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Abstract. For a k-uniform hypergraph H = (V (H) ,E (H)) of order n =
∣∣∣V(H)

∣∣∣ and size r =
∣∣∣E(H)

∣∣∣, let
B(H) be the incidence matrix ofH . The incidence energy BE(H) ofH is the energy of B(H). In this article,
we determine the unique hypergraph with the minimum incidence energy among all k-uniform hypertrees
of size r with fixed number of pendent edges. We also determine the unique hypergraph with the minimum
incidence energy among all k-uniform unicyclic hypergraphs of size r.

1. Introduction

Spectral graph theory has a long history behind its development. In spectral graph theory, we analyse
the eigenvalues of a connectivity matrix which is uniquely defined on a graph. Many researchers have
had a great interest to study the eigenvalues of different connectivity matrices, such as, adjacency matrix,
Laplacian matrix, etc. Now, a recent trend has been developed to explore spectral hypergraph theory. In
2005, L. Qi [11] introduced the concept of eigenvalues of a real supersymmetric tensor. Then spectral theory
for tensors started to develop. Afterward, many researchers analyzed different eigenvalues of several
connectivity tensors, such as, adjacency tensor, Laplacian tensor, normalized Laplacian tensors, etc. It
is known, however, that to obtain eigenvalues of tensors has a high computational and theoretical cost.
Perhaps for this reason, recently,some authors have renewed the interest to study the matrix representations
of a hypergraph, as for example in [1–5, 9, 12, 13].

LetH = (V (H) ,E (H)) be a hypergraph with vertex set V(H) and hyperedge set E(H), where E(H) ⊆
2V(H) and 2V(H) stands for the power set of V(H). A hypergraph H is said to k-uniform hypergraph (or
a k-graph) if |e| = k for every e ∈ E(H). Especially, 2-uniform hypergraph is the ordinary graph. For
convenience, let [n] = {1, 2, . . . ,n}. Let E(v) =

{
e
∣∣∣v ∈ e ∈ E(H)

}
, and d(v) = |E(v)| be the degree of v. A edge

e in a hypergraph is said to be a pendent edge at a vertex v ∈ e of degree greater than or equal two, if the
other vertices in e are 1-degree vertices. For u, v ∈ V (H), a walk from u to v inH is defined to be a sequence
of vertices and edges v0e1v1e2 · · · epvp with v0 = u and vp = v such that edge ei contains vertices vi−1 and vi,
and vi−1 , vi for i ∈ [p]. The value p is the length of this walk. A path P = v0e1v1e2 · · · epvp is a walk with all
vi distinct and all ei distinct. If d(vi) = 2 for i ∈ [p − 1], and the other vertices in V(P) are 1-degree vertices,
then P is a loose path. If d(v0) ≥ 3, d(vi) = 2 for i ∈ [p − 1] and the others vertices in V(P) are 1-degree
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vertices, then P is a pendent path. A cycle C = v0e1v1e2 · · · epvp is a walk containing at least two edges, all ei
are distinct and all vi are distinct except v0 = vp.

If there is a path from u to v for any u, v ∈ V (H), then we say that H is connected. A hypertree is
a connected hypergraph with no cycles. A unicyclic hypergraph is a connected hypergraph with exactly
one cycle. For m ≥ 2 and k ≥ 3, let Cm,k = v1e1v2e2v3 · · · vmemvm+1 be a k-uniform cycle of length m, where
vm+1 = v1, for i ∈ [m], ei = {vi,ui1,ui2, . . . ,uik−2, vi+1}, V0 = {vi : i ∈ [m]}. Let Um

r be the k-uniform unicyclic
hypergraph of size r obtained from Cm,k by attaching r − m pendent edges to v1 in Cm,k. For a hypergraph
H , the subdivision graph S(H) is a graph obtained by adding a new vertex ve and making it adjacent to all
vertices of e for each edge e ofH .

For a matrix M, its energy E(M) is defined as the sum of its singular values ([10]). LetH be a k-uniform
hypergraph and B(H) = (b(v, e))

|V(H)|×|E(H)| be the incidence matrix of H , where b(v, e) = 1 if v ∈ e, and
b(v, e) = 0 otherwise. Cardoso and Trevisan [3] defined the energy of B(H) as the incidence energy BE(H)
ofH , and proposed the relation

BE(H) =
1
2

E(As), (1)

where As is the adjacency matrix of S(H).
On this basis, the authors of [13] obtained the lower and upper bounds on BE(H) for k-uniform hypertrees

and characterized their corresponding extremal hypergraphs. The authors of [5] characterized the k-uniform
hypertrees with the minimum incidence energy among all k-uniform hypertrees of order n with diameter
3 ≤ d ≤ r − 1. Motivated by the above research, in this article, we determine the unique hypergraph with
the minimum incidence energy among all k-uniform hypertrees of size r with fixed number of pendent
edges. We also determine the unique hypergraph with the minimum incidence energy among all k-uniform
unicyclic hypergraphs of size r.

