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Toughness and Q-spectral radius of graphs involving minimum degree
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Abstract. In 1973, Chvital initially proposed the concept of toughness, which serves as a simple way to
measure how tightly various pieces of a graph hold together. Let G be a non-complete graph and let ¢ be a
real number. If for every vertex cut set S of G, |S| > tc(G — S), then we say that G is t-fough. The largest t such
that G is t-tough is called the toughness of G and is denoted by t(G). Recently, Fan, Lin and Lu [European
J. Combin. 110 (2023) 103701] presented sufficient conditions based on the spectral radius for a graph to
be 1-tough with minimum degree 6 and t-tough with ¢ > 1 being an integer, respectively. Inspired by their
work, we in this paper consider the Q-spectral versions of the above two problems. Moreover, we also
provide a sufficient condition in terms of the Q-spectral radius for a graph to be t-tough with 1 being a
positive integer.

1. Introduction

All graphs considered in this paper are undirected and simple. Let G be a graph with vertex set V(G)
and edge set E(G). The order and size of G are denoted by |[V(G)| = n and |E(G)| = e(G), respectively. A
graph with one vertex is referred to as a trivial graph. For a vertex v € V(G), let Ng(v) and dg(v) denote the
neighbors and degree of v in G, respectively. We denote by 6(G) the minimum degree (6 for short) of G. Let
c(G) be the number of components of a graph G. For a vertex subset S of G, we denote by G — S and GI[S]
the subgraph of G obtained from G by deleting the vertices in S together with their incident edges and the
subgraph of G induced by S, respectively. For two vertex-disjoint graphs G; and G,, we denote by G1 + G
the disjoint union of Gi and G,. The join G; V G, is the graph obtained from G; + G, by adding all possible
edges between V(G1) and V(G,). For undefined terms and notions, one can refer to [3].

For a graph G of order n, the adjacency matrix of G is the symmetric matrix A(G) = (a;j)ux» indexed by
the vertex set V(G) of G, where 4;; = 1 if v; and v; are adjacent and a;; = 0 otherwise. The largest eigenvalue
of A(G), denote by p(G), is called the spectral radius of G. The signless Laplacian matrix of G is defined as
Q(G) = D(G) + A(G), where D(G) is the diagonal matrix of vertex degrees of G. The largest eigenvalue
q(G) of Q(G) is called the Q-spectral radius of G. By the Perron-Frobenius theorem, 4(G) is always positive
(unless G is trivial). Furthermore, when G is connected, there exists a unique positive unit eigenvector
x = (x1,X2,...,x,)" corresponding to g(G), which is called the Perron vector of Q(G).
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In the past decades, the connections between the structural properties and the Q-spectral radius of
graphs have been well studied. Pan, Li and Zhao[13] investigated the relations between the fractional
matching number and the Q-spectral radius of a graph. Fan et al.[8] presented sufficient conditions in
terms of the Q-spectral radius to guarantee the existence of a spanning k-tree and a perfect matching in
graphs, respectively. Recently, Ao et al.[2] provided sufficient conditions for a graph to be k-leaf connected
in terms of the Q-spectral radius of G or its complement. Ao, Liu and Yuan[1] presented tight Q-spectral
conditions for the existence of a spanning k-ended-tree and a spanning tree with leaf degree at most k,
respectively. Very recently, Hao and Li[12] provided lower bounds for the Q-spectral radius to ensure that
a graph has a path-factor and is a path-factor covered graph, respectively. Zheng et al.[14] established a
sufficient condition with given minimum degree based on the Q-spectral radius to guarantee that a graph
is k-factor-critical.

Chvatal[5] introduced the concept of toughness in 1973. Let G be a non-complete graph and let { be a
real number. If for every vertex cut set S of G, |S| > tc(G — S), then we say that G is t-tough. The largest
t such that G is t-tough is called the toughness of G and is denoted by t{(G). If G = K,, t(G) is defined as
n — 1. Note that 6 > 2 is a trivial necessary condition for a graph to be 1-tough. Very recently, Fan, Lin and
Lu[9] presented a sufficient condition in terms of the spectral radius to ensure that a connected graph to be
1-tough for 6 > 2.

