Filomat 38:30 (2024), 10665–10674 https://doi.org/10.2298/FIL2430665J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Toughness and *Q***-spectral radius of graphs involving minimum degree**

Huicai Jiaa,[∗] **, Jing Lou^b**

^aCollege of Science, Henan University of Engineering, Zhengzhou 451191, Henan, China ^bSchool of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China

Abstract. In 1973, Chvátal initially proposed the concept of toughness, which serves as a simple way to measure how tightly various pieces of a graph hold together. Let *G* be a non-complete graph and let *t* be a real number. If for every vertex cut set *S* of *G*, $|S| \geq t c(G - S)$, then we say that *G* is *t*-tough. The largest *t* such that *G* is *t*-tough is called the *toughness* of *G* and is denoted by *t*(*G*). Recently, Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] presented sufficient conditions based on the spectral radius for a graph to be 1-tough with minimum degree δ and *t*-tough with *t* ≥ 1 being an integer, respectively. Inspired by their work, we in this paper consider the *Q*-spectral versions of the above two problems. Moreover, we also provide a sufficient condition in terms of the Q-spectral radius for a graph to be *t*-tough with $\frac{1}{t}$ being a positive integer.

1. Introduction

All graphs considered in this paper are undirected and simple. Let *G* be a graph with vertex set *V*(*G*) and edge set $E(G)$. The *order* and *size* of *G* are denoted by $|V(G)| = n$ and $|E(G)| = e(G)$, respectively. A graph with one vertex is referred to as a trivial graph. For a vertex $v \in V(G)$, let $N_G(v)$ and $d_G(v)$ denote the neighbors and degree of *v* in *G*, respectively. We denote by δ(*G*) the minimum degree (δ for short) of *G*. Let *c*(*G*) be the number of components of a graph *G*. For a vertex subset *S* of *G*, we denote by *G* − *S* and *G*[*S*] the subgraph of *G* obtained from *G* by deleting the vertices in *S* together with their incident edges and the subgraph of *G* induced by *S*, respectively. For two vertex-disjoint graphs G_1 and G_2 , we denote by $G_1 + G_2$ the *disjoint union* of G_1 and G_2 . The *join* $G_1 \vee G_2$ is the graph obtained from $G_1 + G_2$ by adding all possible edges between $V(G_1)$ and $V(G_2)$. For undefined terms and notions, one can refer to [\[3\]](#page-9-0).

For a graph *G* of order *n*, the *adjacency matrix* of *G* is the symmetric matrix $A(G) = (a_{ij})_{n \times n}$ indexed by the vertex set $V(G)$ of G , where $a_{ij} = 1$ if v_i and v_j are adjacent and $a_{ij} = 0$ otherwise. The largest eigenvalue of *A*(*G*), denote by ρ(*G*), is called the *spectral radius* of *G*. The *signless Laplacian matrix* of *G* is defined as $Q(G) = D(G) + A(G)$, where $D(G)$ is the diagonal matrix of vertex degrees of *G*. The largest eigenvalue *q*(*G*) of *Q*(*G*) is called the *Q-spectral radius* of *G*. By the Perron-Frobenius theorem, *q*(*G*) is always positive (unless *G* is trivial). Furthermore, when *G* is connected, there exists a unique positive unit eigenvector $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ corresponding to $q(G)$, which is called the *Perron vector* of *Q*(*G*).

²⁰²⁰ *Mathematics Subject Classification*. Primary 05C50; Secondary 05C35.

Keywords. Toughness, *Q*-spectral radius, Minimum degree.

Received: 02 May 2024; Accepted: 22 June 2024

Communicated by Paola Bonacini

Supported by the Natural Science Foundation of Education Ministry of Henan Province (23B110011) and Doctor Cultivation Fund of Henan University of Engineering (D2021011).

^{*} Corresponding author: Huicai Jia

Email addresses: jhc607@163.com (Huicai Jia), loujing_23@163.com (Jing Lou)

In the past decades, the connections between the structural properties and the *Q*-spectral radius of graphs have been well studied. Pan, Li and Zhao[\[13\]](#page-9-1) investigated the relations between the fractional matching number and the *Q*-spectral radius of a graph. Fan et al.[\[8\]](#page-9-2) presented sufficient conditions in terms of the *Q*-spectral radius to guarantee the existence of a spanning *k*-tree and a perfect matching in graphs, respectively. Recently, Ao et al.[\[2\]](#page-9-3) provided sufficient conditions for a graph to be *k*-leaf connected in terms of the *Q*-spectral radius of *G* or its complement. Ao, Liu and Yuan[\[1\]](#page-9-4) presented tight *Q*-spectral conditions for the existence of a spanning *k*-ended-tree and a spanning tree with leaf degree at most *k*, respectively. Very recently, Hao and Li[\[12\]](#page-9-5) provided lower bounds for the *Q*-spectral radius to ensure that a graph has a path-factor and is a path-factor covered graph, respectively. Zheng et al.[\[14\]](#page-9-6) established a sufficient condition with given minimum degree based on the *Q*-spectral radius to guarantee that a graph is *k*-factor-critical.

