Filomat 38:30 (2024), 10653–10663 https://doi.org/10.2298/FIL2430653G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Krasnoselskii-type best proximity point theorem in Banach algebras

Moosa Gabeleh^{a,*}, Mohammad Moosaei^b

^aDepartment of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran ^bDepartment of Mathemathics, Bu -Ali Sina University, Hamedan, Iran

Abstract. The main purpose of this paper is to present some new existence of hybrid best proximity point theorems involving the sum of two non-self operators in Banach spaces as well as the product of two non-self operators in Banach algebras. In this way, we extend and revisited the main conclusions of a recent paper by Kar and Veeramani [S. Kar, P. Veeramani, Best proximity version of Krasnoselskii's fixed point theorem, Acta Sci. Math. (Szeged), 86 (2020), 265-271]. Illustrative examples are given to support our results.

1. Introduction and Preliminaries

In 1955, Krasnoselskii ([14]) combined the Banach contraction principle and the Schauder's fixed point problem and obtained the following important fixed point theorem.

Theorem 1.1. (Krasnoselskii's fixed point theorem) *Let* A *be a nonempty, closed and convex subset of a Banach space* X. *Assume that* $T : A \rightarrow X$ *and* $S : A \rightarrow X$ *are two operators such that*

- (i) *T* is a contraction, that is, there exists a real number $k \in (0, 1)$ such that $||Tx Ty|| \le k||x y||$ for any $x, y \in A$;
- (ii) *S* is a continuous and compact operator;
- (iii) $T(A) + S(A) \subseteq A$.

Then there is an element $u \in A$ for which Tu + Su = u.

There are a huge number of papers contributing generalizations or modifications of the Krasnoselskii's fixed point theorem and their applications (see for example [1, 2, 6, 7]).

Let (A, B) be a nonempty pair in a metric space (X, d) and $T : A \to B$ be a non-self mapping. A point $p^* \in A$ is called a *best proximity point* of T if

$$d(p^{\star}, Tp^{\star}) = \operatorname{dist}(A, B) := \inf_{(a,b) \in A \times B} d(a, b).$$

²⁰²⁰ Mathematics Subject Classification. Primary 47H09; Secondary 47H10, 46B20.

Keywords. Best proximity point, Banach algebra, Projection mapping, P-property.

Received: 02 May 2024; Revised: 13 August 2024; Accepted: 11 September 2024

Communicated by Calogero Vetro

^{*} Corresponding author: Moosa Gabeleh

Email addresses: Gabeleh@abru.ac.ir, gab.moo@gmail.com (Moosa Gabeleh), moosaeimohammad@gmail.com (Mohammad Moosaei)

In fact best proximity point theorems are studied to find necessary conditions to guarantee the existence of a solution to the minimization problem

$$\min_{x \in A} d(x, Tx). \tag{1}$$

We refer to [4, 5, 13, 19] for some discussions on the existence, uniqueness and convergence of a best proximity point.

Let (A, B) be a nonempty pair in a Banach space X. Set

 $A_0 = \{x \in A : ||x - y|| = \text{dist}(A, B), \text{ for some } y \in B\},\$ $B_0 = \{y \in B : ||x - y|| = \text{dist}(A, B), \text{ for some } x \in A\}.$

The pair (A_0 , B_0) is said to be a *proximal pair* of (A, B). It is remarkable to note that (A_0 , B_0) may by empty, but in particular if (A, B) is a nonempty, bounded, closed and convex pair in a reflexive Banach space X, then it's proximal pair (A_0 , B_0) is also nonempty, closed and convex (see [13] for more details). In what follows by S_X we denote the unit sphere in a Banach space X, that is,

$$S_X := \{ x \in X : ||x|| = 1 \}.$$

Definition 1.2. A Banach space X is said to be strictly convex if for any two distinct elements $x, y \in S_X$, we have

$$\left\|\frac{x+y}{2}\right\| < 1.$$

Hilbert spaces and ℓ^p spaces $(1 are instances of strictly convex Banach spaces whereas the Banach spaces <math>\ell^1$ and ℓ^∞ are not strictly convex.

In 2011, Snkar Raj introduced the following geometric notion and used to investigate an interesting extension of the Banach contraction principle.

Definition 1.3. ([17]) Let (A, B) be a nonempty pair in a metric space (X, d) with $A_0 \neq \emptyset$. The pair (A, B) is said to have the P-property (d-property in some literatures) if and only if

$$\begin{aligned} |d(x_1, y_1) &= \operatorname{dist}(A, B) \\ |d(x_2, y_2) &= \operatorname{dist}(A, B) \end{aligned} \Rightarrow d(x_1, x_2) &= d(y_1, y_2), \end{aligned}$$

where $x_1, x_2 \in A_0$ *and* $y_1, y_2 \in B_0$ *.*

It was announced in [11] that every nonempty, bounded, closed and convex pair in reflexive and Busemann convex spaces has the P-property. It is interesting to note that the concept of P-property characterizes the strict convexity of Banach spaces. Indeed, a Banach space *X* is strictly convex if and only if every nonempty, closed and convex pair in X has the P-property (see Theorem 3.1 of [18]).

