) visits S at some point, then
we simply say that f (x) visits S. The set V of all contiguous points at which f (x) visits S, we call the visit of
f (x) to the strip S. More formally, there are real numbers a and b, such that a < b and

1. V = {(x, f (x)) : a ≤ x ≤ b},
2. For some ε > 0, if a − ε < x < a, then the point (x, f (x)) does not belong to the strip V. In other words,

f (x) < u(x), or f (x) > v(x). Similarly, for some ε > 0, if b < x < b + ε, then f (x) < u(x), or f (x) > v(x).

In this case we say that the visit V starts at a and ends at b, while IV = [a, b] is called the supporting interval
of V.

A visit V is finite if there are numbers a < b, such that f (x) visits S at a and f (b) < u(b), or f (b) > v(b).
Here we consider functions having only finite visits to S.

We see that two visits V and V′ are different, if and only if their supporting intervals I and I′ are disjoint.
This enables us to define an order in the set of all visits of f (x) to S. We say that a visit V precedes V′, or V′

comes after V, if they are different and there are a ∈ I and a′ ∈ I′ such that a < a′, I and I′ are the supporting
intervals respectively of V and V′. Finally, if for every c there is a > c at which f (x) visits S, then we say that
f (x) visits S at infinity.

Figure 3: Function f (x) visits strips Ta and Tb.

In order to infer new representation of ERV functions, as well as their new properties, we use the
operator L, defined in [14] in the following way.
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Definition 2.4. L(h)(x) =
1

ln(x)

∫ x

x0

h(t)
t

dt, x0 > 1, h ∈ C2(R).

The exact value of x0 is not so important, since our goal is to analyze asymptotical behaviour at infinity.
Therefore, we can take x0 = 1, since the following holds

lim
x→1
L(h)(x) = h(1). (13)

The following Theorem 2.5 is proved in [14] and gives us some interesting properties of the linear
operator L that we use in this paper.

Theorem 2.5. Let L′ denote the restriction of L to the appropriate domain. Then

1. L′ : Z0 →Z0.
2. L′ : R0 → R0.
3. L′ : Rα → Rα, α ∈ R.
4. L′ : B(R)→ B(R), where B(R) is the set of real bounded functions.

In Lemma 2.6 we prove that the inverse function of an ERV function is also an ERV function.

Lemma 2.6. Assume that f1 ∈ C1 (1,∞) is normalized ERV function that satisfies ˙f1(t) , 0 for every t > 1. Then
the inverse function of f1 exists and is also in the class of the normalized ERV functions.

Proof. Since f1(t) is a normalized ERV function, substituting 1(t) = 1 in (19), we infer f1(t) = tL(h)(t), where
the function h is bounded function from the representation of the function f1(t). According to the global
inverse function theorem, the inverse function f2(y) for the function f1(x) exists and is in the class C1 (1,∞).
Therefore, for every y ∈ f1 (1,∞) we have

y = f1( f2(y)) = f2(y)L(h)( f2(y)). (14)

Moreover

ln(y) = ln( f2(y))L(h)( f2(y)), (15)

wherefrom, using definition of the linear operator L, we infer

ln(y) =
∫ f2(y)

1

h(x)
x

dx. (16)

Differentiating (16) over variable y, we obtain

1
y
=

h( f2(y))
f2(y)

ḟ2(y), (17)

wherefrom, substituting f2 (1) = 1 (since f1 (1) = 1), we infer

f2(y) = exp


∫ y

1

1/
(
h( f2(x))

)
x

dx

 . (18)

Since function h is bounded, we conclude that f2(y) is a normalized ERV function.

Now, suppose f (x) is an ERV function with representation (7). Then

f (x) = 1(x)xL(h)(x), 1(x)→ 10 as x→∞. (19)

Here is an example of a proper ERV function, i.e. an ERV function which is not regularly varying
function.
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Example 2.7. Let h(x) = sin(ln(ln(x))) + cos(ln(ln(x))) and x0 = e. Then L(h)(x) = sin(ln(ln(x))) and so
f (x) = xsin(ln(ln(x))). We see that f (x) varies between functions u(x) = x−1 and v(x) = x (consider sequences
f (an) and f (bn), where an = ee2πn+π/2

and bn = ee2πn−π/2
). Hence f (x) is a proper ERV function.

If f (x) is an ERV function, then in the integral representation (7) the function h(x) is bounded and by
Theorem 2.5 L(h)(x) is bounded, too. Hence, if f (x) is a proper ERV function, L(h)(x) does not converge
at infinity. So, there are α = lim infx→∞L(h)(x) and β = lim supx→∞L(h)(x). Next theorem shows that then
f (x) varies between functions u(x) = xα and v(x) = xβ.