2. Preliminaries

Let G be a connected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). The adjacency
matrix of G, denoted by A(G), is an n×n matrix (ai j) in which ai j = 1 if viv j ∈ E(G), and ai j = 0 otherwise. The
characteristic polynomial of A(G), denoted by ϕA(G, λ) = |λI − A(G)|, is called the characteristic polynomial
of G. The n roots of the equation ϕA(G, λ) = 0, denoted by λ1(G), λ2(G), . . . , λn(G), are called the eigenvalues
of G. The energy E(G) of G is defined [6] as

E(G) =
n∑

i=1

|λi(G)|.

If G is a bipartite graph, then its characteristic polynomial can be written as

ϕ(G) =
⌊

n
2 ⌋∑

i=0

(−1)ib2ixn−2i,

where b0 = 1 and b2i ≥ 0. Let a2i (G) = (−1)ib2i (G). The Sachs theorem [7] states that for i ≥ 1,

a2i =
∑
S∈L2i

(−1)ω(S)2c(S), (2)

where L2i denotes the set of Sachs subgraphs of G with 2i vertices, that is, the subgraphs in which every
component is either K2 or a cycle; ω (S) is the number of connected components of S, and c (S) is the number
of cycles contained in S.

In particularly, if G is a tree, then b2i = m(G, i) for all i = 1, . . . ,
⌊

n
2

⌋
, where m(G, i) equals to the number of

i-matchings of G (see [7]). For two bipartite graphs G1 and G2 of order n, we define G1 ⪯ G2 if and only if
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b2i(G1) ≤ b2i(G2) for all i = 1, . . . ,
⌊

n
2

⌋
. Moreover, if there exists a index i such that b2i(G1) < b2i(G2), we write

G1 ≺ G2. The following result was proven (see [7]).

G1 ⪯ G2 ⇒ E(G1) ≤ E(G2),
G1 ≺ G2 ⇒ E(G1) < E(G2).

A tree is said to be starlike if it has exactly one vertex of degree greater than 2. Let Sr,x denote the
starlike tree with r edges and x pendent paths of almost equal length and Sa

r,x−1 be the graph obtained
from Sr−a,x−1 by joining a pendent vertex of path Pa to the center of Sr−a,x−1. Let Pn,k be the tree obtained
from Pn = v0v1 · · · vn−1 by adding k − 2 pendent edges to each vertex v2 j with j = 0, 1, 2, . . . , ⌊ n−2

2 ⌋, and
P̃n,k be the tree obtained from Pn = v0v1 · · · vn−1 by adding k − 2 pendent edges to each vertex v2 j+1 with
j = 0, 1, 2, . . . , ⌊ n−2

2 ⌋.
The definition of a power graph was introduced in [2] as follows:

Definition 2.1 ([2]). Let G = (V,E) be a graph and let k ≥ 2 be an integer. We define the power graph Gk as the
k-graph with the following sets of vertices and edges

V
(
G

k
)
= V (G) ∪

 ⋃
e∈E(G)

ςe

 and E
(
G

k
)
= {e ∪ ςe : e ∈ E(G)} ,

where ςe =
{
ve

1, . . . , v
e
k−2

}
is a set of additional vertices of degree one for each edge e ∈ E(G).

Let (Sr,x)k denote the power graph of Sr,x and (Sa
r,x−1)k denote the power graph of Sa

r,x−1.
In order to obtain our main results we need the following lemmas.

Lemma 2.2 ([7]). Let e = uv be an edge of a tree T with n vertices. Then

m(T, i) = m(T − uv, i) +m(T − u − v, i − 1)

for i = 1, 2, . . . ,
⌊

n
2

⌋
, where m(T, 0) = 1. Moreover, if u is a pendent vertex, then

m(T, i) = m(T − u, i) +m(T − u − v, i − 1).

Lemma 2.3 ([8]). Let uv be an edge of a bipartite graph G, then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v) + 2
∑

Cl∈C(uv)

(−1)1+ l
2 b2i−l (G − Cl),

where C (uv) is the set of cycles containing uv. In particular, if uv is a pendent edge of G with the pendent vertex v,
then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v).

3. The minimum incidence energy of k-uniform hypertrees with fixed number of pendent edges

Lemma 3.1. Let n = 4t or n = 4t + 2. Then for j = 2, 3, . . . , t and 1 ≤ i ≤ n
2 ,

m(P2 j−2,k ∪ Pn−2 j+2,k, i) ≥ m(P2 j,k ∪ Pn−2 j,k, i).