Theorem 1.1 (Fan, Lin and Lu [9]). Suppose that G is a connected graph of order n > max{56, 26* + 6} with
minimum degree 6 > 2. If
P(G) = p(Ks V (K25 + 0K1)),

then G is 1-tough unless G = K V (K,—2s + 0K3).
Motivated by the above result, we consider the Q-version of Theorem 1.1.

Theorem 1.2. Let G be a connected graph of order n > max{36 + 2, 16? + 26} with minimum degree 5 > 2. If
q(G) 2 q(Ks V (Ky—25 + 0K1)),
then G is 1-tough unless G = Ks V (Ky—25 + 0K1).

In the same paper, Fan, Lin and Lu[9] also provided a spectral condition for a connected graph to be
t-tough, where t is a positive integer.

Theorem 1.3 (Fan, Lin and Lu [9]). Let t be a positive integer. If G is a connected graph of order n > 4> + 6t + 2
with

P(G) 2 p(Kae-1 V (Ky-2t + K1),
then G is t-tough unless G = Ky—1 V (K2t + K3).

Inspired by their result, we consider the sufficient condition of t-tough graphs from the Q-spectral radius
perspective with ¢ or % is a positive number, which generalizes the scope of t in Theorem 1.3.

Theorem 1.4. Let G be a connected graph of order n. Each of the following holds.
(i) Let t be a positive integer and n > 4t> + 6t + 1. If

q(G) = q(Kop—1 V (Ky—2t + K1),

then G is t-tough unless G = Ky—1 V (K2t + K3).

(ii) Let 1 be a positive integer and n > 2 +9. If
1
q(G) 2 Q(Kl \ (Kn—%—l + ?Kl))/

then G is t-tough unless G = Ky V (K gt 1K)
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2. Proof of Theorem 1.2

Before presenting our proof, we introduce some necessary lemmas. We first introduce the matrix
Aq(G) = aD(G) + A(G) and denote by p,(G) the largest eigenvalue of A,(G), where a > 0. It is obvious that
Ao(G) = A(G) and A1(G) = Q(G). Motivated by the technique of Lemma 3.1 in [8], one can obtain the
following result.

Lemma2.l1. Leta>0andn = Zf=1n1+5.1fn1 >np > >2n2p 21, then
Pa(Ks V (Kipy + Ky, + -+ + Kyp))) < pa(Ks V (Ky—s—p-1) + (£ = 1)K}))
with equality if and only if (n1,ny, ..., ny) =(m—s—pt—1),p,...,p).
Next we prove the following useful lemma.

Lemma 2.2. Forn > 20+ 1and 6 > 2, we have

q(K1 V (Ky—s-1 + Ks)) < q(Ks V (Ky—25 + 0K1)).

Proof. Let G = Ky V (Ky—s-1 + K5). We can partition the vertex set of G as V(G) = V(K1) U V(Ky—s-1) U V(Ks).
Let V(Ky) = {u1}, V(Kj—s-1) = {v1,02,...,04-5-1} and V(Ks) = {w1, wo, ..., ws}. Let x be the Perron vector of
Q(G) corresponding to p(G). By symmetry, x takes the same value on the vertices of V(Kj), V(K,-s-1) and
V(Ks), respectively. We denote the entries of x by x1, x, and x3 corresponding to the vertices in the above
three vertex subsets, respectively. By (G)x = Q(G)x, we have

q(G)xy = x1 + (2n =26 - 3)xy,
‘7(@363 =x1 + (26 — 1)x3,
which leads to 3 _
[9(G) — (2n =26 = 3)]x2 = [9(G) — (26 — 1)]xs.

Note that K,,_s is a proper subgraph of G. Then q(G) > q(K,—s) = 2(n— 5 —1). Combining this withn > 25 +1,
we have

q(G)— (26 - 1) [1 L 2m—45-2 .

2= —= X3 = = X3 =
q(G) - 2n—26-3) q(G) - 2n —26 - 3)
LetG* = K(gv(Kn_25+6K1).Deﬁne E, = {in]'ﬂ <i< 6-1,1< ] < 6}and E, = {wlell <i< 6—1,i+1 < ] < 5}
One can check that G* = G + E; — E,. Hence

(G —q(G) = x'(Q(G") - QG))x
o-1 o o-1 o
= Z Z(xi +x))° — Z Z (x; + xj)
i=1 j=1 i=1 j=i+l
= 500 —1)(xp +x3)%* — %6(6 —1)(x3 + x3)2
= 56— Dl(x2 + x3)* — 2x3]
> 0,

where the last inequality follows from 6 > 2 and x, > x3. Hence q(G) < q(G"). O
Finally, we introduce the concepts of quotient matrices and equitable partitions. Let M be a real n X n
matrix. Assume that M can be written as the following matrix

Mg My - My,
Mp1 Moy -+ Moy
M= . . . .