Theorem 2.8. Assume f (t) is a proper ERV function with representation (7) and letα = lim inft→∞L(h)(t) and β =
lim supt→∞L(h)(t), α < β.

Then we have

1. If f (t) is a normalized ERV function, then there is a smooth, decreasing zero function ε(t), such that f (t) visits
at infinity eventually disjoint strips Tα = (tα−ε(t), tα+ε(t)) and Tβ = (tβ−ε(t), tβ+ε(t)).

2. If the attribute ”normalized” is omitted, then for some arbitrary small δ > 0 the function f (t) visits at infinity
eventually disjoint strips Sα = (tα−δ, tα+δ) and Sβ = (tβ−δ, tβ+δ).

Proof. First we assume that f (t) is normalized. Since f (t) is a proper ERV function, it follows α < β. Then
by Corollary 2.3, there exists a smooth decreasing zero function ε(t) and a real number t0 such that for all
t > t0:

α − ε(t) < L(h)(t) < β + ε(t), (20)

wherefrom, by the representation (19), we have

tα−ε(t) ≤ f (t) ≤ tβ+ε(t), as t→∞. (21)

We also have that for every s > t0 there is t > s such that L(h)(t) > β − ε(t). Therefore, for every s > t0 there
is t > s such that

β − ε(t) < L(h)(t) < β + ε(t). (22)

Using again (19), we conclude that for every s > t0 there is t > s such that

uβ(t) ≡ tβ−ε(t) ≤ f (t) ≤ tβ+ε(t) ≡ vβ(t). (23)

In a similar way it is proved that for every s > t0 there is t > s such that

uα(t) ≡ tα−ε(t) ≤ f (t) ≤ tα+ε(t) ≡ vα(t). (24)

Hence, f (t) visits at infinity strips Tα and Tβ, what proves the first part of the theorem. As ε(t) is a zero
function and α < β, there is t0 such that we can choose δ > ε(t), t > t0, but (β − α) > 2δ. Hence,

tα+δ < f (t) < tβ−δ, t > t0, (25)

and for arbitrary large t > t0 we have f (t) < tα+δ and tβ−δ < f (t). In other words, f (t) also visits at infinity
disjoint strips

Sα = {(tα−δ, tα+δ) : t > t0}, Sβ = {(tβ−δ, tβ+δ) : t > t0}. (26)

If f0(t) is not normalized, then there is a constant 10 > 0 and a zero function η(t), such that f0(t) =
(10 + η(t)) f (t), where f (t) is a normalized function. Assume derivation (21) – (26). Then, if we multiply for
example inequalities (24) by 10 + η(t), we obtain

tα−δ < (10 + η(t))tα−ε(t) ≤ f0(t) ≤ (10 + η(t))tα+ε(t) < tα+δ (27)

for sufficiently large t. In a similar way one can prove the appropriate inequalities for f0(t) in (21) and (23).
So, f0(t) visits at infinity both strips Sα and Sβ, what proves the second part of the theorem.
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We see that the strips Tα and Tβ appearing in the previous proof are narrow in the sense that uα/vα → 1
and uβ/vβ → 1 as t→∞.

We also note, that using the continuity of ˙f (t) one can prove that to each visit V of f (t), for example
to the strip Tα, corresponds a real interval I = [t′, t′′], t′ < t′′, such that the visit starts at t′ and ends at t′′.
Namely, f (t) intersects the graph of vα(t) = tα+ε(t) at t′ and t′′ and we have

tα−ε(t) < f (t) < tα+ε(t), t′ < t < t′′. (28)

Further, from these inequalities it follows −ε(t) < ξ(t) < ε(t), where

ξ(t) =
ln( f (t))

ln(t)
− α. (29)

Hence, ξ(t) is a smooth zero function and obviously

f (t) = tα+ξ(t), t′ < t < t′′. (30)

By (29) we see that ξ(t) is independent of the visit of f (t) to the strip Tα. Hence, for a visit V of f (t) to the
strip Tα we have f (t) = tα+ξ(t), t ∈ IV, where IV is the supporting interval of the visit V. If (s, f (s)) is not a
visiting point of f (t) to Tα, we take ξ(t) = ε(t) and then f (s) > sα+ε(s)

≥ sα+ξ(s). Hence

tα+ξ(t) ≤ f (t), t ≥ t0, (31)

and f (t) = tα+ξ(t) for visiting points t of f (t) to Tα. Similarly for a smooth zero function ζ(t) we have
f (t) ≤ tβ+ζ(t), t ≥ t0, and f (t) = tβ+ζ(t) for visiting points t of f (t) to Tβ. Hence for each t, f (t) is a convex
combination

f (t) = αttα+ξ(t) + βttβ+ζ(t), αt + βt = 1, αt, βt ≥ 0. (32)

Obviously, there is a function u(t) such that cos(u(t))2 = αt, sin(u(t))2 = βt and u(t) takes all values in the
interval [0, π]. Therefore we can conclude the above discussion with the following.