Proof. We first consider j = 2. It is obvious to see that P2,k ∪ Pn−2,k � Pn,k − v1v2, P4,k ∪ Pn−4,k � Pn,k − v3v4. By
Lemma 2.2 we have

m
(
P2,k ∪ Pn−2,k, i

)
= m
(
Pn,k − v1v2 − v3v4, i

)
+m
(
Pn,k − v1v2 − v3 − v4, i − 1

)
,
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and

m
(
P4,k ∪ Pk

n−4, i
)
= m
(
Pn,k − v3v4 − v1v2, i

)
+m
(
Pn,k − v3v4 − v1 − v2, i − 1

)
.

So

m
(
P2,k ∪ Pn−2,k, i

)
−m
(
P4,k ∪ Pn−4,k, i

)
= m
(
Pn,k − v1v2 − v3 − v4, i − 1

)
−m
(
Pn,k − v3v4 − v1 − v2, i − 1

)
.

Note that for 1 ≤ i ≤
⌊

n
2

⌋
, m
(
P2,k ∪ Pn−2,k, i

)
≥ m

(
P4,k ∪ Pn−4,k, i

)
, and there exists i = 3 such that

m
(
P2,k ∪ Pn−2,k, i

)
> m
(
P4,k ∪ Pn−4,k, i

)
.

For j = 3, . . . , t, it is obvious to see that Pk
2 j−2 ∪ Pk

n−2 j+2 � Pn,k − v2 j−3v2 j−2, and Pk
2 j ∪ Pk

n−2 j � Pn,k − v2 j−1v2 j.
By repeatedly utilizing Lemma 2.2 we have

m
(
Pn,k − v2 j−3v2 j−2, i

)
=m
(
Pn,k − v2 j−3v2 j−2 − v2 j−1v2 j, i

)
+m
(
Pn,k − v2 j−3v2 j−2 − v2 j−1 − v2 j − v2 j−4v2 j−3, i − 1

)
+m
(
Pn,k − v2 j−3v2 j−2 − v2 j−1 − v2 j − v2 j−4 − v2 j−3 − v2 j+1v2 j+2, i − 2

)
+ · · ·

+m
(
Sk ∪ Sk−1 ∪ P̃n−4 j+3,k, i − 2 j + 3

)
,

and

m
(
Pn,k − v2 j−1v2 j, i

)
=m
(
Pn,k − v2 j−1v2 j − v2 j−3v2 j−2, i

)
+m
(
Pn,k − v2 j−1v2 j − v2 j−3 − v2 j−2 − v2 jv2 j+1, i − 1

)
+m
(
Pn,k − v2 j−1v2 j − v2 j−3 − v2 j−2 − v2 j − v2 j+1 − v2 j−5v2 j−4, i − 2

)
+ · · ·

+m
(
Sk−1 ∪ Pn−4 j+4,k, i − 2 j + 3

)
.

So

m
(
P2 j−2,k ∪ Pn−2 j+2,k, i

)
−m
(
P2 j,k ∪ Pn−2 j,k, i

)
=m
(
Sk ∪ Sk−1 ∪ P̃n−4 j+3,k, i − 2 j + 3

)
−m
(
Sk−1 ∪ Pn−4 j+4,k, i − 2 j + 3

)
.

Note that m
(
P2 j−2,k ∪ Pn−2 j+2,k, i

)
≥ m
(
P2 j,k ∪ Pn−2 j,k, i

)
for 1 ≤ i ≤

⌊
n
2

⌋
, and there exists i = 2 j − 1 such that

m
(
P2 j−2,k ∪ Pn−2 j+2,k, i

)
> m
(
P2 j,k ∪ Pn−2 j,k, i

)
. The lemma holds.

Let G be a k-uniform hypertree with size r. Let Gs,t be a k-uniform hypertree obtained from G by
attaching two loose path of length s and t at the common vertex w of G, as show in Fig. 3.1.

G w

u1
e1

1

u2

e2
1 e3

1 et−1
1 et

1

e1
2

e2
2 e3

2 es−1
2 es

2

ut−1

v1 v2 vs−1

Fig. 3.1. The hypertree Gs,t
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Lemma 3.2. If s > t + 1, then BE
(
Gs,t
)
> BE

(
Gs−1,t+1

)
.

Proof. By Eq. (1), we have

BE
(
Gs,t
)
=

1
2

E
(
S
(
Gs,t
))
,BE
(
Gs−1,t+1

)
=

1
2

E
(
S
(
Gs−1,t+1

))
,

where S
(
Gs,t
)

and S
(
Gs−1,t+1

)
are shown in Fig. 3.2.

