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Abstract. In 1973, Chvátal initially proposed the concept of toughness, which serves as a simple way to
measure how tightly various pieces of a graph hold together. Let G be a non-complete graph and let t be a
real number. If for every vertex cut set S of G, |S| ≥ tc(G−S), then we say that G is t-tough. The largest t such
that G is t-tough is called the toughness of G and is denoted by t(G). Recently, Fan, Lin and Lu [European
J. Combin. 110 (2023) 103701] presented sufficient conditions based on the spectral radius for a graph to
be 1-tough with minimum degree δ and t-tough with t ≥ 1 being an integer, respectively. Inspired by their
work, we in this paper consider the Q-spectral versions of the above two problems. Moreover, we also
provide a sufficient condition in terms of the Q-spectral radius for a graph to be t-tough with 1

t being a
positive integer.

1. Introduction

All graphs considered in this paper are undirected and simple. Let G be a graph with vertex set V(G)
and edge set E(G). The order and size of G are denoted by |V(G)| = n and |E(G)| = e(G), respectively. A
graph with one vertex is referred to as a trivial graph. For a vertex v ∈ V(G), let NG(v) and dG(v) denote the
neighbors and degree of v in G, respectively. We denote by δ(G) the minimum degree (δ for short) of G. Let
c(G) be the number of components of a graph G. For a vertex subset S of G, we denote by G − S and G[S]
the subgraph of G obtained from G by deleting the vertices in S together with their incident edges and the
subgraph of G induced by S, respectively. For two vertex-disjoint graphs G1 and G2, we denote by G1 + G2
the disjoint union of G1 and G2. The join G1 ∨ G2 is the graph obtained from G1 + G2 by adding all possible
edges between V(G1) and V(G2). For undefined terms and notions, one can refer to [3].

For a graph G of order n, the adjacency matrix of G is the symmetric matrix A(G) = (ai j)n×n indexed by
the vertex set V(G) of G, where ai j = 1 if vi and v j are adjacent and ai j = 0 otherwise. The largest eigenvalue
of A(G), denote by ρ(G), is called the spectral radius of G. The signless Laplacian matrix of G is defined as
Q(G) = D(G) + A(G), where D(G) is the diagonal matrix of vertex degrees of G. The largest eigenvalue
q(G) of Q(G) is called the Q-spectral radius of G. By the Perron-Frobenius theorem, q(G) is always positive
(unless G is trivial). Furthermore, when G is connected, there exists a unique positive unit eigenvector
x = (x1, x2, . . . , xn)T corresponding to q(G), which is called the Perron vector of Q(G).
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In the past decades, the connections between the structural properties and the Q-spectral radius of
graphs have been well studied. Pan, Li and Zhao[13] investigated the relations between the fractional
matching number and the Q-spectral radius of a graph. Fan et al.[8] presented sufficient conditions in
terms of the Q-spectral radius to guarantee the existence of a spanning k-tree and a perfect matching in
graphs, respectively. Recently, Ao et al.[2] provided sufficient conditions for a graph to be k-leaf connected
in terms of the Q-spectral radius of G or its complement. Ao, Liu and Yuan[1] presented tight Q-spectral
conditions for the existence of a spanning k-ended-tree and a spanning tree with leaf degree at most k,
respectively. Very recently, Hao and Li[12] provided lower bounds for the Q-spectral radius to ensure that
a graph has a path-factor and is a path-factor covered graph, respectively. Zheng et al.[14] established a
sufficient condition with given minimum degree based on the Q-spectral radius to guarantee that a graph
is k-factor-critical.

Chvátal[5] introduced the concept of toughness in 1973. Let G be a non-complete graph and let t be a
real number. If for every vertex cut set S of G, |S| ≥ tc(G − S), then we say that G is t-tough. The largest
t such that G is t-tough is called the toughness of G and is denoted by t(G). If G � Kn, t(G) is defined as
n − 1. Note that δ ≥ 2 is a trivial necessary condition for a graph to be 1-tough. Very recently, Fan, Lin and
Lu[9] presented a sufficient condition in terms of the spectral radius to ensure that a connected graph to be
1-tough for δ ≥ 2.