Theorem 2.9. Assume f (t) is a proper normalized ERV function defined for t ≥ t0. Then there are real numbers
α < β, zero functions ξ(t) and ζ(t) and a real function u(t) which takes all values in the interval [0, π], so that

f (t) = tα+ξ(t) cos(u(t))2 + tβ+ζ(t) sin(u(t))2. (33)

3. Examples

In this section we provide several examples that illustrate the presented material. The first example is
a theorem which describes a large collection of bounded functions for which the exponential integral (7) is
an RV function in spite of our primary expectation that there is a proper ERV function of this type. This
class of functions is made up by bounded periodic functions.

Theorem 3.1. Let f : [1,+∞) → R be a Lebesgue measurable and bounded function, R is the set of real numbers.
Let L ≥ 1 be a real constant and E =

⋃
∞

k=1(kL, (k + 1)L). Suppose f |E : E→ E and that f (x) is periodic on E with the
period L. Then

R(x) = e
∫ x

1
f (t)
t dt (34)

is RV (regularly varying) function.
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Proof. In the next proof we suppose x ≥ L ≥ 1. By boundness of f (x) there is a constant M > 0 such that
| f (x)| ≤M, x ≥ 1. Let I(x) =

∫ x

1
f (t)
t dt and

I(x) = I0 + J(x) + I1(x) (35)

where

I0 =

∫ L

1

f (t)
t

dt, J(x) =
∫ nL

L

f (t)
t

dt, I1(x) =
∫ x

nL

f (t)
t

dt, (36)

where n = n(x) = ⌊x/L⌋. Throughout this proof, the symbol n is reserved to denote the function n(x). We
see that n is the greatest integer such that nL ≤ x and I0 is a constant. Hence

1 ≤
x/L
⌊x/L⌋

≤
n + 1

n
. (37)

We see that n(x)→ +∞ as x→ +∞, hence

x/L
n(x)

→ 1 as x→ +∞. (38)

Observe that f (x)/x is also Lebesgue integrable and bounded. In fact∣∣∣∣∣ f (x)
x

∣∣∣∣∣ ≤M, x ≥ 1. (39)

Now we prove

lim
x→+∞

I1(x) = 0. (40)

Really, by definition of I1(x) we have

|I1(x)| ≤M(ln(x) − ln(nL)) =M ln
(

x/L
n(x)

)
, (41)

so by (38), I1(x)→ 0 as x→ +∞. By definition (34) of R we have

R(x) = c0(x)eJ(x) (42)

where c0(x) = eI0+I1(x) and lim
x→+∞

c0(x) = c0, c0 = eI0 . Further, by integrability and boundness of f (t)/t and

periodicity of f (t), taking s + kL = t + L we have

J(x) =
n−1∑
k=1

∫ (k+1)L

kL

f (t)
t

dt =
n−1∑
k=1

∫ 2L

L

f (s + (k − 1)L)
s + (k − 1)L

ds

=

n−1∑
k=1

∫ 2L

L

f (t)
t + (k − 1)L

dt.

(43)

Hence,

J(x) =
∫ 2L

L
f (t)

n−1∑
k=1

1
t + (k − 1)L

dt (44)
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Let F(x) =
∫ x

L f (t)dt the indefinite Lebesgue integral of f (x), L ≤ x ≤ 2L. Then F(L) = 0, so using integration
by parts

J(x) =
∫ 2L

L

n−1∑
k=1

1
t + (k − 1)L

dF(t)

= F(t)
n−1∑
k=1

1
t + (k − 1)L

∣∣∣∣∣2L

L
+

∫ 2L

L
F(t)

n−1∑
k=1

1
(t + (k − 1)L)2 dt

=
F(2L)

L

n−1∑
k=1

1
k + 1

+

∫ 2L

L
G(t)

n−1∑
k=1

1
(t + (k − 1)L)2 dt = A + B.