S(G) w
e1

1

e1
2

u1

v1

e2
1

e2
2

u2

v2

ut−3

vs−3

et−2
1

es−2
2

ut−2

vs−2

et−1
1

es−1
2

ut−1

vs−1

et
1

es
2

ut

vs

S
(
Gs,t
)

S(G) w
e1

1

e1
2

u1

v1

e2
1

e2
2

u2

v2

ut−3

vs−3

et−2
1

es−2
2

ut−2

vs−2

et−1
1

es−1
2

ut−1

vs−1

et
1

ut et+1
1

ut+1

S
(
Gs−1,t+1

)
Fig. 3.2. The graphs S

(
Gs,t
)

and S
(
Gs−1,t+1

)
Since S

(
Gs,t
)

and S
(
Gs−1,t+1

)
are trees on k (r + s + t) + 1 vertices, we only need to prove that m

(
S
(
Gs,t
)
, i
)
≥

m
(
S
(
Gs−1,t+1

)
, i
)

for 1 ≤ i ≤
⌊

k(r+s+t)+1
2

⌋
and at least one of the inequalities m

(
S
(
Gs,t
)
, i
)
≥ m
(
S
(
Gs−1,t+1

)
, i
)

is
strict.

We first consider 1 ≤ i ≤ 2t + 1. By repeatedly utilizing the Lemma 2.2, we have

m
(
S
(
Gs,t
)
, 1
)
−m
(
S
(
Gs−1,t+1

)
, 1
)
= 0,

m
(
S
(
Gs,t
)
, 2
)
−m
(
S
(
Gs−1,t+1

)
, 2
)
= m
(
S
(
Gs,t
)
− vs−1 − es

2, 1
)
−m
(
S
(
Gs−1,t+1

)
− ut − et+1

1 , 1
)
= 0,

m
(
S
(
Gs,t
)
, 3
)
−m
(
S
(
Gs−1,t+1

)
, 3
)

=m
(
S
(
Gs,t
)
− vs−1 − es

2 − et
1 − ut, 1

)
−m
(
S
(
Gs−1,t+1

)
− ut − et+1

1 − es−1
2 − vs−1, 1

)
= 0.

Similarly, for 4 ≤ i ≤ 2t + 1, we may also get

m
(
S
(
Gs,t
)
, i
)
−m
(
S
(
Gs−1,t+1

)
, i
)
= 0.

For 2t + 2 ≤ i ≤
⌊

k(r+s+t)+1
2

⌋
, letting A be the graph as shown in Fig. 3.3, by repeatedly utilizing the Lemma

2.2, it can be concluded that

S(G) w e1 e2 es−t−1

︸︷︷︸k − 2 ︸   ︷︷   ︸k − 2 ︸   ︷︷   ︸k − 2

Fig. 3.3. The graph A

m
(
S
(
Gs,t
)
, i
)
−m
(
S
(
Gs−1,t+1

)
, i
)
= m (A, i − 2t − 1) −m

(
(S (G) − w) ∪ P2(s−t−1),k, i − 2t − 1

)
.

Since
(
(S (G) − w) ∪ P2(s−t−1),k

)
⊂ A, then m

(
S
(
Gs,t
)
, i
)
− m
(
S
(
Gs−1,t+1

)
, i
)
> 0. Thus BE

(
Gs,t
)
> BE

(
Gs−1,t+1

)
.

The lemma holds.
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Lemma 3.3. Let T ′ be a k-uniform hypertree with size r − a and exactly x − 1 pendent edges. Let T be a k-uniform
hypertree obtained from T ′ by adding a loose path of length a at a vertex u in T ′ such that there are x pendent edges
in T . Then

BE (T ) ≥ BE
(
(Sa

r,x−1)k
)

with the equation holds if and only if T � (Sa
r,x−1)k.

Proof. Since S (T ) and S
(
(Sa

r,x−1)k
)

are trees on kr + 1 vertices, we only need to prove that for 1 ≤ i ≤
⌊

kr+1
2

⌋
,

m (S (T ) , i) ≥ m
(
S
(
(Sa

r,x−1)k
)
, i
)

with all equalities hold if and only if T � (Sa
r,x−1)k. The result follows for

r ≤ 4. Suppose now that r ≥ 5 and the result is true for the values less than r.
Let NS(T ) (u) = {u1,u2, . . . ,us} and S (T ) − uu1 � S (T ′) ∪ Pk

2a, where NS(T ) (u) denotes the neighbor set of
the vertex u in S (T ). Let r − a = b(x − 1) + y, where 0 ≤ y ≤ x − 2. By Lemma 2.2 we have

m (S (T ) , i) = m
(
S (T ′) ∪ P2a,k, i

)
+m (S (T ) − u − u1, i − 1) ,

m
(
S
(
(Sa

r,x−1)k
)
, i
)
= m
(
S
(
(Sr−a,x−1)k

)
∪ P2a,k, i

)
+m
(
P̃2a−1,k ∪ yP2b+2,k ∪

(
x − y − 1

)
P2b,k, i − 1

)
.