Chv´atal[\[5\]](#page-9-7) introduced the concept of toughness in 1973. Let *G* be a non-complete graph and let *t* be a real number. If for every vertex cut set *S* of *G*, $|S| \geq t c(G - S)$, then we say that *G* is *t-tough*. The largest *t* such that *G* is *t*-tough is called the *toughness* of *G* and is denoted by $t(G)$. If $G \cong K_n$, $t(G)$ is defined as *n* − 1. Note that δ ≥ 2 is a trivial necessary condition for a graph to be 1-tough. Very recently, Fan, Lin and Lu[\[9\]](#page-9-8) presented a sufficient condition in terms of the spectral radius to ensure that a connected graph to be 1-tough for $\delta \geq 2$.

Theorem 1.1 (Fan, Lin and Lu [\[9\]](#page-9-8)). Suppose that G is a connected graph of order $n \ge \max\{5\delta, \frac{2}{5}\delta^2 + \delta\}$ with *minimum degree* $\delta \geq 2$. *If*

$$
\rho(G) \ge \rho(K_{\delta} \vee (K_{n-2\delta} + \delta K_1)),
$$

then G is 1-*tough unless* $G \cong K_{\delta} \vee (K_{n-2\delta} + \delta K_1)$.

Motivated by the above result, we consider the *Q*-version of Theorem [1.1.](#page-1-0)

Theorem 1.2. Let G be a connected graph of order $n \ge \max{\{\frac{7}{2}\delta + 2, \frac{1}{4}\delta^2 + 2\delta\}}$ with minimum degree $\delta \ge 2$. If

$$
q(G) \geq q(K_{\delta} \vee (K_{n-2\delta} + \delta K_{1})),
$$

then G is 1*-tough unless* $G \cong K_{\delta} \vee (K_{n-2\delta} + \delta K_1)$ *.*

In the same paper, Fan, Lin and Lu[\[9\]](#page-9-8) also provided a spectral condition for a connected graph to be *t*-tough, where *t* is a positive integer.

Theorem 1.3 (Fan, Lin and Lu [\[9\]](#page-9-8)). Let t be a positive integer. If G is a connected graph of order $n \geq 4t^2 + 6t + 2$ *with*

$$
\rho(G) \ge \rho(K_{2t-1} \vee (K_{n-2t} + K_1)),
$$

then G is t-tough unless $G \cong K_{2t-1} \vee (K_{n-2t} + K_1)$ *.*

Inspired by their result, we consider the sufficient condition of *t*-tough graphs from the *Q*-spectral radius perspective with *t* or $\frac{1}{t}$ is a positive number, which generalizes the scope of *t* in Theorem [1.3.](#page-1-1)

Theorem 1.4. *Let G be a connected graph of order n. Each of the following holds. (i)* Let *t* be a positive integer and $n \geq 4t^2 + 6t + 1$. If

$$
q(G) \geq q(K_{2t-1} \vee (K_{n-2t} + K_1)),
$$

then G is t-tough unless $G \cong K_{2t-1} \vee (K_{n-2t} + K_1)$ *.*

(ii) Let $\frac{1}{t}$ be a positive integer and $n \geq \frac{2}{t} + 9$. If

$$
q(G) \ge q(K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)),
$$

then G is t-tough unless $G \cong K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)$ *.*

2. Proof of Theorem [1.2](#page-1-2)

Before presenting our proof, we introduce some necessary lemmas. We first introduce the matrix $A_a(G) = aD(G) + A(G)$ and denote by $\rho_a(G)$ the largest eigenvalue of $A_a(G)$, where $a \ge 0$. It is obvious that $A_0(G) = A(G)$ and $A_1(G) = Q(G)$. Motivated by the technique of Lemma 3.1 in [\[8\]](#page-9-2), one can obtain the following result.

Lemma 2.1. *Let a* ≥ 0 *and* $n = \sum_{i=1}^{t} n_i + s$ *. If* $n_1 \geq n_2 \geq \cdots \geq n_t \geq p \geq 1$ *, then*

$$
\rho_a(K_s \vee (K_{n_1} + K_{n_2} + \cdots + K_{n_t})) \le \rho_a(K_s \vee (K_{n-s-p(t-1)} + (t-1)K_p))
$$

with equality if and only if $(n_1, n_2, ..., n_t) = (n - s - p(t - 1), p, ..., p)$.

Next we prove the following useful lemma.

Lemma 2.2. *For* $n \ge 2\delta + 1$ *and* $\delta \ge 2$ *, we have*

$$
q(K_1\vee (K_{n-\delta-1}+K_\delta))
$$

Proof. Let $\tilde{G} = K_1 \vee (K_{n-\delta-1} + K_\delta)$. We can partition the vertex set of \tilde{G} as $V(\tilde{G}) = V(K_1) \cup V(K_{n-\delta-1}) \cup V(K_\delta)$. Let $V(K_1) = \{u_1\}$, $V(K_{n-\delta-1}) = \{v_1, v_2, \ldots, v_{n-\delta-1}\}$ and $V(K_\delta) = \{w_1, w_2, \ldots, w_\delta\}$. Let x be the Perron vector of $Q(\tilde{G})$ corresponding to $\rho(\tilde{G})$. By symmetry, **x** takes the same value on the vertices of $V(K_1)$, $V(K_{n- \delta-1})$ and $V(K_{\delta})$, respectively. We denote the entries of **x** by x_1, x_2 and x_3 corresponding to the vertices in the above three vertex subsets, respectively. By $q(\tilde{G})\mathbf{x} = Q(\tilde{G})\mathbf{x}$, we have

$$
\begin{cases}\n q(\tilde{G})x_2 = x_1 + (2n - 2\delta - 3)x_2, \\
q(\tilde{G})x_3 = x_1 + (2\delta - 1)x_3,\n\end{cases}
$$

which leads to

$$
[q(\tilde{G}) - (2n - 2\delta - 3)]x_2 = [q(\tilde{G}) - (2\delta - 1)]x_3.
$$