The next lemmas regarding to the notion of P-property will be used in our coming discussions.

Lemma 1.4. (see Lemma 3.1 of [8]) Let (A, B) be a nonempty, closed pair in a complete metric space (X, d) such that A_0 is nonempty and (A, B) has the P-property. Then the proximal pair (A_0, B_0) is closed.

It is well-known in approximation theory that if *A* is a nonempty subset of a Banach space *X* a *metric projection operator* $\mathcal{P}_A : X \rightrightarrows A$ is defined as

$$\mathcal{P}_A(x) := \{a \in A : ||x - a|| = \text{dist}(\{x\}, A)\}.$$

We mention that if *A* is a nonempty, closed and convex subset of a reflexive and strictly convex Banach space *X*, then the metric projection \mathcal{P}_A is single-valued from *X* to *A*.

Lemma 1.5. ([9, 10]) Let (A, B) be a nonempty, bounded, closed and convex pair in a reflexive Banach space X such that (A, B) has the P-property. Define a projection mapping $\mathcal{P} : A_0 \cup B_0 \to A_0 \cup B_0$ as

$$\mathcal{P}(x) = \begin{cases} \mathcal{P}_{A_0}(x); & \text{if } x \in B_0, \\ \mathcal{P}_{B_0}(x); & \text{if } x \in A_0. \end{cases}$$
(2)

Then the following statements hold:

- (i) $||x \mathcal{P}x|| = \text{dist}(A, B)$ for any $x \in A_0 \cup B_0$ and so \mathcal{P} is cyclic on $A_0 \cup B_0$, that is, $\mathcal{P}(A_0) \subseteq B_0$ and $\mathcal{P}(B_0) \subseteq A_0$;
- (ii) $\mathcal{P}|_{A_0}$ and $\mathcal{P}|_{B_0}$ are isometry;
- (iii) $\mathcal{P}|_{A_0}$ and $\mathcal{P}|_{B_0}$ are affine;
- (iv) $\mathcal{P}^2|_{A_0} = i_{A_0}$ and $\mathcal{P}^2|_{B_0} = i_{B_0}$, where i_E denotes the identity mapping on a nonempty subset E of X.

The first existence result of a best proximity point by using the concept of P-property was established by Sankr Raj in [17] as follows.

Theorem 1.6. Let (A, B) be a nonempty and closed pair in a complete metric space (X, d) and $T : A \rightarrow B$ be a contraction non-self mapping, that is,

$$\exists k \in (0,1) : d(Tx,Ty) \le kd(x,y), \quad \forall x, y \in A.$$

If (A, B) has the P-property and $T(A_0) \subseteq B_0$, then T has a best proximity point.

Recently, an extension version of Krasnoselskii's fixed point theorem was presented in [12] in order to study the existence of a best proximity point for sum of two non-self mappings by applying the geometric concept of P-property, as below.

Theorem 1.7. (Theorem 2.1 of [12]) Let (A, B) be a nonempty, closed and convex pair in a Banach space X such that A_0 is nonempty and (A, B) has the P-property. Assume that $T : A \to X$ and $S : B \to X$ are two operators such that

- (i) *T* is a contraction, that is, there exists a real number $k \in (0, 1)$ such that $||Tx Ty|| \le k||x y||$ for any $x, y \in A$;
- (ii) *S* is a continuous and compact operator;
- (iii) $T(A_0) + S(B_0) \subseteq A_0$.

Then the mapping $(I - T)^{-1}S$ has a best proximity point in B₀, that is,

$$\exists y^* \in B_0 \ s.t. \|y^* - (I - T)^{-1}Sy^*\| = \operatorname{dist}(A, B).$$

It is worth mention that if in Theorem 1.7 A = B, then we get the Krasnoselskii's fixed point theorem.

In this paper we give a generalization of Theorem 1.7 by using a Meir-Keeler contractive condition. We also establish a counterpart result of Theorem 1.7 for multiplication of two non-self mappings in Banach algebras.

2. An extension of Karsnoselskii's fixed point problem

We begin our main discussions by recalling the following extension of the Banach contraction principle due to Meir and Keeler (see [16]).

Theorem 2.1. (Meir-Keeler fixed point theorem) *Let* (*X*, *d*) *be a complete metric space and* $T : X \to X$ *be an* \mathcal{MK} *contraction mapping, that is, for every* $\varepsilon > 0$ *there exists* $\delta > 0$ *for which*

$$\forall x, y \in X, \quad \varepsilon \le d(x, y) < \varepsilon + \delta \Rightarrow d(Tx, Ty) < \varepsilon.$$

Then T has a unique fixed point and the Picard iteration sequence $\{T^n x_0\}$ converges to the fixed point of T for any $x_0 \in X$.