If x = 3, then
(
S (T ′) ∪ P2a,k

)
�
(
S
(
(Sr−a+1,x−1)k

)
∪ P2a,k

)
. Suppose that x ≥ 4 and Let T ′′ be a k-uniform

hypertree with size r − a − c and exactly x − 2 pendent edges such that T ′ can be regarded as the k-uniform
hypertree obtained fromT ′′ by adding a loose path of length c at a vertex w inT ′′. By induction hypothesis
and Lemma 3.2, we have that for 1 ≤ i ≤

⌊
kr+1

2

⌋
,

m
(
S (T ′) ∪ P2a,k, i

)
≥ m
(
S
(
(Sc

r−a,x−2)k
)
∪ P2a,k, i

)
≥ m
(
S
(
(Sr−a,x−1)k

)
∪ P2a,k, i

)
.

In the following we will prove the inequality

m (S (T ) − u − u1, i − 1) ≥ m
(
P̃2a−1,k ∪ yP2b+2,k ∪

(
x − y − 1

)
P2b,k, i − 1

)
.

for 1 ≤ i ≤
⌊

kr+1
2

⌋
. There exists x − s edges ei (i = 1, 2, . . . x − s) in S (T ′) such that S (T ) − u − u1 −

x−s⋃
i=1

ei �

P̃2a−1,k

x⋃
j=2

Pn j,k and
x∑

j=2
n j = 2(r − a). Therefore P̃2a−1,k

x⋃
j=2

Pn j,k is a spanning subgraph of S (T ) − u − u1. Since

n j is even, by Lemma 3.1 we have

m (S (T ) − u − u1, i − 1) ≥ m

P̃2a−1,k

x⋃
j=2

Pn j,k, i − 1

 ≥ m
(
P̃2a−1,k ∪ yP2b+2,k ∪

(
x − y − 1

)
P2b,k, i − 1

)
,

where the first equality holds if and only ifT is a power graph of a starlike, and the second equality holds if

and only if
x⋃

j=2
Pn j,k � yP2b+2,k∪

(
x − y − 1

)
P2b,k. These imply all equalities hold if and only ifT � (Sa

r,x−1)k.

Theorem 3.4. Let T be a k-uniform hypertree with size r and exactly x pendent edges. Then

BE(T ) ≥ BE((Sr,x)k),

the equality holds if and only if T � (Sr,x)k.

Proof. By Lemmas 3.2 and 3.3, the result follows.
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4. The minimum incidence energy of k-uniform unicyclic hypergraphs

Lemma 4.1. Let T1 (t, s1, s2, . . . , st) and T2 (t, s1, s2, . . . , st) be two trees as shown in Fig. 4.1. If t ≥ 3, then
m (T1 (t; s1, s2, . . . , st) , 1) = m (T2 (t; s1, s2, . . . , st) , 1) and m (T1 (t; s1, s2, . . . , st) , i) > m (T2 (t; s1, s2, . . . , st) , i) for

any 2 ≤ i ≤

 1+t+
t∑

i=1
si

2

.

us1
1 us2

2 ust−1
t−1 ust

t
v1 e1 e2 et−1 et

u1
1 us1−1

1 u1
2 us2−1

1 u1
t−1 ust−1−1

t−1 u1
t ust−1

t

v1 e1

u1
1

us1
1

et

u1
t

ust
t

T1 (t; s1, s2, . . . , st) T2 (t; s1, s2, . . . , st)

Fig. 4.1. The graphs T1 (t; s1, s2, . . . , st) and T2 (t; s1, s2, . . . , st)

Proof. It is obvious to see that m (T1 (t; s1, s2, . . . , st) , 1) = m (T2 (t; s1, s2, . . . , st) , 1). If t ≥ 3, we have

m(T1, i) =m(T1 − e1us1
1 , i) +m(T1 − e1 − us1

1 , i − 1)

=m(T1 − e1us1
1 − e2us2

2 , i) +m(T1 − e1us1
1 − e2 − us2

2 , i − 1) +m(T1 − e1 − us1
1 , i − 1)

= · · ·

=m(T1 − e1us1
1 − e2us2

2 − · · · − et−1ust−1
t−1, i)

+m(T1 − e1 − us1
1 , i − 1) +m(T1 − e1us1

1 − e2 − us2
2 , i − 1)

+ · · ·

+m(T1 − e1us1
1 − e2us2

2 − · · · − et−2ust−2
t−2 − et−1 − ust−1

t−1, i − 1),

and

m(T2, i) =m(T2 − v1e1, i) +m(T2 − v1 − e1, i − 1)
=m(T2 − v1e1 − v1e2, i) +m(T2 − v1e1 − v1 − e2, i − 1) +m(T2 − v1 − e1, i − 1)
= · · ·

=m(T2 −

t−1⋃
i=1

v1ei, i) + (t − 1)m(T2 − v1 − e1, i − 1).