Note that $K_{n-δ}$ is a proper subgraph of \tilde{G} . Then $q(\tilde{G}) > q(K_{n-δ}) = 2(n-δ-1)$. Combining this with $n ≥ 2δ + 1$, we have

$$
x_2 = \frac{q(\tilde{G}) - (2\delta - 1)}{q(\tilde{G}) - (2n - 2\delta - 3)} x_3 = \left[1 + \frac{2n - 4\delta - 2}{q(\tilde{G}) - (2n - 2\delta - 3)} \right] x_3 \ge x_3.
$$

Let $G^* = K_{\delta} \vee (K_{n-2\delta} + \delta K_1)$. Define $E_1 = \{v_i w_j | 1 \le i \le \delta - 1, 1 \le j \le \delta\}$ and $E_2 = \{w_i w_j | 1 \le i \le \delta - 1, i + 1 \le j \le \delta\}$. One can check that $G^* \cong \tilde{G} + E_1 - E_2$. Hence

$$
q(G^*) - q(\tilde{G}) \geq x^T (Q(G^*) - Q(\tilde{G}))x
$$

=
$$
\sum_{i=1}^{\delta-1} \sum_{j=1}^{\delta} (x_i + x_j)^2 - \sum_{i=1}^{\delta-1} \sum_{j=i+1}^{\delta} (x_i + x_j)^2
$$

=
$$
\delta(\delta - 1)(x_2 + x_3)^2 - \frac{1}{2}\delta(\delta - 1)(x_3 + x_3)^2
$$

=
$$
\delta(\delta - 1)[(x_2 + x_3)^2 - 2x_3^2]
$$

> 0,

where the last inequality follows from $\delta \geq 2$ and $x_2 \geq x_3$. Hence $q(\tilde{G}) < q(G^*)$ \Box

Finally, we introduce the concepts of quotient matrices and equitable partitions. Let *M* be a real $n \times n$ matrix. Assume that *M* can be written as the following matrix

$$
M = \left(\begin{array}{cccc} M_{1,1} & M_{1,2} & \cdots & M_{1,m} \\ M_{2,1} & M_{2,2} & \cdots & M_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ M_{m,1} & M_{m,2} & \cdots & M_{m,m} \end{array}\right),
$$

whose rows and columns are partitioned into subsets X_1, X_2, \ldots, X_m of $\{1, 2, \ldots, n\}$. The quotient matrix $R(M)$ of the matrix *M* (with respect to the given partition) is the $m \times m$ matrix whose entries are the average row sums of the blocks *Mi*,*^j* of *M*. The above partition is called *equitable* if each block *Mi*,*^j* of *M* has constant row (and column) sum.

Lemma 2.3 (Brouwer and Haemers [\[4\]](#page-9-9), Godsil and Royle [\[10\]](#page-9-10), Haemers [\[11\]](#page-9-11))**.** *Let M be a real symmetric matrix and let R*(*M*) *be its equitable quotient matrix. Then the eigenvalues of the quotient matrix R*(*M*) *are eigenvalues of M. Furthermore, if M is nonnegative and irreducible, then the spectral radius of the quotient matrix R*(*M*) *equals to the spectral radius of M.*

Now, we are in a position to present the proof of Theorem [1.2.](#page-1-2)

Proof of Theorem [1.2.](#page-1-2) Suppose to the contrary that *G* is not a 1-tough graph. By the definition of 1-tough graphs, then there exists a vertex subset $S \subseteq V(G)$ such that $c(G - S) > |S|$. Let $|S| = s$ and $c(G - S) = c$. Then $c \ge s + 1$, and hence $n \ge 2s + 1$. Note that *G* is a spanning subgraph of $G_1 = K_s \vee (K_{n_1} + K_{n_2} + \cdots + K_{n_{s+1}})$ for some integers $n_1 \geq n_2 \geq \cdots \geq n_{s+1} \geq 1$ and $\sum_{i=1}^{s+1} n_i = n - s$. Then we have

$$
q(G) \le q(G_1),\tag{1}
$$

where equality holds if and only if $G \cong G_1$. Note that *S* is a vertex cut set. Then $s \ge 1$, and hence $1 \le s \le \frac{n-1}{2}$. Next we divide the proof into the following three cases according to the different values of *s*.

Case 1. $1 \leq s \leq \delta - 1$.