Unfortunately, Theorem 2.1 has no an appropriate application in nonlinear differential and integral equations. Thereby, Lim ([15]) and Suzuki ([20]) presented a more practical and equivalent contractive conditions w.r.t \mathcal{MK} condition.

Definition 2.2. A function $\psi : [0, +\infty) \rightarrow [0, +\infty)$ is said to be a strictly \mathcal{L} -function provided that $\psi(0) = 0$ and for every s > 0 there exists a $\delta > 0$ such that $0 < \psi(r) < s$ for all $r \in [s, s + \delta)$.

It was announced in [20] that the MK contractive condition of the self mapping *T* defined on a metric space *X* is equivalent to the following contractive condition:

$$d(Tx, Ty) \le \psi(d(x, y)), \quad \forall x, y \in X,$$

where ψ is a nondecreasing function and right continuous strictly \mathcal{L} -function on $[0, +\infty)$.

In the next theorem, we generalize Theorem 1.7 by considering the contractive assumption presented by Meir and Keeler.

Theorem 2.3. Let (A, B) be a nonempty, closed and convex pair in a Banach space X such that A_0 is nonempty and (A, B) has the P-property. Assume that $T : A \to X$ and $S : B \to X$ are two operators such that

- (i) T is an \mathcal{MK} contraction;
- (ii) *S* is a continuous and compact operator;

(iii)
$$T(A_0) + S(B_0) \subseteq A_0$$
.

Then the mapping $(I - T)^{-1}S$ has a best proximity point in B_0 .

Proof. By the fact that *T* is an \mathcal{MK} contraction, there exists a nondecreasing function and right continuous strictly \mathcal{L} -function ψ such that $||Tx - Ty|| \le \psi(||x - y||)$ for all $x, y \in A$. Thus for any distinct elements $x, y \in A$ we have

$$||(I - T)x - (I - T)y|| = ||(x - y) - (Tx - Ty)|| \ge ||x - y|| - ||Tx - Ty||$$

$$\ge ||x - y|| - \psi(||x - y||) > 0.$$

Also,

$$\begin{split} \|(I-T)x - (I-T)y\| &= \|(x-y) - (Tx - Ty)\| \le \|x-y\| + \|Tx - Ty\| \\ &\le \|x-y\| + \psi(\|x-y\|) < 2\|x-y\|, \end{split}$$

which implies that the mapping I - T is a homeomorphism on A (see Theorem 2.3 of [2]). Now let $y \in B_0$ be an arbitrary element and define $T_y : A_0 \to A_0$ with

$$T_y(x) = Tx + Sy, \quad \forall x \in A_0.$$

Note that by (iii), T_y is well-defined and

$$||T_y(x) - T_y(z)|| = ||Tx - Tz|| \le \psi(||x - z||), \quad \forall x, z \in A_0,$$

that is, T_y is an \mathcal{MK} contraction on the set A_0 , where A_0 is complete because of Lemma 1.4. It now follows from Theorem 2.1 that T_y has a unique fixed point, say $h(y) \in A_0$. Therefore,

$$h(y) = T_y(h(y)) = T(h(y)) + Sy, \quad \forall y \in B_0,$$

and so,

$$Sy = (I - T)(h(y)) \in (I - T)(A_0), \quad \forall y \in B_0.$$

Hence, $(I - T)^{-1}(S(B_0)) \subseteq A_0$. Now by considering the projection mapping \mathcal{P} in Lemma 1.5, we obtain

$$\mathcal{P}(I-T)^{-1}S(B_0) \subseteq \mathcal{P}(A_0) \subseteq B_0,$$

where the mapping $\mathcal{P}(I-T)^{-1}S : B_0 \to B_0$ is a continuous and compact operator and so, by the well-known Schauder's fixed point result, there exists an element $y^* \in B_0$ for which $\mathcal{P}(I-T)^{-1}Sy^* = y^*$. Hence, by the property (i) of Lemma 1.5 we conclude that

$$dist(A, B) = ||(I - T)^{-1}Sy^{\star} - \mathcal{P}(I - T)^{-1}Sy^{\star}|| = ||(I - T)^{-1}Sy^{\star} - y^{\star}||,$$

and this completes the proof. \Box

Corollary 2.4. Theorem 1.7 is a particular case of Theorem 2.3.

Proof. It is sufficient to consider $\psi(t) = kt$ for some $k \in (0, 1)$ and for all $t \ge 0$ in Theorem 2.3. \Box

Let us illustrate Theorem 2.3 with the following examples.