It is obvious to see thatT2 −

t−1⋃
i=1

v1ei

 �
T1 −

t−1⋃
i=1

eiusi
i

 ,
(T2 − v1 − e1) ⊂

(
T1 − e1 − us1

1

)
,

(T2 − v1 − e1) ⊂
(
T1 − e1us1

1 − e2 − us2
2

)
,

...

(T2 − v1 − e1) ⊂

T1 −

t−3⋃
i=1

eiusi
i − et−2 − ust−2

t−2

 ,
(T2 − v1 − e1) �

T1 −

t−2⋃
i=1

eiusi
i − et−1 − ust−1

t−1

 .
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Hence m (T1 (t, s1, s2, . . . , st) , i) > m (T2 (t, s1, s2, . . . , st) , i) for any 2 ≤ i ≤

 1+t+
t∑

i=1
si

2

. The lemma holds.

Lemma 4.2. Let G and G′ be two connected graphs of order n as shown in Fig. 4.2, where G1 is a subgraph of G and
G′ with vk ∈ G1. Then m (G, 1) ≥ m (G′, 1) and m (G, i) > m (G′, i) for any 2 ≤ i ≤

⌊
n
2

⌋
.

G1 vk
e0

v1

v11

e11 v1,k−1

e1t

vt1

vt,k−1v2

vk−1 v3

G1 vk
e0

v1

v2
e1t

vt,k−1 vt1

e11

v1,k−1

v11

vk−1 v3

Fig. 4.2. The graphs G and G′

Proof. The proof method is similar to Lemma 2.1 in [13].

Lemma 4.3. Let G and G′ be two connected graphs of order n as shown in Fig. 4.3, where G1 is a subgraph of G and
G′ with vk ∈ G1. Then m (G, 1) ≥ m (G′, 1) and m (G, i) > m (G′, i) for any 2 ≤ i ≤

⌊
n
2

⌋
.

G1 vk
e0

v1

v11

e11 v1,k−1

e1t

vt1

vt,k−1v2

vk−1 v3

G1 vk
e0

v1

e11
v1,k−2

v11

v1,k−1

e12

v21

v2,k−2

v2,k−1 e13

v31 v3,k−2

e1t

vt1 vt,k−2

vt,k−1

v2

vk−1 v3

Fig. 4.3. The graphs G and G′

Proof. The proof method is similar to Lemma 2.3 in [13].

Let G be a k-uniform unicyclic hypergraph and e0 = {v1, v2, . . . , vk} be an edge which is not belonging to
G. Let G1 be the unicyclic hypergraph obtained by identifying vk of e0 and a vertex w of G, denote the new
vertex vk. Let H1 be a unicyclic hypergraph obtained from G1 by attaching some pendent edges at some
vertices of e0. Let e11, . . . , e1t be the edges attaching at v1, and let H2 be the unicyclic hypergraph obtained
from H1 by moving the pendent edges attaching at v1 to vk, as shown in Fig. 4.4. Let H3 be the unicyclic
hypergraph obtained from H1 by deleting the pendent edges attaching at v1 and adding a loose path of
length t at v1, as shown in Fig. 4.5.

G vk

e0

v2 v1

e11 e1t

G vk

e0

v2 v1

e11 e1t

H1 H2

Fig. 4.4 The hypergraphsH1 andH2
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G vk

e0

v2 v1

e11 e1t

G vk

e0

v2 v1

e11

e12e13e1t

H1 H3

Fig. 4.5 The hypergraphsH1 andH3

Lemma 4.4. Let H1 and H2 be the k-uniform unicyclic hypergraphs of size r with unique cycle Cm,k as shown in
Fig. 4.4. Then BE(H1) > BE(H2).

Proof. By Eq. (1), BE(H1) = 1
2 E (S(H1)) and BE(H2) = 1

2 E (S(H2)). We only need to prove that b2i (S(H1)) ≥
b2i (S(H2)) for 1 ≤ i ≤

⌊
kr
2

⌋
and at least one of the inequalities b2i (S(H1)) ≥ b2i (S(H2)) is strict. It is obvious

to see that b2 (S(H1)) = b2 (S(H2)). For 2 ≤ i ≤
⌊

kr
2

⌋
, we consider two cases.

Case 1. m is odd.
By Eq. (2) we obtain

b2i (S(H1)) = m (S(H1), i) + 2m (S(H1) − C2m, i −m) ,
b2i (S(H2)) = m (S(H2), i) + 2m (S(H2) − C2m, i −m) .

By Lemma 4.2, we have m (S(H1), i) > m (S(H2), i) for 2 ≤ i ≤
⌊

kr
2

⌋
. If vk is a vertex of C2m, then S(H2)−C2m is

a spanning subgraph of S(H1) − C2m. So m (S(H1) − C2m, i −m) > m (S(H2) − C2m, i −m) for m + 1 ≤ i ≤
⌊

kr
2

⌋
.