Theorem 1.1 (Fan, Lin and Lu [9]). Suppose that G is a connected graph of order n ≥ max{5δ, 2
5δ

2 + δ} with
minimum degree δ ≥ 2. If

ρ(G) ≥ ρ(Kδ ∨ (Kn−2δ + δK1)),

then G is 1-tough unless G � Kδ ∨ (Kn−2δ + δK1).

Motivated by the above result, we consider the Q-version of Theorem 1.1.

Theorem 1.2. Let G be a connected graph of order n ≥ max{ 72δ + 2, 1
4δ

2 + 2δ} with minimum degree δ ≥ 2. If

q(G) ≥ q(Kδ ∨ (Kn−2δ + δK1)),

then G is 1-tough unless G � Kδ ∨ (Kn−2δ + δK1).

In the same paper, Fan, Lin and Lu[9] also provided a spectral condition for a connected graph to be
t-tough, where t is a positive integer.

Theorem 1.3 (Fan, Lin and Lu [9]). Let t be a positive integer. If G is a connected graph of order n ≥ 4t2 + 6t + 2
with

ρ(G) ≥ ρ(K2t−1 ∨ (Kn−2t + K1)),

then G is t-tough unless G � K2t−1 ∨ (Kn−2t + K1).

Inspired by their result, we consider the sufficient condition of t-tough graphs from the Q-spectral radius
perspective with t or 1

t is a positive number, which generalizes the scope of t in Theorem 1.3.

Theorem 1.4. Let G be a connected graph of order n. Each of the following holds.
(i) Let t be a positive integer and n ≥ 4t2 + 6t + 1. If

q(G) ≥ q(K2t−1 ∨ (Kn−2t + K1)),

then G is t-tough unless G � K2t−1 ∨ (Kn−2t + K1).

(ii) Let 1
t be a positive integer and n ≥ 2

t + 9. If

q(G) ≥ q(K1 ∨ (Kn− 1
t −1 +

1
t

K1)),

then G is t-tough unless G � K1 ∨ (Kn− 1
t −1 +

1
t K1).
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2. Proof of Theorem 1.2

Before presenting our proof, we introduce some necessary lemmas. We first introduce the matrix
Aa(G) = aD(G) + A(G) and denote by ρa(G) the largest eigenvalue of Aa(G), where a ≥ 0. It is obvious that
A0(G) = A(G) and A1(G) = Q(G). Motivated by the technique of Lemma 3.1 in [8], one can obtain the
following result.

Lemma 2.1. Let a ≥ 0 and n =
∑t

i=1 ni + s. If n1 ≥ n2 ≥ · · · ≥ nt ≥ p ≥ 1, then

ρa(Ks ∨ (Kn1 + Kn2 + · · · + Knt )) ≤ ρa(Ks ∨ (Kn−s−p(t−1) + (t − 1)Kp))

with equality if and only if (n1,n2, . . . ,nt) = (n − s − p(t − 1), p, . . . , p).

Next we prove the following useful lemma.

Lemma 2.2. For n ≥ 2δ + 1 and δ ≥ 2, we have

q(K1 ∨ (Kn−δ−1 + Kδ)) < q(Kδ ∨ (Kn−2δ + δK1)).

Proof. Let G̃ = K1 ∨ (Kn−δ−1 + Kδ). We can partition the vertex set of G̃ as V(G̃) = V(K1) ∪V(Kn−δ−1) ∪V(Kδ).
Let V(K1) = {u1},V(Kn−δ−1) = {v1, v2, . . . , vn−δ−1} and V(Kδ) = {w1,w2, . . . ,wδ}. Let x be the Perron vector of
Q(G̃) corresponding to ρ(G̃). By symmetry, x takes the same value on the vertices of V(K1),V(Kn−δ−1) and
V(Kδ), respectively. We denote the entries of x by x1, x2 and x3 corresponding to the vertices in the above
three vertex subsets, respectively. By q(G̃)x = Q(G̃)x, we have{

q(G̃)x2 = x1 + (2n − 2δ − 3)x2,
q(G̃)x3 = x1 + (2δ − 1)x3,

which leads to
[q(G̃) − (2n − 2δ − 3)]x2 = [q(G̃) − (2δ − 1)]x3.