Note that $\delta(G_1) \ge \delta(G) = \delta$. Then $n_1 \ge n_2 \ge \cdots \ge n_{s+1} \ge \delta - s + 1$. Let $G_2 = K_s \vee (K_{n-s-(\delta-s+1)s} + sK_{\delta-s+1})$. By Lemma [2.1,](#page-2-0) we have

$$
q(G_1) \le q(G_2),\tag{2}
$$

with equality holding if and only if $(n_1, n_2, \ldots, n_{s+1}) = (n - s - (\delta - s + 1)s, \delta - s + 1, \ldots, \delta - s + 1)$. If $s = 1$, then *G*₂ = *K*₁ ∨ (*K*_{*n*−δ−1} + *K*_δ). By Lemma [2.2,](#page-2-1) we have

$$
q(G_2) < q(K_\delta \vee (K_{n-2\delta} + \delta K_1)).\tag{3}
$$

Next we consider $s \geq 2$. Let $R(Q(G_2))$ be the quotient matrix of $Q(G_2)$ with respect to the partition (*V*(*K*_{*s*}), *V*(*K*_{*n*−*s*−(δ −*s*+1)*s*), *V*(*sK*_{δ −*s*+1})). One can see that}

$$
R(Q(G_2)) = \begin{pmatrix} n+s-2 & n+s^2-\delta s - 2s & \delta s - s^2 + s \\ s & 2n+2s^2-2\delta s - 3s - 2 & 0 \\ s & 0 & 2\delta - s \end{pmatrix}.
$$

By simple calculation, the characteristic polynomial of $R(Q(G_2))$ is

$$
P(R(Q(G2)), x) = x3 - (3n + 2s2 - 2\delta s - 3s + 2\delta - 4)x2 + [2n2 + (2s2 - 2\delta s - 5s + 6\delta-6)n + 4\delta s2 - 4s2 - 4\delta2s + 8s - 8\delta + 4]x + (2s - 4\delta)n2 - (4\delta s2-4\delta2s - 4\delta s + 6s - 12\delta)n - 2s5 + (4\delta + 6)s4 - (2\delta2 + 8\delta + 6)s3+ (2\delta2 + 12\delta + 2)s2 - (8\delta2 + 8\delta - 4)s - 8\delta.
$$
\n(4)

Note that the above partition is equitable. By Lemma [2.3,](#page-3-0) we know that $q(G_2) = \lambda_1(R(Q(G_2)))$ is the largest root of the equation $P(R(Q(G_2)), x) = 0$. Define that $G^* = K_0 \vee (K_{n-2\delta} + \delta K_1)$. Note that $Q(G^*)$ has the equitable quotient matrix with respect to the partition (*V*(K_{δ}), *V*($K_{n-2\delta}$), *V*(δK_1))

$$
R(Q(G^*))=\left(\begin{array}{ccc} n+\delta-2 & n-2\delta & \delta \\ \delta & 2n-3\delta-2 & 0 \\ \delta & 0 & \delta \end{array}\right).
$$

Then the characteristic polynomial of *R*(*Q*(*G* ∗)) is

$$
P(R(Q(G^*)), x) = x^3 - (3n - \delta - 4)x^2 + (2n^2 + \delta n - 6n - 4\delta^2 + 4)x - 2\delta n^2 + 4\delta^2 n + 6\delta n
$$

$$
-2\delta^3 - 6\delta^2 - 4\delta.
$$
 (5)

By Lemma [2.3,](#page-3-0) $q(G^*) = \lambda_1(R(Q(G^*)))$ is the largest root of the equation $P(R(Q(G^*)), x) = 0$. Note that *G*^{*} contains $K_{n-\delta}$ as a proper subgraph. Then $q(G^*) > q(K_{n-\delta}) = 2(n-\delta-1)$. Combining [\(4\)](#page-3-1) and [\(5\)](#page-4-0), we have

$$
P(R(Q(G_2)), 2(n - \delta - 1)) - P(R(Q(G^*)), 2(n - \delta - 1))
$$

= 2(\delta - s)[2(s - 1)n² - (8\delta s + 2s - 9\delta - 2)n + s⁴ - (\delta + 3)s³ + (\delta + 3)s²
+ (8\delta² + 5\delta - 1)s - 9\delta² - 5\delta]
 $\triangleq 2(\delta - s)f(n).$

Note that *s* \geq 2. Then the symmetry axis of *f*(*n*) is

$$
n = \frac{8\delta s + 2s - 9\delta - 2}{4(s - 1)} = 2\delta + \frac{1}{2} - \frac{\delta}{4(s - 1)} < 2\delta + \frac{1}{2} < \frac{1}{4}\delta^2 + 2\delta,
$$

where the last two inequalities follow from the fact that $\delta \geq s+1 \geq 3$. This implies that $f(n)$ is monotonically increasing with respect to $n \in [\frac{1}{4}\delta^2 + 2\delta, +\infty)$. Since $s \ge 2$ and $\delta \ge s + 1 \ge 3$, we have

$$
f(n) \geq f(\frac{1}{4}\delta^2 + 2\delta)
$$

= $\frac{\delta}{8}[\delta((s-1)\delta^2 + 2\delta - 4s + 12) - 8s^3 + 8s^2 + 8s - 8] + s(s-1)^3$
 $\geq \frac{\delta}{8}[\delta(s^3 + s^2 - 3s + 13) - 8s^3 + 8s^2 + 8s - 8] + s(s-1)^3$
= $\frac{\delta}{8}(s^4 - 6s^3 + 6s^2 + 18s + 5) + s(s-1)^3$
> 0.