If vk is not a vertex of C2m, By Lemma 4.2, we have m (S(H1) − C2m, i −m) ≥ m (S(H2) − C2m, i −m) for
m + 1 ≤ i ≤

⌊
kr
2

⌋
. Hence b2i (S(H1)) > b2i (S(H2)) for 2 ≤ i ≤

⌊
kr
2

⌋
.

Case 2. m is even.
By Eq. (2) we obtain

b2i (S(H1)) = m (S(H1), i) − 2m (S(H1) − C2m, i −m) = m (S(H1), i) −m (C2m,m) ×m (S(H1) − C2m, i −m) ,
b2i (S(H2)) = m (S(H2), i) − 2m (S(H2) − C2m, i −m) .

By Lemma 4.2, we have b2i (S(H1)) > b2i (S(H2)) for 2 ≤ i ≤
⌊

kr
2

⌋
. The lemma holds.

Lemma 4.5. Let H1 and H3 be the k-uniform unicyclic hypergraphs of size r with unique cycle Cm,k as shown in
Fig. 4.5. Then BE(H3) > BE(H1).

Proof. By Eq. (1), BE(H1) = 1
2 E (S(H1)) and BE(H3) = 1

2 E (S(H3)). We only need to prove that b2i (S(H3)) ≥
b2i (S(H1)) for 1 ≤ i ≤

⌊
kr
2

⌋
and at least one of the inequalities b2i (S(H3)) ≥ b2i (S(H1)) is strict. It is obvious

to see that b2 (S(H1)) = b2 (S(H3)). For 2 ≤ i ≤
⌊

kr
2

⌋
,

Case 1. m is odd.
By Eq. (2) we obtain

b2i (S(H1)) = m (S(H1), i) + 2m (S(H1) − C2m, i −m) ,
b2i (S(H3)) = m (S(H3), i) + 2m (S(H3) − C2m, i −m) .

By Lemma 4.3 , we can obtain m (S(H3), i) > m (S(H1), i) for 2 ≤ i ≤
⌊

kr
2

⌋
and m (S(H3) − C2m, i −m) ≥

m (S(H1) − C2m, i −m) for m + 1 ≤ i ≤
⌊

kr
2

⌋
.
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Case 2. m is even.
By Eq. (2) we obtain

b2i (S(H1)) = m (S(H1), i) − 2m (S(H1) − C2m, i −m) = m (S(H1), i) −m (C2m,m) ×m (S(H1) − C2m, i −m) ,
b2i (S(H3)) = m (S(H3), i) − 2m (S(H3) − C2m, i −m) .

By Lemma 4.3, we have b2i (S(H3)) > b2i (S(H1)) for 2 ≤ i ≤
⌊

kr
2

⌋
. The lemma holds.

Theorem 4.6. Let G be a k-uniform unicyclic hypergraph of size r > 2 with unique cycle Cm,k,Then

BE(G) ≥ BE(U2
r ),

the equality holds if and only if G �U2
r .

Proof. By Lemmas 4.4 and 4.5, we can assume that all edges of G except those in Cm,k are pendent edges
attaching at some vertices in Cm,k. We only need to prove that b2i (S (G)) ≥ b2i

(
S
(
U

2
r

))
for any positive

integer i, and all equalities hold if and only if G �U2
r .

We use induction on r to prove it. If r = m, thenG � Cr,k. It is obvious to see that b2
(
S
(
Cr,k
))
= b2

(
S
(
U

2
r

))
.

Suppose now 2 ≤ i ≤ r. Then by Lemma 2.3, we have

b2i
(
S
(
Cr,k
))
=m (T1 (r; k − 2, k − 1, . . . , k − 1) , i) +m (T1 (r − 1; k − 2, k − 1, . . . , k − 1) , i − 1) ,

b2i

(
S
(
U

2
r

))
=m (T2 (r; k − 2, k − 1, . . . , k − 1) , i) +m (T2 (r − 1; k − 2, k − 1, . . . , k − 1) , i − 1)

− 2m ((r − 2) Sk, i − 2) .

By Lemma 4.1, we have

m (T1 (r; k − 2, k − 1, . . . , k − 1) , i) > m (T2 (r; k − 2, k − 1, . . . , k − 1) , i) ,

and

m (T1 (r − 1; k − 2, k − 1, . . . , k − 1) , i − 1) ≥ m (T2 (r − 1; k − 2, k − 1, . . . , k − 1) , i − 1) .