Example 2.5. Consider the Banach space $X = \ell^1$ with the canonical basis $\{e_n\}$ and let $A = \mathcal{B}(0; \frac{1}{2})$ and $B = \mathcal{B}(0; 1)$. Then dist(A, B) = 0 and so, (A, B) has the P-property and $A_0 = B_0 = A$. Define the non-self mappings $T : A \to X$ and $S : B \to X$ with

$$T(x_1, x_2, x_3, \dots) = (0, \frac{x_1}{2}, \frac{x_2}{2}, \frac{x_3}{2}, \dots), \quad \forall \mathbf{x} =: (x_1, x_2, x_3, \dots) \in A,$$

$$S(y_1, y_2, y_3, \dots) = (\frac{1 - ||\mathbf{y}||}{4})e_1, \quad \forall \mathbf{y} := (y_1, y_2, y_3, \dots) \in B.$$

Clearly, T is an \mathcal{MK} *contraction and S is a continuous and compact operator. Now for any* $\mathbf{x} \in A$ *and* $\mathbf{y} \in B$ *we have*

$$T\mathbf{x} + S\mathbf{y} = (\frac{1 - ||y||}{4}, \frac{x_1}{2}, \frac{x_2}{2}, \frac{x_3}{2}, \dots),$$

and so,

$$||T\mathbf{x} + S\mathbf{y}|| = \frac{1 - ||y||}{4} + \sum_{j=1}^{\infty} \frac{|x_j|}{2} \le \frac{1}{2},$$

which ensures that $T(A_0) + S(B_0) \subseteq A_0$. Thus the fixed point equation Tp + Sp = p has a solution. Indeed, if $p = (p_1, p_2, p_3, ...) \in A$ is a fixed point of T + S, then we must have

$$(p_1, p_2, p_3, \dots) = Tp + Sp = (\frac{1 - ||p||}{4}, \frac{p_1}{2}, \frac{p_2}{2}, \frac{p_3}{2}, \dots),$$

which concludes that

$$p_1 = \frac{1 - ||p||}{4}, \quad \& \quad p_{n+1} = \frac{p_1}{2^n}, \quad \forall n \in \mathbb{N}.$$

A simple calculation shows that $p_1 = \frac{1}{6}$ and so,

$$p = \left(\frac{1}{6}, \frac{1}{6 \times 2}, \frac{1}{6 \times 2^2}, \frac{1}{6 \times 2^3}, \dots\right).$$

Next example shows that Theorem 2.3 is a real extension of Theorem 1.7.

Example 2.6. Consider the Banach space C[0, 1] renormed according to

$$||f|| = ||f||_2 + ||f||_{\infty}, \quad \forall f \in C[0, 1]$$

Then $(C[0, 1], \|.\|)$ is strictly convex and it is easy to see that

$$\|f\|_{\infty} \le \|f\| \le 2\|f\|_{\infty}, \quad \forall f \in C[0, 1].$$
(3)

Let

$$A = \left\{ f \in C[0, 1] \ s.t. \ t \le f(t) \le 2 \right\},$$

$$B = \left\{ g \in C[0, 1] \ s.t. \ 0 \le g(t) \le \frac{t}{t+1} \right\}.$$

Then (A, B) is a bounded, closed and convex pair and so, (A, B) has the P-property. Also, for any $(f, g) \in A \times B$ we have $|f(t) - g(t)| \ge t - \frac{t}{t+1}$ for all $t \in [0, 1]$ and so,

$$\begin{split} \|f - g\| \ge & \Big(\int_0^1 \Big(t - \frac{t}{t+1}\Big)^2 dt\Big)^{\frac{1}{2}} + \sup_{t \in [0,1]} |t - \frac{t}{t+1}| \\ &= \sqrt{\frac{17 - 24\ln 2}{6}} + \frac{1}{2} \simeq 0.744, \end{split}$$

which implies that $dist(A, B) \simeq 0.744$. It is worth noticing that

 $A_0 = \{t\}, \quad \& \quad B_0 = \{\frac{t}{t+1}\}.$

Now define the mappings $T : A \to C[0,1]$ *and* $S : B \to C[0,1]$ *with*

$$(Tf)(t) = \frac{1}{2}\ln(f(t)+1), \quad \& \quad (Sg)(t) = \frac{1}{2}t + \frac{1}{2}\int_0^t g(s)ds, \quad \forall (f,g) \in A \times B$$