Note that Kn−δ is a proper subgraph of G̃. Then q(G̃) > q(Kn−δ) = 2(n−δ−1). Combining this with n ≥ 2δ+1,
we have

x2 =
q(G̃) − (2δ − 1)

q(G̃) − (2n − 2δ − 3)
x3 =

[
1 +

2n − 4δ − 2
q(G̃) − (2n − 2δ − 3)

]
x3 ≥ x3.

Let G∗ = Kδ∨(Kn−2δ+δK1).Define E1 = {viw j|1 ≤ i ≤ δ−1, 1 ≤ j ≤ δ} and E2 = {wiw j|1 ≤ i ≤ δ−1, i+1 ≤ j ≤ δ}.
One can check that G∗ � G̃ + E1 − E2. Hence

q(G∗) − q(G̃) ≥ xT(Q(G∗) −Q(G̃))x

=

δ−1∑
i=1

δ∑
j=1

(xi + x j)2
−

δ−1∑
i=1

δ∑
j=i+1

(xi + x j)2

= δ(δ − 1)(x2 + x3)2
−

1
2
δ(δ − 1)(x3 + x3)2

= δ(δ − 1)[(x2 + x3)2
− 2x2

3]
> 0,

where the last inequality follows from δ ≥ 2 and x2 ≥ x3. Hence q(G̃) < q(G∗). □
Finally, we introduce the concepts of quotient matrices and equitable partitions. Let M be a real n × n

matrix. Assume that M can be written as the following matrix

M =


M1,1 M1,2 · · · M1,m
M2,1 M2,2 · · · M2,m
...

...
. . .

...
Mm,1 Mm,2 · · · Mm,m

 ,
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whose rows and columns are partitioned into subsets X1,X2, . . . ,Xm of {1, 2, . . . ,n}. The quotient matrix
R(M) of the matrix M (with respect to the given partition) is the m×m matrix whose entries are the average
row sums of the blocks Mi, j of M. The above partition is called equitable if each block Mi, j of M has constant
row (and column) sum.

Lemma 2.3 (Brouwer and Haemers [4], Godsil and Royle [10], Haemers [11]). Let M be a real symmetric matrix
and let R(M) be its equitable quotient matrix. Then the eigenvalues of the quotient matrix R(M) are eigenvalues of
M. Furthermore, if M is nonnegative and irreducible, then the spectral radius of the quotient matrix R(M) equals to
the spectral radius of M.

Now, we are in a position to present the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose to the contrary that G is not a 1-tough graph. By the definition of 1-tough
graphs, then there exists a vertex subset S ⊆ V(G) such that c(G − S) > |S|. Let |S| = s and c(G − S) = c. Then
c ≥ s + 1, and hence n ≥ 2s + 1. Note that G is a spanning subgraph of G1 = Ks ∨ (Kn1 + Kn2 + · · · + Kns+1 ) for
some integers n1 ≥ n2 ≥ · · · ≥ ns+1 ≥ 1 and

∑s+1
i=1 ni = n − s. Then we have

q(G) ≤ q(G1), (1)

where equality holds if and only if G � G1. Note that S is a vertex cut set. Then s ≥ 1, and hence 1 ≤ s ≤ n−1
2 .

Next we divide the proof into the following three cases according to the different values of s.

Case 1. 1 ≤ s ≤ δ − 1.
Note that δ(G1) ≥ δ(G) = δ. Then n1 ≥ n2 ≥ · · · ≥ ns+1 ≥ δ − s + 1. Let G2 = Ks ∨ (Kn−s−(δ−s+1)s + sKδ−s+1).

By Lemma 2.1, we have

q(G1) ≤ q(G2), (2)

with equality holding if and only if (n1,n2, . . . ,ns+1) = (n − s − (δ − s + 1)s, δ − s + 1, . . . , δ − s + 1). If s = 1,
then G2 = K1 ∨ (Kn−δ−1 + Kδ). By Lemma 2.2, we have

q(G2) < q(Kδ ∨ (Kn−2δ + δK1)). (3)

Next we consider s ≥ 2. Let R(Q(G2)) be the quotient matrix of Q(G2) with respect to the partition
(V(Ks),V(Kn−s−(δ−s+1)s),V(sKδ−s+1)). One can see that