Thus b2i (S (G)) > b2i

(
S
(
U

2
r

))
for 2 ≤ i ≤ r. Hence the result is true for r = m. Suppose now r ≥ m + 1. We

consider two cases.
Case 1. There is at least one pendent edge attaching at vi ∈ V0 in G.
Without loss of generality, we can assume there exist a pendent edge es attaching at v1 ∈ V0 in G and

there exist a pendent edge et attaching at v1 ∈ V0 inU2
r . Let ves be the vertex in S (G) which is adjacent to all

vertices of es. Let vet be the vertex in S
(
U

2
r

)
which is adjacent to all vertices of et. By Lemma 2.3, we have

b2i (S (G)) = b2i
(
S (G) − v1ves

)
+ b2i−2

(
S (G) − v1 − ves

)
= b2i (S (G − es) ∪ Sk) +m

(
S (G) − v1 − ves , i − 1

)
,

b2i

(
S
(
U

2
r

))
= b2i

(
S
(
U

2
r

)
− v1vet

)
+ b2i−2

(
S
(
U

2
r

)
− v1 − vet

)
= b2i

(
S
(
U

2
r−1

)
∪ Sk

)
+m
(
S
(
U

2
r

)
− v1 − vet , i − 1

)
.

By the induction hypothesis, b2i (S (G − es) ∪ Sk) ≥ b2i

(
S
(
U

2
r−1

)
∪ Sk

)
. Therefore

b2i (S (G)) − b2i

(
S
(
U

2
r

))
≥ m
(
S (G) − v1 − ves , i − 1

)
−m
(
S
(
U

2
r

)
− v1 − vet , i − 1

)
.

Since S
(
U

2
r

)
− v1 − vet is a spanning subgraph of S (G) − v1 − ves , we have

m
(
S (G) − v1 − ves , i − 1

)
≥ m
(
S
(
U

2
r

)
− v1 − vet , i − 1

)
,
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that is, b2i (S (G)) ≥ b2i

(
S
(
U

2
r

))
. These equalities hold if and only if (G − es) �

(
U

2
r − et

)
and
(
S
(
U

2
r

)
− v1 − vet

)
�(

S (G) − v1 − ves

)
, that is, G �U2

r .
Case 2. There are no pendent edges attaching at vi ∈ V0 in G.
Without loss of generality, we can assume there exist a pendent edge e′s attaching at u11 ∈ e1 in G and

there exist a pendent edge et attaching at v1 ∈ V0 inU2
r . Let ve′s be the vertex in S (G) which is adjacent to all

vertices of e′s. Let vet be the vertex in S
(
U

2
r

)
which is adjacent to all vertices of et. It is obvious to see that

b2 (S (G)) = b2

(
S
(
U

2
r

))
. Suppose now 2 ≤ i ≤ r. By Lemma 2.3, we have

b2i (S (G)) = b2i

(
S (G) − u11ve′s

)
+ b2i−2

(
S (G) − u11 − ve′s

)
= b2i

(
S
(
G − e′s

)
∪ Sk
)
+ b2i−2

(
S (G) − u11 − ve′s

)
,

b2i

(
S
(
U

2
r

))
= b2i

(
S
(
U

2
r

)
− v1vet

)
+ b2i−2

(
S
(
U

2
r

)
− v1 − vet

)
= b2i

(
S
(
U

2
r−1

)
∪ Sk

)
+ b2i−2

(
S
(
U

2
r

)
− v1 − vet

)
.

By the induction hypothesis, b2i
(
S
(
G − e′s

)
∪ Sk
)
≥ b2i

(
S
(
U

2
r−1

)
∪ Sk

)
. Therefore

b2i (S (G)) − b2i

(
S
(
U

2
r

))
≥ b2i−2

(
S (G) − u11 − ve′s

)
− b2i−2

(
S
(
U

2
r

)
− v1 − vet

)
.

If m is odd, by Eq. (2) we obtain

b2i−2

(
S (G) − u11 − ve′s

)
=m
(
S (G) − u11 − ve′s , i − 1

)
+ 2m

(
S (G) − v1 − ve′s − C2m, i −m − 1

)
,

b2i−2

(
S
(
U

2
r

)
− v1 − vet

)
=m
(
S
(
U

2
r

)
− v1 − vet , i − 1

)
.

Since S
(
U

2
r

)
− v1 − vet is a spanning subgraph of S (G) − u11 − ve′s , we have

m
(
S (G) − u11 − ve′s , i − 1

)
> m
(
S
(
U

2
r

)
− v1 − vet , i − 1

)
,

that is, b2i−2

(
S (G) − u11 − ve′s

)
> b2i−2

(
S
(
U

2
r

)
− v1 − vet

)
.

If m is even, by Eq. (2), we obtain

b2i−2

(
S (G) − u11 − ve′s

)
=m
(
S (G) − u11 − ve′s , i − 1

)
− 2m

(
S (G) − u11 − ve′s − C2m, i −m − 1

)
>m
(
S
(
U

2
r

)
− v1 − vet , i − 1

)
.

Hence b2i (S (G)) > b2i

(
S
(
U

2
r

))
.

The theorem now holds.
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