Then T is an \mathcal{MK} contraction. In fact for all $f_1, f_2 \in A$ we have

$$\begin{split} \left| \left(Tf_1 \right)(t) - \left(Tf_2 \right)(t) \right| &= \frac{1}{2} \left| \ln \left(f_1(t) + 1 \right) - \ln \left(f_2(t) + 1 \right) \right| \\ &= \frac{1}{2} \left| \ln \left(\frac{f_1(t) + 1}{f_2(t) + 1} \right) \right| \\ &= \frac{1}{2} \left| \ln \left(1 + \frac{f_1(t) - f_2(t)}{f_2(t) + 1} \right) \right| \\ &\leq \frac{1}{2} \ln \left(1 + \left| f_1(t) - f_2(t) \right| \right), \quad \forall \ t \in [0, 1]. \end{split}$$

which implies that

$$||Tf_1 - Tf_2||_{\infty} \le \frac{1}{2} \ln\left(1 + ||f_1 - f_2||_{\infty}\right)$$

and using the relation (3), we obtain

$$||Tf_1 - Tf_2|| \le 2||Tf_1 - Tf_2||_{\infty}$$

$$\le \ln(1 + ||f_1 - f_2||_{\infty})$$

$$\le \ln(1 + ||f_1 - f_2||).$$

10658

Now if we set $\psi(t) = \ln(1 + t)$ *for all* $t \in [0, 1]$ *, then* ψ *is a nondecreasing function and right continuous strictly* \mathcal{L} *-function and we conclude that*

$$||Tf_1 - Tf_2|| \le \psi(||f_1 - f_2||), \quad \forall f_1, f_2 \in A,$$

which deduces that T is an \mathcal{MK} contraction. Besides, S is a continuous and compact operator. Moreover for $(f,g) = (t, \frac{t}{t+1}) \in A_0 \times B_0$ we have

$$(Tf)(t) + (Sg)(t) = \frac{1}{2}\ln(t+1) + \frac{1}{2}t + \frac{1}{2}\int_0^t \frac{s}{s+1}ds = t \in A_0,$$

that is, $T(A_0) + S(B_0) \subseteq A_0$. It now follows from Theorem 2.3 that $(I - T)^{-1}S$ has a best proximity point which is a point $y^*(t) = \frac{t}{t+1}$, where $t \in [0, 1]$. It is worth noticing that the existence of a best proximity point for the mapping $(I - T)^{-1}S$ cannot be concluded from Theorem 1.7 due to the fact that T is not a contraction on A.

3. More existence results in Banach algebras

In this section, motivated by Theorem 2.3, we present a best proximity point result for multiplication of two non-self mappings in the framework of Banach algebras.

We recall that a normed linear space *X* is said to be an *algebra* provided that there exists an operator (.) : $X \times X \rightarrow X$ which is associative and bilinear and that the norm of *X* satisfies the following condition:

$$||x.y|| \le ||x||||y||, \quad \forall x, y \in X.$$

A complete normed algebra is called a *Banach algebra*.

Suppose (A, B) is a nonempty pair in a Banach algebra X. Set

$$AB = \{x.y : (x, y) \in A \times B\},\$$

$$||A|| = \sup \{||x|| : x \in A\}.$$

In what follows \mathcal{D} denotes the class of all upper semi-continuous and nondecreasing functions $\varphi : [0, +\infty) \rightarrow [0, +\infty)$ such that $\varphi(0) = 0$. A mapping $T : A \subseteq X \rightarrow X$ is called \mathcal{D} -Lipschitz (in the sense of Dhage) if there exists $\varphi \in \mathcal{D}$ such that

$$||Tx - Ty|| \le \varphi(||x - y||), \quad \forall x, y \in A$$

It is worth mentioning that , if $\varphi(t) = kt$ for some k > 0, then *T* is a Lipschitz operator.

We mention that the class of \mathcal{D} -Lipschitz functions was introduced by B.C. Dhage ([3]) in order to investigate the multiplication version of Karsnoselskii's fixed point problem. Using this idea, we give the following existence theorem.

Theorem 3.1. Let (A, B) be a nonempty, bounded, closed and convex pair in a Banach algebra X such that (A, B) has the P-property. Let $T : A \to X$ and $S : B \to X$ be two operators satisfy the following conditions:

- (D1) T is \mathcal{D} -Lipschitz with $\varphi \in \mathcal{D}$;
- (D2) *S* is a continuous and compact operator on *B*;

(D3)
$$T(A_0)S(B_0) \subseteq A_0;$$

(D4) For any $\varepsilon > 0$ there exists a $\delta > 0$ such that $L\varphi(t) < \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta)$, where L := ||S(B)||.

Then there is a point $y^* \in B_0$ such that

$$\|y^{\star} - (T(\mathcal{P}y^{\star})).Sy^{\star}\| = \operatorname{dist}(A, B).$$
(4)

Proof. By Lemma 1.4 the pair (A_0, B_0) is closed. Let $y \in B_0$ be an arbitrary and fixed element and define $T_y : A_0 \to A_0$ with

$$T_{y}(x) = (Tx).(Sy), \quad \forall x \in A_0.$$

By the condition (D3), T_y is well-defined. Using (D1), if $x_1, x_2 \in A_0$ and $\varepsilon > 0$ be given such that $||x_1 - x_2|| \ge \varepsilon$, then

$$||T_{y}(x_{1}) - T_{y}(x_{2})|| = ||(Tx_{1}).(Sy) - (Tx_{2}).(Sy)|| \le ||Sy||||Tx_{1} - Tx_{2}|| \le L\varphi(||x_{1} - x_{2}||).$$