R(Q(G2)) =

 n + s − 2 n + s2
− δs − 2s δs − s2 + s

s 2n + 2s2
− 2δs − 3s − 2 0

s 0 2δ − s

 .
By simple calculation, the characteristic polynomial of R(Q(G2)) is

P(R(Q(G2)), x) = x3
− (3n + 2s2

− 2δs − 3s + 2δ − 4)x2 + [2n2 + (2s2
− 2δs − 5s + 6δ

−6)n + 4δs2
− 4s2

− 4δ2s + 8s − 8δ + 4]x + (2s − 4δ)n2
− (4δs2

−4δ2s − 4δs + 6s − 12δ)n − 2s5 + (4δ + 6)s4
− (2δ2 + 8δ + 6)s3

+(2δ2 + 12δ + 2)s2
− (8δ2 + 8δ − 4)s − 8δ. (4)

Note that the above partition is equitable. By Lemma 2.3, we know that q(G2) = λ1(R(Q(G2))) is the largest
root of the equation P(R(Q(G2)), x) = 0.Define that G∗ = Kδ∨ (Kn−2δ+δK1).Note that Q(G∗) has the equitable
quotient matrix with respect to the partition (V(Kδ),V(Kn−2δ),V(δK1))

R(Q(G∗)) =

 n + δ − 2 n − 2δ δ
δ 2n − 3δ − 2 0
δ 0 δ

 .
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Then the characteristic polynomial of R(Q(G∗)) is

P(R(Q(G∗)), x) = x3
− (3n − δ − 4)x2 + (2n2 + δn − 6n − 4δ2 + 4)x − 2δn2 + 4δ2n + 6δn

−2δ3
− 6δ2

− 4δ. (5)

By Lemma 2.3, q(G∗) = λ1(R(Q(G∗))) is the largest root of the equation P(R(Q(G∗)), x) = 0. Note that G∗

contains Kn−δ as a proper subgraph. Then q(G∗) > q(Kn−δ) = 2(n − δ − 1). Combining (4) and (5), we have

P(R(Q(G2)), 2(n − δ − 1)) − P(R(Q(G∗)), 2(n − δ − 1))
= 2(δ − s)[2(s − 1)n2

− (8δs + 2s − 9δ − 2)n + s4
− (δ + 3)s3 + (δ + 3)s2

+(8δ2 + 5δ − 1)s − 9δ2
− 5δ]

≜ 2(δ − s) f (n).

Note that s ≥ 2. Then the symmetry axis of f (n) is

n =
8δs + 2s − 9δ − 2

4(s − 1)
= 2δ +

1
2
−

δ
4(s − 1)

< 2δ +
1
2
<

1
4
δ2 + 2δ,

where the last two inequalities follow from the fact that δ ≥ s+1 ≥ 3. This implies that f (n) is monotonically
increasing with respect to n ∈ [ 1

4δ
2 + 2δ,+∞). Since s ≥ 2 and δ ≥ s + 1 ≥ 3, we have

f (n) ≥ f (
1
4
δ2 + 2δ)

=
δ
8

[δ((s − 1)δ2 + 2δ − 4s + 12) − 8s3 + 8s2 + 8s − 8] + s(s − 1)3

≥
δ
8

[δ(s3 + s2
− 3s + 13) − 8s3 + 8s2 + 8s − 8] + s(s − 1)3

=
δ
8

(s4
− 6s3 + 6s2 + 18s + 5) + s(s − 1)3

> 0.

Combining this with δ ≥ s + 1, we obtain that

P(R(Q(G2)), 2(n − δ − 1)) > P(R(Q(G∗)), 2(n − δ − 1)). (6)

Next we take derivatives of P(R(Q(G2)), x) and P(R(Q(G∗)), x), respectively. Note that δ ≥ s + 1 ≥ 3, s ≥ 2
and n ≥ 1

4δ
2 + 2δ. For x ≥ 2(n − δ − 1), we have

P′(R(Q(G2)), x) − P′(R(Q(G∗)), x) = (δ − s)[(4s − 6)x − 4δs − 2ns + 4δ + 5n + 4s − 8]
≥ (δ − s)[(6s − 7)n − 12δs + 16δ − 4s + 4]

≥ (δ − s)
[(3

2
δ2
− 4
)

s −
7
4
δ2 + 2δ + 4

]
≥ (δ − s)

(5
4
δ2 + 2δ − 4

)
> 0.