7

Mm,l Mm,Z Mm,m
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whose rows and columns are partitioned into subsets Xj, X»,..., X, of {1,2,...,n}. The quotient matrix
R(M) of the matrix M (with respect to the given partition) is the m X m matrix whose entries are the average
row sums of the blocks M; ; of M. The above partition is called equitable if each block M; ; of M has constant
row (and column) sum.

Lemma 2.3 (Brouwer and Haemers [4], Godsil and Royle [10], Haemers [11]). Let M be a real symmetric matrix
and let R(M) be its equitable quotient matrix. Then the eigenvalues of the quotient matrix R(M) are eigenvalues of
M. Furthermore, if M is nonnegative and irreducible, then the spectral radius of the quotient matrix R(M) equals to
the spectral radius of M.

Now, we are in a position to present the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose to the contrary that G is not a 1-tough graph. By the definition of 1-tough
graphs, then there exists a vertex subset S C V(G) such that c¢(G — S) > |S|. Let |S| = s and ¢(G = S) = c. Then

¢ > s+ 1,and hence n > 25 + 1. Note that G is a spanning subgraph of G; = K, V (Ky, + Ky, + -+ + K,,_,,) for

some integers 11y > 1y > -+ > 1541 > 1 and Zf;l n; = n — s. Then we have

q(G) < q(Gy), 1)

where equality holds if and only if G = G;. Note that S is a vertex cut set. Thens > 1,and hence 1 <5 < %51
Next we divide the proof into the following three cases according to the different values of s.

Casel.1<s<d6-1.

Note that 6(G1) > (S(G) =0.Thenny 2ny >--- > Ngy1 = 06—s+1.Let G, = K V (Kn,sf(é,ﬁl)s + SK5,5+1).
By Lemma 2.1, we have

q9(G1) < q(G), )

with equality holding if and only if (n1,12,...,1541) = (=5 —-(0—s+1)5,6 —s+1,...,06 —s+1).Ifs =1,
then G, = K V (Kj—s-1 + K;). By Lemma 2.2, we have

9(G2) < q(Ks V (Ky—25 + 6K1)). 3)

Next we consider s > 2. Let R(Q(G;)) be the quotient matrix of Q(G,) with respect to the partition
(V(Ks)/ V(Kn—s—(é—s+1)s)/ V(SK6—5+1))' One can see that

n+s—2 n+s%—08s—2s 55— s+
R(Q(Gy)) = s 21 + 2% — 265 — 35 — 2 0
S 0 20 —s

By simple calculation, the characteristic polynomial of R(Q(G»)) is

P(R(Q(Gy)),x) = x>—(Bn+2s>—20s— 35+ 26— 4)x* + [2n* + (25* — 265 — 55 + 65
—6)1 + 405> — 45> — 46%s + 85 — 80 + 4]x + (25 — 46)n* — (465>
—46%5 — 405 + 65 — 120)1 — 25° + (40 + 6)s* — (26% + 85 + 6)s°
+(26% + 126 + 2)s? — (85 + 85 — 4)s — 86. (4)
Note that the above partition is equitable. By Lemma 2.3, we know that g(G2) = A1(R(Q(G2))) is the largest

root of the equation P(R(Q(Gz)), x) = 0. Define that G* = K; V (K25 + 0K1). Note that Q(G*) has the equitable
quotient matrix with respect to the partition (V(Ks), V(Ky—25), V(6K1))

n+o6-2 n—20 o
R(Q(GY)) = o 2n—-36-2 0 |.
o 0 o
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Then the characteristic polynomial of R(Q(G")) is
PR(Q(G)),x) = x>—(Bn—0—4)x>+ (2n* + on — 61 — 46> + 4)x — 26n° + 46*n + 66n
—26% — 66% — 46. (5)