It now follows from the assumption (D4) that there exists $\delta > 0$ such that if $||x_1 - x_2|| \in [\varepsilon, \varepsilon + \delta)$, then $L\varphi(||x_1 - x_2||) < \varepsilon$. So, $||T_y(x_1) - T_y(x_2)|| < \varepsilon$ which ensures that the mapping T_y is an \mathcal{MK} contraction. Thus from Theorem 2.1, T_y has a unique fixed point, say $\hbar(y) \in A_0$, that is,

$$\hbar(y) = T_y(\hbar(y)) = (T(\hbar y)).(Sy).$$

In this situation \hbar maps the set B_0 to A_0 . We shall prove that \hbar is continuous. Suppose that $\{y_n\}$ is a sequence in B_0 such that $y_n \to q \in B_0$. Then

$$\begin{split} \|\hbar y_n - \hbar q\| &= \| \Big(T(\hbar y_n) \Big) (Sy_n) - \Big(T(\hbar q) \Big) (Sq) \| \\ &\leq \| \Big(T(\hbar y_n) \Big) (Sy_n) - \Big(T(\hbar q) \Big) (Sy_n) \| + \| \Big(T(\hbar q) \Big) (Sy_n) - \Big(T(\hbar q) \Big) (Sq) \| \\ &\leq \| T(\hbar y_n) - T(\hbar q) \| \| Sy_n \| + \| T(\hbar q) \| \| Sy_n - Sq \| \\ &\leq L \varphi (\|\hbar y_n - \hbar q\|) + \| T(\hbar q) \| \| Sy_n - Sq \| \end{split}$$

which deduces that

 $Sv_n \parallel = 0$. Therefore,

$$\begin{split} \limsup_{n \to \infty} \|\hbar y_n - \hbar q\| &\leq \limsup_{n \to \infty} \left(L\varphi(\|\hbar y_n - \hbar q\|) + \|T(\hbar q)\| \|Sy_n - Sq\| \right) \\ &= \limsup_{n \to \infty} L\varphi(\|\hbar y_n - \hbar q\|). \end{split}$$

Now, if $\limsup_{n\to\infty} \|\hbar y_n - \hbar q\| = r > 0$, then by the fact that φ is upper semi-continuous, we obtain

$$r \leq L\varphi(r),$$

which is a contradiction. So, we must have r = 0, that is, $\hbar : B_0 \rightarrow A_0$ is continuous.

We claim that *h* is a compact operator. Notice that for a fixed element $z \in A_0$ we have

$$\begin{aligned} ||Tx|| &\leq ||Tz|| + ||Tx - Tz|| \\ &\leq ||Tz|| + \varphi(||x - z||) \\ &\leq ||Tz|| + \varphi(\operatorname{diam}(A_0)), \quad \forall x \in A_0. \end{aligned}$$

Let $M := ||Tz|| + \varphi(\operatorname{diam}(A_0))$. Then we have $||Tx|| \le M$ for any $x \in A_0$. Now assume that $\{v_n\}$ is a sequence in the set B_0 . We prove that $\{\hbar v_n\}$ has a Cauchy subsequence. By this reality that *S* is compact, $\{Sv_n\}$ has a convergent subsequence. We may assume that $\lim \sup_{m,n\to\infty} ||Sv_m - v_n|| \le N$.

$$\begin{split} \|\hbar v_m - \hbar v_n\| &= \| (T(\hbar v_m)) . (Sv_m) - (T(\hbar v_n)) . (Sv_n) \| \\ &\leq \| (T(\hbar v_m)) . (Sv_m) - (T(\hbar v_n)) . (Sv_m) \| + \| (T(\hbar v_n)) . (Sv_m) - (T(\hbar v_n)) . (Sv_n) \| \\ &\leq \| (Sv_m) \| \| T(\hbar v_m) - T(\hbar v_n) \| + \| T(\hbar v_n) \| \| Sv_m - Sv_n \| \\ &\leq L \varphi(\|\hbar v_m - \hbar v_n\|) + M \| Sv_m - Sv_n \|. \end{split}$$

10660

Hence,

$$\limsup_{m,n\to\infty} \|\hbar v_m - \hbar v_n\| \le \limsup_{m,n\to\infty} \left(L\varphi(\|\hbar v_m - \hbar v_n\|) + M\|Sv_m - Sv_n\| \right)$$
$$= \limsup_{m,n\to\infty} L\varphi(\|\hbar v_m - \hbar v_n\|).$$