Hence we have P′(R(Q(G2)), x) > P′(R(Q(G∗)), x) for x ≥ 2(n − δ − 1). Combining this with (6), we deduce
that

q(G2) < q(G∗). (7)

By (1), (2), (3) and (7), we have
q(G) ≤ q(G1) ≤ q(G2) < q(G∗),

which contradicts the assumption.
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Case 2. s = δ.
Recall that G1 = Ks ∨ (Kn1 + Kn2 + · · · + Kns+1 ). At this case, G1 = Kδ ∨ (Kn1 + Kn2 + · · · + Knδ+1 ). By Lemma

2.1, we obtain that
q(G1) ≤ q(Kδ ∨ (Kn−2δ + δK1)),

with equality holding if and only if G1 � Kδ ∨ (Kn−2δ + δK1). Combining this with (1), we have

q(G) ≤ q(Kδ ∨ (Kn−2δ + δK1)),

where equality holds if and only G � Kδ ∨ (Kn−2δ + δK1). By the assumption q(G) ≥ q(Kδ ∨ (Kn−2δ + δK1)), we
have q(G) = q(Kδ ∨ (Kn−2δ + δK1)), and hence G � Kδ ∨ (Kn−2δ + δK1) (see Fig. 1). Take S = V(Kδ). Then

|S|
c(Kδ ∨ (Kn−2δ + δK1) − S)

=
δ

δ + 1
< 1,

which implies that Kδ ∨ (Kn−2δ + δK1) is not 1-tough. So G � Kδ ∨ (Kn−2δ + δK1).

Figure 1: Graph Kδ ∨ (Kn−2δ + δK1).

Case 3. δ + 1 ≤ s ≤ n−1
2 .

Let G3 = Ks ∨ (Kn−2s + sK1). By Lemma 2.1, we have

q(G1) ≤ q(G3), (8)

with equality holding if and only if G1 � G3. Recall that G∗ = Kδ ∨ (Kn−2δ + δK1). Next we prove that
q(G3) < q(G∗).Observe that the vertex set of G3 can be divided into V(G3) = V(δK1)∪V(Kn−2s)∪V(Ks). Then
the quotient matrix of Q(G3) with respect to this partition is

R(Q(G3)) =

 n + s − 2 n − 2s s
s 2n − 3s − 2 0
s 0 s

 .
By simple calculation, the characteristic polynomial of R(Q(G3)) is

P(R(Q(G3)), x) = x3
− (3n − s − 4)x2 + (2n2 + sn − 6n − 4s2 + 4)x − 2sn2 + 4s2n + 6sn

−2s3
− 6s2

− 4s. (9)

Note that the above partition is equitable. By Lemma 2.3, q(G3) = λ1(R(Q(G3))) is the largest root of the
equation P(R(Q(G3)), x) = 0. By (5) and (9), we have

P(R(Q(G3)), x) − P(R(Q(G∗)), x)
= (s − δ)[x2 + (n − 4s − 4δ)x − 2n2 + (4s + 4δ + 6)n − 2s2

− 2δs − 6s − 2δ2
− 6δ − 4]

≜ (s − δ)1(x).
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Note that n ≥ 2s + 1,n ≥ 7
2δ + 2 and δ ≥ 2. The symmetry axis of 1(x) is

x = −
1
2

n + 2s + 2δ

= 2(n − δ − 1) −
(5

2
n − 2s − 4δ − 2

)
= 2(n − δ − 1) −

[
(n − 2s) +

(3
2

n − 4δ − 2
)]

≤ 2(n − δ − 1) −
(5

4
δ + 2

)
< 2(n − δ − 1).

This implies that 1(x) is monotonically increasing with respect to x ∈ [2(n−δ−1),+∞). Since δ+1 ≤ s ≤ n−1
2 ,

n ≥ 7
2δ + 2 and δ ≥ 2, we obtain that

1(x) ≥ 1(2(n − δ − 1))
= −2s2

− (4n − 6δ − 2)s + 4n2
− 14δn − 4n + 10δ2 + 10δ

≥ −2(δ + 1)2
− (4n − 6δ − 2)(δ + 1) + 4n2

− 14δn − 4n + 10δ2 + 10δ
= 4n2

− (18δ + 8)n + 14δ2 + 14δ

≥ 4
(7

2
δ + 2

)2
− (18δ + 8)

(7
2
δ + 2

)
+ 14δ2 + 14δ

= 6δ > 0.