Combining this with $\delta \geq s + 1$, we obtain that

$$
P(R(Q(G2)), 2(n - \delta - 1)) > P(R(Q(G*)), 2(n - \delta - 1)).
$$
\n(6)

Next we take derivatives of $P(R(Q(G_2)), x)$ and $P(R(Q(G^*)), x)$, respectively. Note that $\delta \geq s + 1 \geq 3, s \geq 2$ and $n \geq \frac{1}{4}\delta^2 + 2\delta$. For $x \geq 2(n - \delta - 1)$, we have

$$
P'(R(Q(G2)), x) - P'(R(Q(G*)), x) = (\delta - s)[(4s - 6)x - 4\delta s - 2ns + 4\delta + 5n + 4s - 8]
$$

\n
$$
\geq (\delta - s)[(6s - 7)n - 12\delta s + 16\delta - 4s + 4]
$$

\n
$$
\geq (\delta - s) \left[\left(\frac{3}{2} \delta^2 - 4 \right) s - \frac{7}{4} \delta^2 + 2\delta + 4 \right]
$$

\n
$$
\geq (\delta - s) \left(\frac{5}{4} \delta^2 + 2\delta - 4 \right)
$$

\n
$$
> 0.
$$

Hence we have $P'(R(Q(G_2)), x) > P'(R(Q(G^*)), x)$ for $x \ge 2(n - \delta - 1)$. Combining this with [\(6\)](#page-4-1), we deduce that

$$
q(G_2) < q(G^*). \tag{7}
$$

By [\(1\)](#page-3-2), [\(2\)](#page-3-3), [\(3\)](#page-3-4) and [\(7\)](#page-4-2), we have

q(*G*) ≤ *q*(*G*₁) ≤ *q*(*G*₂) < *q*(*G*^{*}),

which contradicts the assumption.

Case 2. $s = \delta$.

Recall that $G_1 = K_s \vee (K_{n_1} + K_{n_2} + \cdots + K_{n_{s+1}})$. At this case, $G_1 = K_\delta \vee (K_{n_1} + K_{n_2} + \cdots + K_{n_{\delta+1}})$. By Lemma [2.1,](#page-2-0) we obtain that

$$
q(G_1) \leq q(K_{\delta} \vee (K_{n-2\delta} + \delta K_1)),
$$

with equality holding if and only if $G_1 \cong K_\delta \vee (K_{n-2\delta} + \delta K_1)$. Combining this with [\(1\)](#page-3-2), we have

 $q(G) \leq q(K_{\delta} \vee (K_{n-2\delta} + \delta K_{1})),$

where equality holds if and only *G* $\cong K_\delta \vee (K_{n-2\delta} + \delta K_1)$. By the assumption $q(G) \ge q(K_\delta \vee (K_{n-2\delta} + \delta K_1))$, we have $q(G) = q(K_\delta \vee (K_{n-2\delta} + \delta K_1))$ $q(G) = q(K_\delta \vee (K_{n-2\delta} + \delta K_1))$ $q(G) = q(K_\delta \vee (K_{n-2\delta} + \delta K_1))$, and hence $G \cong K_\delta \vee (K_{n-2\delta} + \delta K_1)$ (see Fig. 1). Take $S = V(K_\delta)$. Then

$$
\frac{|S|}{c(K_\delta\vee (K_{n-2\delta}+\delta K_1)-S)}=\frac{\delta}{\delta+1}<1,
$$

which implies that $K_\delta \vee (K_{n-2\delta} + \delta K_1)$ is not 1-tough. So $G \cong K_\delta \vee (K_{n-2\delta} + \delta K_1)$.

Figure 1: Graph $K_{\delta} \vee (K_{n-2\delta} + \delta K_1)$.

Case 3. $\delta + 1 \leq s \leq \frac{n-1}{2}$. Let *G*₃ = K_s ∨ (K_{n-2s} + *sK*₁). By Lemma [2.1,](#page-2-0) we have

$$
q(G_1) \le q(G_3),\tag{8}
$$

with equality holding if and only if $G_1 \cong G_3$. Recall that $G^* = K_\delta \vee (K_{n-2\delta} + \delta K_1)$. Next we prove that *q*(*G*₃) < *q*(*G*^{*}). Observe that the vertex set of *G*₃ can be divided into *V*(*G*₃) = *V*(δ *K*₁) ∪ *V*(*K_{<i>n*−2*s*) ∪ *V*(*K_{<i>s*}}). Then</sub> the quotient matrix of $Q(G_3)$ with respect to this partition is

$$
R(Q(G_3)) = \begin{pmatrix} n+s-2 & n-2s & s \\ s & 2n-3s-2 & 0 \\ s & 0 & s \end{pmatrix}.
$$

By simple calculation, the characteristic polynomial of $R(Q(G_3))$ is

$$
P(R(Q(G_3)), x) = x^3 - (3n - s - 4)x^2 + (2n^2 + sn - 6n - 4s^2 + 4)x - 2sn^2 + 4s^2n + 6sn
$$