If $\limsup_{m,n\to\infty} \|\hbar v_m - \hbar v_n\| = \varepsilon$ for some $\varepsilon > 0$, then by the fact that φ is an upper-semi continuous function and by the above inequality, $\varepsilon \le L\varphi(\varepsilon)$. Besides, from the condition (D4) there exists $\delta > 0$ such that $L\varphi(t) < \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta)$ which is a contradiction and so, $\limsup_{m,n\to\infty} \|\hbar v_m - \hbar v_n\| = 0$ i.e., $\{\hbar v_n\}$ is a Cauchy sequence which concludes that $\hbar(B_0)$ is boundedly compact. Thus $\hbar : B_0 \to A_0$ is compact. Now the self mapping $\mathcal{P}\hbar : B_0 \to B_0$ is continuous and compact and by applying Schauder's fixed point theorem there is an element $y^* \in B_0$ for which $\mathcal{P}\hbar y^* = y^*$. Using the property (iv) of the Lemma 1.5 we have

$$\hbar y^{\star} = \mathcal{P}(\mathcal{P}\hbar y^{\star}) = \mathcal{P}y^{\star},$$

which yields that

$$||y^{\star} - (T(\mathcal{P}y^{\star})).S(y^{\star})|| = ||y^{\star} - (T(\hbar y^{\star})).S(y^{\star})||$$

= $||y^{\star} - \hbar y^{\star}|| = ||y^{\star} - \mathcal{P}y^{\star}||$
= dist(A, B),

and this completes the proof.

It is worth mentioning that if in Theorem 3.1, A = B, then the projection mapping $\mathcal{P}|_{A_0}$ is identity and we get the following corollary which is the main result of [3].

Corollary 3.2. ([3]) Let A be a nonempty, bounded, closed and convex subset of a Banach algebra X and let $T, S : A \to X$ be two mappings such that

- (i) There exists a real number $k \in [0, 1)$ such that $||Tx Ty|| \le k||x y||$ for any $x, y \in A$;
- (ii) *S* is a continuous and compact operator;
- (iii) $T(A)S(A) \subseteq A$.

If kL < 1, then

$$\exists x^{\star} \in A \text{ s.t. } Tx^{\star}Sx^{\star} = x^{\star},$$

where L := ||S(A)||.

Let us illustrate Theorem 3.1 with the following example.

Example 3.3. Consider the Banach algebra $X = (L^{\infty}[0,1], \|.\|_{\infty})$ with the pointwise multiplication (fg)x = f(x)g(x). Let

$$A = \{ f \in X ; 0 \le f(x) \le \frac{1}{4} \text{ (a.e.)} \},\$$
$$B = \{ g \in X ; 0 \le g(x) \le x^2 \text{ (a.e.)} \}.$$

Then (A, B) is bounded, closed and convex with dist(A, B) = 0. Moreover,

$$A_0 = B_0 = \{h \in X ; 0 \le h(x) \le x^2 \text{ (a.e.) on } [0, \frac{1}{2}], 0 \le h(x) \le \frac{1}{4} \text{ (a.e.) on } [\frac{1}{2}, 1] \}.$$

10661

(5)

Let $T : A \to X$ and $S : B \to X$ be defined as

$$(Tf)x = \frac{1}{8}, \quad (Sg)x = x^2 + \int_0^x g(t)dt, \quad \forall x \in [0, 1].$$

Then T is contraction and S is a continuous and compact operator. On the other hand, if $0 \le x \le \frac{1}{2}$, then for any $h_1, h_2 \in A_0$ we have

$$(Th_1Sh_2)(x) = \frac{1}{8} \left(x^2 + \int_0^x h_2(t) dt \right) \le \frac{1}{8} x^2 + \int_0^x t^2 dt$$

= $\frac{1}{8} x^2 + \frac{1}{3} x^3 \le x^2.$

Also, for $x \in [\frac{1}{2}, 1]$ we have

$$(Th_1Sh_2)(x) = \frac{1}{8} \left(x^2 + \int_0^{\frac{1}{2}} h_2(t)dt + \int_{\frac{1}{2}}^x h_2(t)dt \right)$$

$$\leq \frac{1}{8} \left(x^2 + \int_0^{\frac{1}{2}} t^2 dt + \int_{\frac{1}{2}}^x \frac{1}{4} dt \right)$$

$$\leq \frac{7}{48}.$$

Hence, $Th_1Sh_2 \in A_0$ *for all* $h_1, h_2 \in A_0$ *which yields that* $T(A_0)S(B_0) \subseteq A_0$ *. Notice that*

$$L := \|S(B)\|_{\infty} \le \sup_{x \in [0,1]} \left(x^2 + \int_0^x t^2 dt \right) = \sup_{x \in [0,1]} \left(x^2 + \frac{x^3}{3} \right) = \frac{4}{3},$$

so for $k \in (0, \frac{3}{4})$ we have kL < 1. It now follows from the Theorem 3.1

$$\exists h \in B_0 \quad s.t. \quad Th.Sh = h.$$

It is worth noticing that the function $h \in B_0$ is a solution of the following integral equation:

$$h(x) = \frac{1}{8}x^2 + \frac{1}{8}\int_0^x h(t)dt,$$

which is $h(x) = 16e^{\frac{1}{8}x} - 2x - 16$.