By Lemma 2.3, q(G") = A1(R(Q(G"))) is the largest root of the equation P(R(Q(G")),x) = 0. Note that G
contains K,,_5 as a proper subgraph. Then g(G*) > q(K,,—s) = 2(n — 6 — 1). Combining (4) and (5), we have

P(R(Q(G2)),2(n — 6 — 1)) = P(R(Q(G)), 2(n — 6 — 1))
= 2(6—5)[2(s — 1)n® — (865 + 25 — 96 — 2)n + s* — (6 + 3)s° + (6 + 3)s*
+(86% + 56 — 1)s — 96* — 56]
£ 2(6-s)f(n).
Note that s > 2. Then the symmetry axis of f(n) is

05 +25—90 -2 1
:85-"5—_254_

1 1,
4(5_1) S E_—4(S—1)<26+§<16 + 26,

where the last two inequalities follow from the fact that 6 > s+ 1 > 3. This implies that f(r) is monotonically
increasing with respect to n € [16% + 20, +o0). Since s > 2and 6 > 5 + 1 > 3, we have

fn) = f(jzé2 +20)
= g[é((s —1)6% + 25 — 45+ 12) — 85> + 85> + 85 — 8] +s(s — 1)°
> g[é(s3 +52 =35 +13) — 85> + 85 + 85— 8] +s(s — 1)°
= 2(54 — 65° + 65% + 185 + 5) + s(s — 1)°
> 0.
Combining this with 6 > s + 1, we obtain that
P(R(Q(G2)), 2(n = 6 = 1)) > P(R(Q(G")), 2(n = 6 = 1)) (6)

Next we take derivatives of P(R(Q(Gz)), x) and P(R(Q(G")), x), respectively. Note thato >s+1 > 3,5 > 2
and n > 167 + 26. For x > 2(n — 6 — 1), we have

P (R(Q(G2)),x) — P'(R(Q(GM),x) = (6 —9)[(4s — 6)x — 465 — 2ns + 46 + 5n + 4s — 8]
(6 —s)[(6s — 7)n — 126s + 160 — 4s + 4]

6—s) [(252 —4)5 - 252 +26 +4]

v

v

\%

- s)(%2 +26 —4)
> 0.

Hence we have P’'(R(Q(Gy)), x) > P'(R(Q(G")), x) for x > 2(n — 0 — 1). Combining this with (6), we deduce
that

q9(G2) <4(G). (7)

By (1), (2), (3) and (7), we have
q9(G) = q(G1) < q9(G2) <4(G),

which contradicts the assumption.
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Case 2. s = 0.

Recall that G; = K V (Ky, + Ky, + -+ + Ky, ). At this case, G1 = K5 V (Kyy, + Ky, + -+ + K;y,,,). By Lemma
2.1, we obtain that
9(G1) < g(Ks V (Ky-25 + 0K1)),

with equality holding if and only if G; = Ks V (K25 + 6Kj). Combining this with (1), we have
9(G) < q(Ks V (Ky—25 + 0K1)),

where equality holds if and only G = K; V (Kj,—»5 + 0Kj). By the assumption g(G) > q(Ks V (K,,—25 + 0K1)), we
have g(G) = q(Ks V (Ky—2s + 6K1)), and hence G = K; V (K;—25 + 6K1) (see Fig. 1). Take S = V(Kj). Then

151 _ 0 <1
c(Ks V (Kyps + K1) =S) ~ 6+1 7

which implies that K5 V (K;—25 + 6Kj) is not 1-tough. So G = K; V (Kj,—25 + 0Kj1).

Figure 1: Graph Ks V (Ky—25 + 0Kj).