-2s³ - 6s² - 4s. (9)

Note that the above partition is equitable. By Lemma [2.3,](#page-3-0) $q(G_3) = \lambda_1(R(Q(G_3)))$ is the largest root of the equation $P(R(Q(G_3)), x) = 0$. By [\(5\)](#page-4-0) and [\(9\)](#page-5-1), we have

$$
P(R(Q(G_3)), x) - P(R(Q(G^*)), x)
$$

= $(s - \delta)[x^2 + (n - 4s - 4\delta)x - 2n^2 + (4s + 4\delta + 6)n - 2s^2 - 2\delta s - 6s - 2\delta^2 - 6\delta - 4]$
 $\triangleq (s - \delta)g(x).$

Note that $n \ge 2s + 1$, $n \ge \frac{7}{2}\delta + 2$ and $\delta \ge 2$. The symmetry axis of $g(x)$ is

$$
x = -\frac{1}{2}n + 2s + 2\delta
$$

= $2(n - \delta - 1) - (\frac{5}{2}n - 2s - 4\delta - 2)$
= $2(n - \delta - 1) - [(n - 2s) + (\frac{3}{2}n - 4\delta - 2)]$
 $\leq 2(n - \delta - 1) - (\frac{5}{4}\delta + 2)$
 $\leq 2(n - \delta - 1).$

This implies that $g(x)$ is monotonically increasing with respect to $x \in [2(n-\delta-1), +\infty)$. Since $\delta + 1 \le s \le \frac{n-1}{2}$, $n \geq \frac{7}{2}\delta + 2$ and $\delta \geq 2$, we obtain that

$$
g(x) \ge g(2(n - \delta - 1))
$$

= -2s² - (4n - 6\delta - 2)s + 4n² - 14\delta n - 4n + 10\delta² + 10\delta

$$
\ge -2(\delta + 1)^{2} - (4n - 6\delta - 2)(\delta + 1) + 4n^{2} - 14\delta n - 4n + 10\delta^{2} + 10\delta
$$

= 4n² - (18\delta + 8)n + 14\delta² + 14\delta

$$
\ge 4\left(\frac{7}{2}\delta + 2\right)^{2} - (18\delta + 8)\left(\frac{7}{2}\delta + 2\right) + 14\delta^{2} + 14\delta
$$

= 6\delta > 0.

Since $s \ge \delta + 1$, we have $P(R(Q(G_3)), x) > P(R(Q(G^*)), x)$ for $x \ge 2(n - \delta - 1)$. Note that G^* contains $K_{n-\delta}$ as a proper subgraph. Hence $q(G^*) > q(K_{n-\delta}) = 2(n-\delta-1)$, and so $q(G_3) < q(G^*)$. Combining this with [\(1\)](#page-3-2) and (8) , we have

$$
q(G)\leq q(G_1)\leq q(G_3)
$$

a contradiction. □

3. Proof of Theorem [1.4](#page-1-3)

In order to prove Theorem [1.4,](#page-1-3) we present the following lemma.

Lemma 3.1 (Das[\[6\]](#page-9-12))**.** *Let G be a graph with n vertices and e*(*G*) *edges. Then*

$$
q(G) \le \frac{2e(G)}{n-1} + n - 2.
$$

Now we are ready to give the proof of Theorem [1.4.](#page-1-3)

Proof of Theorem [1.4.](#page-1-3) Assume to the contrary that *G* is not a *t*-tough graph. By the definition of *t*-tough graphs, there exists a vertex subset $S \subseteq V(G)$ such that $tc(G - S) > |S|$. Let $|S| = s$ and $c(G - S) = c$. Then *tc* > *s*.

(i) When *t* is a positive integer, we have $tc \geq s + 1$. Note that *G* is a spanning subgraph of *G'* = $K_{tc-1} \vee (K_{n_1} + K_{n_2} + \cdots + K_{n_c})$, where $n_1 \ge n_2 \ge \cdots \ge n_c \ge 1$ and $\sum_{i=1}^{c} n_i = n - tc + 1$. Hence we have

$$
q(G) \le q(G'),\tag{10}
$$

where equality holds if and only if *G* ≅ *G'*. Let *G''* = K_{tc-1} ∨ ($K_{n-(t+1)c+2}$ + (*c* − 1) K_1). By Lemma [2.1,](#page-2-0) we have

$$
q(G') \le q(G''),\tag{11}
$$

with equality holding if and only if $G' \cong G''$. Note that *G* is a connected graph and *S* is a vertex cut set. This implies that $c \ge 2$. Next we divide the proof into two cases according to different values of $c \ge 2$.

Case 1. $c = 2$.