(45)

Here, A is the first and B is the second summand in the last sum, while G(t) is a periodic function on E with
period L defined by

G(t + kL) = F(t), t ∈ (L, 2L), G((k + 1)L) = 0, k = 0, 1, 2, . . . . (46)

For Sn =
∑n−1

k=1
1

k+1 and harmonic sum Hn = 1 + 1
2 + . . . +

1
n we have

Sn = Hn − 1. (47)

It is known that

Hn = ln(n) + γ +
1

2n
− ξn, 0 ≤ ξn ≤

1
8n2 , (48)

where γ is the Euler constant. By (37) we have

ln(x/L) ≥ ln(n) ≥ ln
( n

n + 1

)
+ ln(x/L), (49)

so

ln(n) = ln(x) − ln(L) + η(x), η(x)→ 0 as x→ +∞. (50)

Therefore

A =
F(2L)

L
ln(x) + a + δ(x), (51)

where a = F(2L)
L (γ − ln(L) − 1) is a constant and

δ(x) =
F(2L)

L

(
1

2n(x)
− ξn(x) + η(x)

)
(52)

is a zero function at infinity. Therefore, see (42),

R(x) = c1(x)xkeB (53)

where k = F(2L)/L and c1(x) = c0(x)ea+δ(x) is a constant function at infinity. Now we determine the asymptotic
behaviour of part B appearing in (45). The function G(t) is bounded on [L, 2L] as

|G(t)| = |F(t)| =
∣∣∣∣∣∫ x

L
f (t)dt

∣∣∣∣∣ ≤ ∫ x

L
| f (t)|dt ≤ LM. (54)
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By periodicity of G(t) with period L, it follows that G(t) is Lebesgue measurable and bounded on its domain.
Hence G(t) is Lebesgue integrable, bounded and periodic on (L,+∞) with period L, so

B =
∫ 2L

L
G(t)

n−1∑
k=1

1
(t + (k − 1)L)2 dt =

n−1∑
k=1

∫ 2L

L

G(t + (k − 1)L)
(t + (k − 1)L)2 dt

=

n−1∑
k=1

∫ (k+1)L

kL

G(t)
t2 dt =

∫ x

L

ε(t)
t

dt − K(x),

(55)

where

ε(t) = G(t)/t, K(x) =
∫ x

nL

G(t)
t2 dt. (56)

Obviously ε(t)→ 0 as t→ +∞, while lim
x→+∞

K(x) = 0 is proved in the same way as the statement (40). Hence,
(53) can be rewritten as

R(x) = c(x)xke
∫ x

L
ε(t)

t dt, x ≥ L, ε(t)→ 0 as t→ +∞, (57)

where c(x) = c1(x)e−K(x), c(x)→ c0ea as x→ +∞. This proves the theorem.

We note that the proof of this theorem can be easily adapted if assumed 0 < L < 1.

Example 3.2. Functions

e
∫ x

1
sin(t)

t dt, e
∫ x

1
| sin(t)|

t dt (58)

are RV functions.

Obviously, we have more generally

Theorem 3.3. If f (x) is a trigonometric polynomial in sin(x), cos(x), | sin(x)|, | cos(x)|, then

R(x) = e
∫ x

1
f (t)
t dt, x ≥ 1, (59)

is RV function.

In contrast to this theorem we have the following

Example 3.4. The function

V(x) = e
∫ x

1
2−sin(ln(t))

t dt (60)

is proper ERV function, i.e. V(x) is ERV but not RV. This follows from the fact that V(x) varies between
functions 11(x) = e−2x2 and 12(x) = x2, touching them periodically. More precisely, V(x) = e−1x2ecos(ln(x)) and
it is easy to see that for λ , e2kπ, k is an integer, limx→+∞ V(λx)/V(x) does not exist.

We also tried to resolve the following

Problem 3.5. Is there a proper monotonous ERV function having only finitely many inflection points,

however we didn’t succeed.
Solution of this problem may affect some questions on standardΛCDM cosmological model, as the scale

factor a(t), the solution of Friedmann equation, under certain assumptions is an ERV function.
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4. Conclusion

We inferred some new properties of smooth ERV (extended varying) functions. A particularly interesting
feature is that for each proper ERV function f (x) there are two narrow and disjoint strips defined by two
pairs of regularly varying functions, which f (x) visits infinitely many times at infinity. Using a linear
operator L, we obtained a new representations of this class of functions, formulas (19) and

f = tα+ξ cos(u)2 + tβ+ζ sin(u)2, α < β and ξ, ζ are zero functions.

We also proved that bounded periodic functions appearing in the integral representation of ERV functions
yield in fact RV functions. Examples of proper ERV functions are also given.
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