Since s ≥ δ + 1, we have P(R(Q(G3)), x) > P(R(Q(G∗)), x) for x ≥ 2(n − δ − 1). Note that G∗ contains Kn−δ as a
proper subgraph. Hence q(G∗) > q(Kn−δ) = 2(n − δ − 1), and so q(G3) < q(G∗). Combining this with (1) and
(8), we have

q(G) ≤ q(G1) ≤ q(G3) < q(G∗),

a contradiction. □

3. Proof of Theorem 1.4

In order to prove Theorem 1.4, we present the following lemma.

Lemma 3.1 (Das[6]). Let G be a graph with n vertices and e(G) edges. Then

q(G) ≤
2e(G)
n − 1

+ n − 2.

Now we are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. Assume to the contrary that G is not a t-tough graph. By the definition of t-tough
graphs, there exists a vertex subset S ⊆ V(G) such that tc(G − S) > |S|. Let |S| = s and c(G − S) = c. Then
tc > s.

(i) When t is a positive integer, we have tc ≥ s + 1. Note that G is a spanning subgraph of G′ =
Ktc−1 ∨ (Kn1 + Kn2 + · · · + Knc ), where n1 ≥ n2 ≥ · · · ≥ nc ≥ 1 and

∑c
i=1 ni = n − tc + 1. Hence we have

q(G) ≤ q(G′), (10)

where equality holds if and only if G � G′. Let G′′ = Ktc−1 ∨ (Kn−(t+1)c+2 + (c− 1)K1). By Lemma 2.1, we have

q(G′) ≤ q(G′′), (11)

with equality holding if and only if G′ � G′′.Note that G is a connected graph and S is a vertex cut set. This
implies that c ≥ 2. Next we divide the proof into two cases according to different values of c ≥ 2.
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Case 1. c = 2.
Then G′′ = K2t−1 ∨ (Kn−2t + K1). By (10) and (11), we deduce that

q(G) ≤ q(K2t−1 ∨ (Kn−2t + K1)),

where equality holds if and only if G � K2t−1 ∨ (Kn−2t +K1). By the assumption q(G) ≥ q(K2t−1 ∨ (Kn−2t +K1)),
we have q(G) = q(K2t−1 ∨ (Kn−2t + K1)), and hence G � K2t−1 ∨ (Kn−2t + K1) (see Fig. 2). Take S = V(K2t−1).
Then

|S|
c(K2t−1 ∨ (Kn−2t + K1) − S)

=
2t − 1

2
< t,

which implies that K2t−1 ∨ (Kn−2t + K1) is not t-tough. So G � K2t−1 ∨ (Kn−2t + K1).

Case 2. c ≥ 3.

Figure 2: Graph K2t−1 ∨ (Kn−2t + K1).

Recall that G′′ = Ktc−1 ∨ (Kn−(t+1)c+2 + (c − 1)K1). It follows that

e(G′′) =
(
t +

1
2

)
c2
−

(
n + t +

3
2

)
c +

1
2

n2 +
1
2

n + 1.

By Lemma 3.1, we have

q(G′′) ≤
2e(G′′)
n − 1

+ n − 2 =
(2t + 1)c2

− (2n + 2t + 3)c + 2n2
− 2n + 4

n − 1
. (12)

Define φ(c) = (2t+ 1)c2
− (2n+ 2t+ 3)c+ 2n2

− 2n+ 4.Note that n1 ≥ n2 ≥ · · · ≥ nc ≥ 1.Hence n ≥ (t+ 1)c− 1.
Note that 3 ≤ c ≤ n+1

t+1 . According to n ≥ 4t2 + 6t + 1, by simple calculation, we obtain that

φ(3) − φ(
n + 1
t + 1

) =
n2
− (4t2 + 9t + 3)n + 12t3 + 26t2 + 15t + 2

(t + 1)2

=
(n − 4t2

− 6t − 1)(n − 3t − 2)
(t + 1)2

≥ 0.

This implies that the maximum value of φ(c) for 3 ≤ c ≤ n+1
t+1 is attained at c = 3. Combining this with (12),

we deduce that

q(G′′) ≤
φ(3)
n − 1

=
2n2
− 8n + 12t + 4

n − 1
= 2(n − 2) −

2n − 12t
n − 1

< 2(n − 2).