Then $G'' = K_{2t-1} ∨ (K_{n-2t} + K_1)$. By [\(10\)](#page-6-0) and [\(11\)](#page-6-1), we deduce that

$$
q(G) \leq q(K_{2t-1} \vee (K_{n-2t} + K_1)),
$$

where equality holds if and only if *G* ≥ K_{2t-1} ∨ (K_{n-2t} + K_1). By the assumption $q(G)$ ≥ $q(K_{2t-1}$ ∨ (K_{n-2t} + K_1)), we have $q(G) = q(K_{2t-1} \vee (K_{n-2t} + K_1))$, and hence $G \cong K_{2t-1} \vee (K_{n-2t} + K_1)$ (see Fig. [2\)](#page-7-0). Take $S = V(K_{2t-1})$. Then

$$
\frac{|S|}{c(K_{2t-1} \vee (K_{n-2t} + K_1) - S)} = \frac{2t - 1}{2} < t,
$$

which implies that K_{2t-1} ∨ $(K_{n-2t} + K_1)$ is not *t*-tough. So $G ≅ K_{2t-1}$ ∨ $(K_{n-2t} + K_1)$. **Case 2.** $c \geq 3$.

Figure 2: Graph K_{2t-1} ∨ (K_{n-2t} + K_1).

Recall that *G*^{*''*} = *K*_{*tc*−1} ∨ (*K*_{*n*−(*t*+1)*c*+2 + (*c* − 1)*K*₁). It follows that}

$$
e(G'') = \left(t + \frac{1}{2}\right)c^2 - \left(n + t + \frac{3}{2}\right)c + \frac{1}{2}n^2 + \frac{1}{2}n + 1.
$$

By Lemma [3.1,](#page-6-2) we have

$$
q(G'') \le \frac{2e(G'')}{n-1} + n - 2 = \frac{(2t+1)c^2 - (2n+2t+3)c + 2n^2 - 2n + 4}{n-1}.
$$
\n(12)

Define φ (*c*) = (2*t* + 1)*c*² − (2*n* + 2*t* + 3)*c* + 2*n*² − 2*n* + 4. Note that *n*₁ ≥ *n*₂ ≥ · · · ≥ *n_c* ≥ 1. Hence *n* ≥ (*t* + 1)*c* − 1. Note that $3 \leq c \leq \frac{n+1}{t+1}$. According to $n \geq 4t^2 + 6t + 1$, by simple calculation, we obtain that

$$
\varphi(3) - \varphi\left(\frac{n+1}{t+1}\right) = \frac{n^2 - (4t^2 + 9t + 3)n + 12t^3 + 26t^2 + 15t + 2}{(t+1)^2}
$$

$$
= \frac{(n - 4t^2 - 6t - 1)(n - 3t - 2)}{(t+1)^2}
$$

$$
\geq 0.
$$

This implies that the maximum value of $\varphi(c)$ for $3 \le c \le \frac{n+1}{t+1}$ is attained at $c = 3$. Combining this with [\(12\)](#page-7-1), we deduce that

$$
q(G^{\prime\prime})\leq \frac{\varphi(3)}{n-1}=\frac{2n^2-8n+12t+4}{n-1}=2(n-2)-\frac{2n-12t}{n-1}<2(n-2).
$$

Observe that K_{n-1} is a proper subgraph of $K_{2t-1} \vee (K_{n-2t} + K_1)$. Hence $q(K_{2t-1} \vee (K_{n-2t} + K_1)) > q(K_{n-1}) = 2(n-2)$. Therefore, we have $q(G'') < 2(n-2) < q(K_{2t-1} ∨ (K_{n-2t} + K_1))$. Combining this with [\(10\)](#page-6-0) and [\(11\)](#page-6-1), we have

$$
q(G) \le q(G') \le q(G'') < q(K_{2t-1} \vee (K_{n-2t} + K_1)).
$$

a contradiction.

(ii) When $1/t$ is a positive integer, we have $c \geq \frac{s}{t} + 1$. It is obvious that *G* is a spanning subgraph of $G^{(1)} = K_s \vee (K_{n_1} + K_{n_2} + \cdots + K_{n_{\frac{s}{t}+1}})$ for $n_1 \ge n_2 \ge \cdots \ge n_{\frac{s}{t}+1} \ge 1$ and $\sum_{i=1}^{\frac{s}{t}+1}$ $\prod_{i=1}^{\frac{3}{t}+1} n_i = n - s$. Then we have

$$
q(G) \le q(G^{(1)}),\tag{13}
$$

with equality holding if and only if $G \cong G^{(1)}$. Let $G^{(2)} = K_s \vee (K_{n-s-\frac{s}{t}} + \frac{s}{t}K_1)$. By Lemma [2.1,](#page-2-0) we have

$$
q(G^{(1)}) \le q(G^{(2)}),\tag{14}
$$

where equality holds if and only if $G^{(1)} \cong G^{(2)}$. Since *S* is a vertex cut set, *s* \geq 1. Next we consider the following two cases depending on the different values of $s \geq 1$.

Case 1. *s* = 1.

Then $G^{(2)} = K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)$. By [\(13\)](#page-8-0) and [\(14\)](#page-8-1), we conclude that

$$
q(G) \le q(K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)),
$$

with equality holding if and only if $G \cong K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)$. By the assumption $q(G) \ge q(K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1))$, we have $q(G) = q(K_1 \vee (K_{n-\frac{1}{i}-1} + \frac{1}{i}K_1))$, and hence $G \cong K_1 \vee (K_{n-\frac{1}{i}-1} + \frac{1}{i}K_1)$ (see Fig. [3\)](#page-8-2). Take $S = V(K_1)$. Then

$$
\frac{|S|}{c(K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1) - S)} = \frac{1}{1+\frac{1}{t}} < t,
$$

which implies that *K*₁ ∨ (*K*_{*n*−¹_{*t*}}-₁ + $\frac{1}{t}$ *K*₁) is not *t*-tough. So *G* ≅ *K*₁ ∨ (*K*_{*n*−¹_{*t*}-₁ + $\frac{1}{t}$ *K*₁).} **Case 2.** $s \geq 2$.