Case3.0+1<s< %
Let G3 = K; V (Kj—p5 +5Kj). By Lemma 2.1, we have

9(G1) < q(Gs), 8)

with equality holding if and only if G; = Gs. Recall that G* = K; V (K25 + 0Kj). Next we prove that
4(G3) < q(G"). Observe that the vertex set of G3 can be divided into V(G3) = V(6K;1) U V(K,—25) U V(K;). Then
the quotient matrix of Q(G3) with respect to this partition is

n+s-—2 n—2s S
R(Q(Gy)) = s 2n-3s—-2 0 [.
S 0 S

By simple calculation, the characteristic polynomial of R(Q(G3)) is
P(R(Q(G3)),x) = x>—(Bn—s—4)x>+ (2n +sn — 6n — 4s> + 4)x — 2sn” + 4s°n + 6sn
—28% — 652 — 4s. )

Note that the above partition is equitable. By Lemma 2.3, q(G3) = A41(R(Q(G3))) is the largest root of the
equation P(R(Q(G3)), x) = 0. By (5) and (9), we have

P(R(Q(G3)), x) — P(R(Q(G")), x)
(s — O)[x? + (n — 4s — 40)x — 2n® + (4s + 40 + 6)n — 25> — 205 — 65 — 26> — 60 — 4]
(s — 0)g(x).

[> 1l
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Note that 7 > 25+ 1,1 > 25 + 2 and 6 > 2. The symmetry axis of g(x) is
1
X = —zn+25+20
2
- 2(n—5—1)—(§n—2s—45—2)

= 2(11—6—1)—[(n—25)+(gn—46—2)]

IN

2(n—6—1)—(25+2)

< 2mn-0-1).
This implies that g(x) is monotonically increasing with respect to x € [2(n —0—1), +00). Since6+1 <5 < "2;1,
n> %6 + 2 and 6 > 2, we obtain that

gx) = g2n-6-1))
= 252 — (4n — 66 — 2)s + 4n® — 146m — 4n + 106% + 106
> —2(6+1)% = (4n — 65 —2)(5 + 1) + 4n® — 146n — 4n + 106> + 106
= 4n® — (185 + 8)n + 145> + 140

v

2
4(;6 + 2) — (186 + 8) (;6 + 2) + 1456 + 146
= 66>0.

Since s > 0 + 1, we have P(R(Q(G3)), x) > P(R(Q(G")), x) for x > 2(n — 6 — 1). Note that G* contains K,_s as a
proper subgraph. Hence q(G*) > q(K,—s) = 2(n — 6 — 1), and so g(G3) < q(G*). Combining this with (1) and
(8), we have

9(G) < 9(G1) < 9(Gs) < g(G"),

a contradiction. m]

3. Proof of Theorem 1.4
In order to prove Theorem 1.4, we present the following lemma.

Lemma 3.1 (Das|6]). Let G be a graph with n vertices and e(G) edges. Then

q(G)S%+n—2.

Now we are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. Assume to the contrary that G is not a t-tough graph. By the definition of t-tough
graphs, there exists a vertex subset S C V(G) such that tc(G — S) > |S|. Let |S| = s and ¢(G — S) = c¢. Then
tc > s.

(i) When ¢ is a positive integer, we have tc > s + 1. Note that G is a spanning subgraph of G’ =

Kic-1 V (K, + Ky + -+ Ky), where ny > 1y > --- > n. > 1and Y{_; n; = n — tc + 1. Hence we have

9(G) < q(G"), (10)
where equality holds if and only if G = G’. Let G” = Kj—1 V (Ky—(t+1)c+2 + (¢ — 1)K7). By Lemma 2.1, we have
q(G") < q(G"), (11)

with equality holding if and only if G’ = G”. Note that G is a connected graph and S is a vertex cut set. This
implies that ¢ > 2. Next we divide the proof into two cases according to different values of ¢ > 2.
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Casel.c=2.
Then G” = Kyi—1 V (K2 + K1). By (10) and (11), we deduce that

9(G) < q(Kop V (K2t + K1),

where equality holds if and only if G = Ky;1 V (Kj—p + K1). By the assumption g(G) > q(Kp-1 V (Ky—2 + K1)),
we have q(G) = q(Ky-1 V (Ky—2t + K1)), and hence G = Ky V (K;—2¢ + Kj) (see Fig. 2). Take S = V(Ky-1).

Then
|S] _2t-1

c(Ka1 V (Kyeat + K1) =S) 2
which implies that Ky;—1 V (K,—2: + Kj) is not t-tough. So G = Ky;—1 V (Kj—p¢ + K1).
Case 2. c > 3.

<t,

N/

1

Figure 2: Graph Ko;—1 V (K,—2¢ + K3).
Recall that G” = Kic—1 V (Ky—(t+1)c42 + (€ — 1)Ky). It follows that

"y _ 1 2 3 1 2 1
e(G)—(t+2)c (n+t+2)c+2n +2n+1.