Example 3.4. Consider the Banach algebra $X = M_{2\times 2}$ consist of all complex 2×2 matrices equipped with the matrix multiplication and the norm

$$\|[a_{ij}]_{2\times 2}\| = \sum_{i,j=1}^{2} |a_{ij}|, \quad \forall [a_{ij}]_{2\times 2} \in \mathcal{M}_{2\times 2}.$$

Let

$$A = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & 0 \end{bmatrix}; |a_{ij}| \le 1 \right\}, \& B = \left\{ \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & -i \end{bmatrix}; |b_{ij}| \le 1 \right\}.$$

Then (A, B) is a bounded, closed and convex pair in X with dist(A, B) = 1. Also,

$$A_0 = A, \quad B_0 = \left\{ \begin{bmatrix} b_{11} & b_{12} \\ 0 & -i \end{bmatrix}; \quad |b_{ij}| \le 1 \right\},$$

10662

and that (A, B) has the P-property. In this case the projection mapping $\mathcal{P}: B_0 \to A_0$ is defined as

$$\mathcal{P}\left(\begin{bmatrix} b_{11} & b_{12} \\ 0 & -i \end{bmatrix}\right) = \begin{bmatrix} b_{11} & b_{12} \\ 0 & 0 \end{bmatrix}$$

For $\mathbf{a} := \begin{bmatrix} a_{11} & a_{12} \\ 0 & 0 \end{bmatrix} \in A$ and $\mathbf{b} := \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & -i \end{bmatrix} \in B$ define $T\mathbf{a} = k\mathbf{a}$, $S\mathbf{b} = \mathbf{b}^*$, where $k \in (0, \frac{1}{4})$. Then T is a contraction and S is a continuous and compact operator. Moreover, it is easy to see that $T(A_0)S(B_0) \subseteq A_0$. Using Theorem 3.1 there exists a point $y^* \in B_0$ such that $||y^* - (T(\mathcal{P}y^*)).Sy^*|| = \operatorname{dist}(A, B)$ and this point is $y^* = \begin{bmatrix} 0 & 0 \\ 0 & -i \end{bmatrix}$ is a best proximity point for the mapping $(T\mathcal{P}).S$.

Acknowledgments. The authors would like to thank the anonymous referee for the careful reading of the manuscript and useful comments.

References

- [1] T.A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Lett., 11, (1998) 85-88.
- B.C. Dhage, Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications, Nonlinear Studies, 25, (2018) 559-573.
- [3] B.C. Dhage, On a fixed point theorem in Banach algebras with applications, Applied Math. Lett., 18 (2005) 273-280.
- [4] A.A. Eldred, W.A. Kirk and P. Veeramani, *Proximal normal structure and relatively nonexpansive mappings*, Studia Math., **171**, (2005) 283-293.
- [5] A.A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323, (2006) 1001-1006.
- [6] L.H. Hao, K. Schmitt, Fixed point theorems of Krasnoselskii type in locally convex spaces and applications to integral equations, Results Math., 25, (1994) 290–314.
- [7] M.Z. Nashed, J.S.W. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mech., 18, (1969) 767–777.
- [8] M. Gabeleh, Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces, J. Optim. Theory Appl., 158, (2013) 615-625.
- [9] M. Gabeleh, Common best proximity pairs in strictly convex Banach spaces, Georgian Math. J., 24, (2017) 363-372.
- [10] M. Gabeleh, Convergence of Picard's iteration using projection algorithm for noncyclic contractions, Indag. Math. (N.S.), 30, (2019) 227-239.
- [11] M. Gabeleh, O.O. Otafudu, Markov-Kakutani's theorem for best proximity pairs in Hadamard spaces, Indag. Math. (N.S.), 28, (2017) 680-693.
- [12] S. Kar, P. Veeramani, *Best proximity version of Krasnoselskii's fixed point theorem*, Acta Sci. Math. (Szeged), **86**, (2020) 265-271.
- [13] W.A. Kirk, S. Rich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer Funct. Anal. Optim., 24, (2003) 851–862.
- [14] M.A. Krasnoselskii, *Some problems of nonlinear analysis*, Amer. Math. Soc. Trans., **10:2**, (1958) 345–409.
- [15] T.C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal., 46, (2001) 113–120.
- [16] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28, (1969) 326-329.
- [17] V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal., 74, (2011) 4804-4808.
- [18] V. Sankar Raj, A.A. Eldred, A characterization of strictly convex spaces and applications, J. Optim. Theory, Appl., **160**, (2014) 703-710.
- [19] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal., 71, (2009) 2918-2926.
- [20] T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal., 64, (2006) 971-978.