Figure 3: Graph $K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)$.

Recall that $G^{(2)} = K_s \vee (K_{n-s-\frac{s}{t}} + \frac{s}{t}K_1)$. For convenience, we take $r = \frac{1}{t}$. It is easy to see that $r \ge 1$. By Lemma [3.1,](#page-6-2) we have

$$
q(G^{(2)}) \le \frac{2e(G^{(2)})}{n-1} + n - 2
$$

=
$$
\frac{(r^2 + 2r)s^2 - (2rn - r)s + 2n^2 - 4n + 2}{n-1}
$$

=
$$
\frac{\psi(s)}{n-1}.
$$

Note that 2 ≤ *s* ≤ $\frac{n-1}{r+1}$. Since *n* ≥ $\frac{2}{t}$ + 9 = 2*r* + 9 and *r* ≥ 1, we have

$$
\psi(2) - \psi\left(\frac{n-1}{r+1}\right) = \frac{r(n-2r-3)(rn-2r^2-6r-3)}{(r+1)^2} \ge 0.
$$

This implies that $\max_{2 \le s \le \frac{n-1}{r+1}} \psi(s) = \psi(2)$. Hence

$$
q(G^{(2)}) \le \frac{\psi(2)}{n-1}
$$

=
$$
\frac{2n^2 - (4r + 4)n + 4r^2 + 10r + 2}{n-1}
$$

=
$$
2(n - r - 1) - \frac{2r(n - 2r - 4)}{n-1}
$$

<
$$
< 2(n - r - 1).
$$

Hence we have $q(G^{(2)}) < 2(n - \frac{1}{t} - 1)$. Since $K_1 \vee (K_{n-\frac{1}{t}-1} + \frac{1}{t}K_1)$ contains $K_{n-\frac{1}{t}}$ as a proper subgraph, $q(K_1\vee (K_{n-\frac{1}{t}-1}+\frac{1}{t}K_1))>2(n-\frac{1}{t}-1)$. It follows that $q(G^{(2)})<2(n-\frac{1}{t}-1)< q(K_1\vee (K_{n-\frac{1}{t}-1}+\frac{1}{t}K_1))$. Combining this with (13) and (14) , we deduce that

$$
q(G) \le q(G^{(1)}) \le q(G^{(2)}) < q(K_1 \vee (K_{n-1-\frac{1}{t}} + \frac{1}{t}K_1)),
$$

which contradicts the assumption. □

References

- [1] G.Y. Ao, R.F. Liu, J.J. Yuan, Spectral radius and spanning trees of graphs, *Discrete Math.* **346** (2023) 113400.
- [2] G.Y. Ao, R.F. Liu, J.J. Yuan, R. Li, Improved sufficient conditions for *k*-leaf-connected graphs, *Discrete Appl. Math.* **314** (2022) 17–30.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory, Grad. Texts in Math. vol. 244, Springer, New York, 2008.
- [4] A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, Berlin, 2011.
- [5] V. Chv´atal, Tough graphs and hamiltonian circuits, *Discrete Math.* **3** (1973) 215–228.
- [6] K.C. Das, Maximizing the sum of the squares of the degrees of a graph, *Discrete Math.* **285** (2004) 57–66.
- [7] D.D. Fan, S. Goryainov, H.Q. Lin, On the (signless Laplacian) spectral radius of minimally *k*-(edge)-connected graphs for small *k*, *Discrete Appl. Math.* **305** (2021) 154-163.
- [8] D.D. Fan, S. Goryainov, X.Y. Huang, H.Q. Lin, The spanning *k*-trees, perfect matchings and spectral radius of graphs, *Linear Multilinear Algebra* **70** (2022) 7264–7275.
- [9] D.D. Fan, H.Q. Lin, H.L. Lu, Toughness, hamiltonicity and spectral radius in graphs, *European J. Combin.* **110** (2023) 103701.
- [10] C. Godsil, G.F. Royle, Algebraic graph theory, Springer-Verlag, New York, 2001.
- [11] W.H. Haemers, Interlacing eigenvalues and graphs, *Linear Algebra Appl.* **226** (1995) 593–616.
- [12] Y.F. Hao, S.C. Li, Complete characterization of path-factor and path-factor covered graphs via *Q*-index and *D*-index, *Linear Multilinear Algebra* **72** (2024) 118–138.
- [13] Y.G. Pan, J.P. Li, W. Zhao, Signless Laplacian spectral radius and fractional matchings in graphs, *Discrete Math.* **343** (2020) 112016.
- [14] L. Zheng, S.C. Li, X.B. Luo, G.F. Wang, Some sufficient conditions for a graph with minimum degree to be *k*-factor-critical, *Discrete Appl. Math.* **348** (2024) 279–291.