Observe that Kn−1 is a proper subgraph of K2t−1∨(Kn−2t+K1). Hence q(K2t−1∨(Kn−2t+K1)) > q(Kn−1) = 2(n−2).
Therefore, we have q(G′′) < 2(n − 2) < q(K2t−1 ∨ (Kn−2t + K1)). Combining this with (10) and (11), we have

q(G) ≤ q(G′) ≤ q(G′′) < q(K2t−1 ∨ (Kn−2t + K1)).
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a contradiction.
(ii) When 1/t is a positive integer, we have c ≥ s

t + 1. It is obvious that G is a spanning subgraph of

G(1) = Ks ∨ (Kn1 + Kn2 + · · · + Kn s
t +1

) for n1 ≥ n2 ≥ · · · ≥ n s
t+1 ≥ 1 and

∑ s
t+1
i=1 ni = n − s. Then we have

q(G) ≤ q(G(1)), (13)

with equality holding if and only if G � G(1). Let G(2) = Ks ∨ (Kn−s− s
t
+ s

t K1). By Lemma 2.1, we have

q(G(1)) ≤ q(G(2)), (14)

where equality holds if and only if G(1) � G(2). Since S is a vertex cut set, s ≥ 1. Next we consider the
following two cases depending on the different values of s ≥ 1.

Case 1. s = 1.
Then G(2) = K1 ∨ (Kn− 1

t −1 +
1
t K1). By (13) and (14), we conclude that

q(G) ≤ q(K1 ∨ (Kn− 1
t −1 +

1
t

K1)),

with equality holding if and only if G � K1∨ (Kn− 1
t −1+

1
t K1). By the assumption q(G) ≥ q(K1∨ (Kn− 1

t −1+
1
t K1)),

we have q(G) = q(K1 ∨ (Kn− 1
t −1 +

1
t K1)), and hence G � K1 ∨ (Kn− 1

t −1 +
1
t K1) (see Fig. 3). Take S = V(K1). Then

|S|
c(K1 ∨ (Kn− 1

t −1 +
1
t K1) − S)

=
1

1 + 1
t

< t,

which implies that K1 ∨ (Kn− 1
t −1 +

1
t K1) is not t-tough. So G � K1 ∨ (Kn− 1

t −1 +
1
t K1).

Case 2. s ≥ 2.

Figure 3: Graph K1 ∨ (Kn− 1
t −1 +

1
t K1).

Recall that G(2) = Ks ∨ (Kn−s− s
t
+ s

t K1). For convenience, we take r = 1
t . It is easy to see that r ≥ 1. By

Lemma 3.1, we have

q(G(2)) ≤
2e(G(2))
n − 1

+ n − 2

=
(r2 + 2r)s2

− (2rn − r)s + 2n2
− 4n + 2

n − 1

≜
ψ(s)
n − 1

.
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Note that 2 ≤ s ≤ n−1
r+1 . Since n ≥ 2

t + 9 = 2r + 9 and r ≥ 1, we have

ψ(2) − ψ(
n − 1
r + 1

) =
r(n − 2r − 3)(rn − 2r2

− 6r − 3)
(r + 1)2 ≥ 0.

This implies that max2≤s≤ n−1
r+1
ψ(s) = ψ(2). Hence

q(G(2)) ≤
ψ(2)
n − 1

=
2n2
− (4r + 4)n + 4r2 + 10r + 2

n − 1

= 2(n − r − 1) −
2r(n − 2r − 4)

n − 1
< 2(n − r − 1).

Hence we have q(G(2)) < 2(n − 1
t − 1). Since K1 ∨ (Kn− 1

t −1 +
1
t K1) contains Kn− 1

t
as a proper subgraph,

q(K1∨ (Kn− 1
t −1+

1
t K1)) > 2(n− 1

t −1). It follows that q(G(2)) < 2(n− 1
t −1) < q(K1∨ (Kn− 1

t −1+
1
t K1)). Combining

this with (13) and (14), we deduce that

q(G) ≤ q(G(1)) ≤ q(G(2)) < q(K1 ∨ (Kn−1− 1
t
+

1
t

K1)),

which contradicts the assumption. □
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