By Lemma 3.1, we have

( ”)

Qt+1)2—2n+2t+3)c+2n>-2n+4

-
n—1

q(G") < ——= (12)

Define ¢(c) = (2 t+1)c —(2n + 2t +3)c +2n%> — 2n + 4. Note that n; > ny > -+ > n. > 1. Hence n > (t + 1)c — 1.

Note that 3 < ¢ < . According to 1 > 4t> + 6t + 1, by simple calculation, we obtain that

() — (P(n+1) _ n? — (412 + 9t + 3)n + 1213 + 26> + 15t + 2
t+1 (t+1)?
_ (n—-4—6t—-1)(n—-3t-2)
B (t+1)?

> 0.

n+1l

‘i is attained at ¢ = 3. Combining this with (12),

This implies that the maximum value of ¢@(c) for 3 < ¢ <

we deduce that

(p(3) 2t —-8n+12t+4 - 12¢
-1 n-1 =22 ==

Observe that Kn_l is a proper subgraph of Ky;_1 V (Ky,—2: +K1). Hence g(Koi—1 V (Ky-2:+K1)) > q(Ky—1) = 2(n-2).
Therefore, we have g(G”) < 2(n — 2) < q(Ky-1 V (Ky—2t + K1)). Combining this with (10) and (11), we have

q(G") <

< 2(n-2).

I](G) < q(G/) < I](GH) < q(KZt—l \Y (Kn—Zt + Kl))
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a contradiction.
(ii) When 1/t is a positive integer, we have ¢ > $ + 1. It is obvious that G is a spanning subgraph of

541
G =K,V (K, + Ky, + -+ + Ky, ) form >mp > - - >nsy > 1and Zi’_+1 n; = n —s. Then we have
; —

9(G) < q(G"), (13)
with equality holding if and only if G = GV. Let G® = K, V (Ky—s—s + $Kj). By Lemma 2.1, we have
q(G") < q(G?), (14)

where equality holds if and only if G = G®@. Since S is a vertex cut set, s > 1. Next we consider the
following two cases depending on the different values of s > 1.

Casel.s=1.
Then G® = K; v (K11 + 1K1). By (13) and (14), we conclude that

1
9(G) < q(Ka v (K,_y g + S KD),

with equality holding if and only if G = Ky V (K, _1_; + 1Ky). By the assumption (G) > (K V (K, 1+ 1K1)),
we have q(G) = (K1 V (K,_1_; + 1K1)), and hence G = K; v (K11 + 1Ky) (see Fig. 3). Take S = V(K;). Then

IS 1

(K V (K,_1q + 1K) =) 1+1

<t,

which implies that K; V (Kn_%_1 + 1Ky) is not t-tough. So G = Ky V (Kn_%_1 + 1Ky).

Case 2. s > 2.

/AN

1 2 !

Figure 3: Graph K V (K, _1_; + 1Ky).

Recall that G® = K, v (K,,_s_g + {Kj). For convenience, we take r = % It is easy to see that r > 1. By
Lemma 3.1, we have

2
(o e 2O
(P2t = (2m—1)s+2n® —4n +2
a n—1
Y(s)

>

n—1
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Note that2 < s < =L Sincenz%+9=Zr+9andr21,wehave

r+1°

n—1_ r(n—2r-23)(rn—2r*—6r—-3)

= > 0.
r+1) (r+1) B

P(2) = Y(

This implies that max,_,11)(s) = ¢(2). Hence

2)

@y < P(

(G <
_ 2n2—(4r+4)n+4r2 +10r +2
B n-1
B 2r(n — 2r — 4)
= 2n-r-1) 1
< 2(n—-r-1).

Hence we have q(G?) < 2(n — § - 1). Since K; V (K,_1_; + K1) contains K, _, as a proper subgraph,
(K1 V(K,_1 4+ 1K) > 2(n =1 —1). Tt follows that g(G®) < 2(n—1 —1) < g(K; V(K,_1_; + 1K;)). Combinin
q n-l-1T7% t q t q n-1-17T7% &

i

this with (13) and (14), we deduce that

1
9(G) < q(G") < q(G®) < q(Ky V (K, + TK),

which contradicts the assumption. ]
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